rust/src/libstd/vec.rs

3753 lines
107 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
The `vec` module contains useful code to help work with vector values. Vectors are Rust's list
type. Vectors contain zero or more values of homogeneous types:
~~~ {.rust}
let int_vector = [1,2,3];
let str_vector = ["one", "two", "three"];
~~~
This is a big module, but for a high-level overview:
## Structs
Several structs that are useful for vectors, such as `VecIterator`, which
represents iteration over a vector.
## Traits
A number of traits that allow you to accomplish tasks with vectors, like the
`MutableVector` and `ImmutableVector` traits.
## Implementations of other traits
Vectors are a very useful type, and so there's tons of implementations of
traits found elsewhere. Some notable examples:
* `Clone`
* `Iterator`
* `Zero`
## Function definitions
There are a number of different functions that take vectors, here are some
broad categories:
* Modifying a vector, like `append` and `grow`.
* Searching in a vector, like `bsearch`.
* Iterating over vectors, like `each_permutation`.
* Functional transformations on vectors, like `map` and `partition`.
* Stack/queue operations, like `push`/`pop` and `shift`/`unshift`.
* Cons-y operations, like `head` and `tail`.
* Zipper operations, like `zip` and `unzip`.
And much, much more.
*/
#[warn(non_camel_case_types)];
use cast;
use clone::{Clone, DeepClone};
use container::{Container, Mutable};
use cmp::{Eq, TotalOrd, Ordering, Less, Equal, Greater};
use cmp;
use iterator::*;
use libc::c_void;
use num::{Integer, Zero, CheckedAdd, Saturating};
use option::{None, Option, Some};
use ptr::to_unsafe_ptr;
use ptr;
use ptr::RawPtr;
use rt::global_heap::malloc_raw;
use rt::global_heap::realloc_raw;
use sys;
use sys::size_of;
use uint;
use unstable::finally::Finally;
use unstable::intrinsics;
use unstable::intrinsics::{get_tydesc, contains_managed};
use unstable::raw::{Box, Repr, Slice, Vec};
use vec;
use util;
/// Returns true if two vectors have the same length
pub fn same_length<T, U>(xs: &[T], ys: &[U]) -> bool {
xs.len() == ys.len()
}
/**
* Creates and initializes an owned vector.
*
* Creates an owned vector of size `n_elts` and initializes the elements
* to the value returned by the function `op`.
*/
pub fn from_fn<T>(n_elts: uint, op: &fn(uint) -> T) -> ~[T] {
unsafe {
let mut v = with_capacity(n_elts);
let p = raw::to_mut_ptr(v);
let mut i: uint = 0u;
do (|| {
while i < n_elts {
intrinsics::move_val_init(&mut(*ptr::mut_offset(p, i as int)), op(i));
i += 1u;
}
}).finally {
raw::set_len(&mut v, i);
}
v
}
}
/**
* Creates and initializes an owned vector.
*
* Creates an owned vector of size `n_elts` and initializes the elements
* to the value `t`.
*/
pub fn from_elem<T:Clone>(n_elts: uint, t: T) -> ~[T] {
// FIXME (#7136): manually inline from_fn for 2x plus speedup (sadly very
// important, from_elem is a bottleneck in borrowck!). Unfortunately it
// still is substantially slower than using the unsafe
// vec::with_capacity/ptr::set_memory for primitive types.
unsafe {
let mut v = with_capacity(n_elts);
let p = raw::to_mut_ptr(v);
let mut i = 0u;
do (|| {
while i < n_elts {
intrinsics::move_val_init(&mut(*ptr::mut_offset(p, i as int)), t.clone());
i += 1u;
}
}).finally {
raw::set_len(&mut v, i);
}
v
}
}
/// Creates a new vector with a capacity of `capacity`
#[inline]
pub fn with_capacity<T>(capacity: uint) -> ~[T] {
unsafe {
if contains_managed::<T>() {
let mut vec = ~[];
vec.reserve(capacity);
vec
} else {
let alloc = capacity * sys::nonzero_size_of::<T>();
let ptr = malloc_raw(alloc + sys::size_of::<Vec<()>>()) as *mut Vec<()>;
(*ptr).alloc = alloc;
(*ptr).fill = 0;
cast::transmute(ptr)
}
}
}
/**
* Builds a vector by calling a provided function with an argument
* function that pushes an element to the back of a vector.
* This version takes an initial capacity for the vector.
*
* # Arguments
*
* * size - An initial size of the vector to reserve
* * builder - A function that will construct the vector. It receives
* as an argument a function that will push an element
* onto the vector being constructed.
*/
#[inline]
pub fn build_sized<A>(size: uint, builder: &fn(push: &fn(v: A))) -> ~[A] {
let mut vec = with_capacity(size);
builder(|x| vec.push(x));
vec
}
/**
* Builds a vector by calling a provided function with an argument
* function that pushes an element to the back of a vector.
*
* # Arguments
*
* * builder - A function that will construct the vector. It receives
* as an argument a function that will push an element
* onto the vector being constructed.
*/
#[inline]
pub fn build<A>(builder: &fn(push: &fn(v: A))) -> ~[A] {
build_sized(4, builder)
}
/**
* Builds a vector by calling a provided function with an argument
* function that pushes an element to the back of a vector.
* This version takes an initial size for the vector.
*
* # Arguments
*
* * size - An option, maybe containing initial size of the vector to reserve
* * builder - A function that will construct the vector. It receives
* as an argument a function that will push an element
* onto the vector being constructed.
*/
#[inline]
pub fn build_sized_opt<A>(size: Option<uint>, builder: &fn(push: &fn(v: A))) -> ~[A] {
build_sized(size.unwrap_or_default(4), builder)
}
/// An iterator over the slices of a vector separated by elements that
/// match a predicate function.
pub struct SplitIterator<'self, T> {
priv v: &'self [T],
priv n: uint,
priv pred: &'self fn(t: &T) -> bool,
priv finished: bool
}
impl<'self, T> Iterator<&'self [T]> for SplitIterator<'self, T> {
#[inline]
fn next(&mut self) -> Option<&'self [T]> {
if self.finished { return None; }
if self.n == 0 {
self.finished = true;
return Some(self.v);
}
match self.v.iter().position(|x| (self.pred)(x)) {
None => {
self.finished = true;
Some(self.v)
}
Some(idx) => {
let ret = Some(self.v.slice(0, idx));
self.v = self.v.slice(idx + 1, self.v.len());
self.n -= 1;
ret
}
}
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
if self.finished {
return (0, Some(0))
}
// if the predicate doesn't match anything, we yield one slice
// if it matches every element, we yield N+1 empty slices where
// N is either the number of elements or the number of splits.
match (self.v.len(), self.n) {
(0,_) => (1, Some(1)),
(_,0) => (1, Some(1)),
(l,n) => (1, cmp::min(l,n).checked_add(&1u))
}
}
}
/// An iterator over the slices of a vector separated by elements that
/// match a predicate function, from back to front.
pub struct RSplitIterator<'self, T> {
priv v: &'self [T],
priv n: uint,
priv pred: &'self fn(t: &T) -> bool,
priv finished: bool
}
impl<'self, T> Iterator<&'self [T]> for RSplitIterator<'self, T> {
#[inline]
fn next(&mut self) -> Option<&'self [T]> {
if self.finished { return None; }
if self.n == 0 {
self.finished = true;
return Some(self.v);
}
match self.v.rposition(|x| (self.pred)(x)) {
None => {
self.finished = true;
Some(self.v)
}
Some(idx) => {
let ret = Some(self.v.slice(idx + 1, self.v.len()));
self.v = self.v.slice(0, idx);
self.n -= 1;
ret
}
}
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
if self.finished {
return (0, Some(0))
}
match (self.v.len(), self.n) {
(0,_) => (1, Some(1)),
(_,0) => (1, Some(1)),
(l,n) => (1, cmp::min(l,n).checked_add(&1u))
}
}
}
// Appending
/// Iterates over the `rhs` vector, copying each element and appending it to the
/// `lhs`. Afterwards, the `lhs` is then returned for use again.
#[inline]
pub fn append<T:Clone>(lhs: ~[T], rhs: &[T]) -> ~[T] {
let mut v = lhs;
v.push_all(rhs);
v
}
/// Appends one element to the vector provided. The vector itself is then
/// returned for use again.
#[inline]
pub fn append_one<T>(lhs: ~[T], x: T) -> ~[T] {
let mut v = lhs;
v.push(x);
v
}
// Functional utilities
/**
* Apply a function to each element of a vector and return a concatenation
* of each result vector
*/
pub fn flat_map<T, U>(v: &[T], f: &fn(t: &T) -> ~[U]) -> ~[U] {
let mut result = ~[];
for elem in v.iter() { result.push_all_move(f(elem)); }
result
}
/// Flattens a vector of vectors of T into a single vector of T.
pub fn concat<T:Clone>(v: &[~[T]]) -> ~[T] { v.concat_vec() }
/// Concatenate a vector of vectors, placing a given separator between each
pub fn connect<T:Clone>(v: &[~[T]], sep: &T) -> ~[T] { v.connect_vec(sep) }
/// Flattens a vector of vectors of T into a single vector of T.
pub fn concat_slices<T:Clone>(v: &[&[T]]) -> ~[T] { v.concat_vec() }
/// Concatenate a vector of vectors, placing a given separator between each
pub fn connect_slices<T:Clone>(v: &[&[T]], sep: &T) -> ~[T] { v.connect_vec(sep) }
#[allow(missing_doc)]
pub trait VectorVector<T> {
// FIXME #5898: calling these .concat and .connect conflicts with
// StrVector::con{cat,nect}, since they have generic contents.
fn concat_vec(&self) -> ~[T];
fn connect_vec(&self, sep: &T) -> ~[T];
}
impl<'self, T:Clone> VectorVector<T> for &'self [~[T]] {
/// Flattens a vector of slices of T into a single vector of T.
fn concat_vec(&self) -> ~[T] {
self.flat_map(|inner| (*inner).clone())
}
/// Concatenate a vector of vectors, placing a given separator between each.
fn connect_vec(&self, sep: &T) -> ~[T] {
let mut r = ~[];
let mut first = true;
for inner in self.iter() {
if first { first = false; } else { r.push((*sep).clone()); }
r.push_all((*inner).clone());
}
r
}
}
impl<'self,T:Clone> VectorVector<T> for &'self [&'self [T]] {
/// Flattens a vector of slices of T into a single vector of T.
fn concat_vec(&self) -> ~[T] {
self.flat_map(|&inner| inner.to_owned())
}
/// Concatenate a vector of slices, placing a given separator between each.
fn connect_vec(&self, sep: &T) -> ~[T] {
let mut r = ~[];
let mut first = true;
for &inner in self.iter() {
if first { first = false; } else { r.push((*sep).clone()); }
r.push_all(inner);
}
r
}
}
// FIXME: if issue #586 gets implemented, could have a postcondition
// saying the two result lists have the same length -- or, could
// return a nominal record with a constraint saying that, instead of
// returning a tuple (contingent on issue #869)
/**
* Convert a vector of pairs into a pair of vectors, by reference. As unzip().
*/
pub fn unzip_slice<T:Clone,U:Clone>(v: &[(T, U)]) -> (~[T], ~[U]) {
let mut ts = ~[];
let mut us = ~[];
for p in v.iter() {
let (t, u) = (*p).clone();
ts.push(t);
us.push(u);
}
(ts, us)
}
/**
* Convert a vector of pairs into a pair of vectors.
*
* Returns a tuple containing two vectors where the i-th element of the first
* vector contains the first element of the i-th tuple of the input vector,
* and the i-th element of the second vector contains the second element
* of the i-th tuple of the input vector.
*/
pub fn unzip<T,U>(v: ~[(T, U)]) -> (~[T], ~[U]) {
let mut ts = ~[];
let mut us = ~[];
for p in v.move_iter() {
let (t, u) = p;
ts.push(t);
us.push(u);
}
(ts, us)
}
/**
* Iterate over all permutations of vector `v`.
*
* Permutations are produced in lexicographic order with respect to the order
* of elements in `v` (so if `v` is sorted then the permutations are
* lexicographically sorted).
*
* The total number of permutations produced is `v.len()!`. If `v` contains
* repeated elements, then some permutations are repeated.
*
* See [Algorithms to generate
* permutations](http://en.wikipedia.org/wiki/Permutation).
*
* # Arguments
*
* * `values` - A vector of values from which the permutations are
* chosen
*
* * `fun` - The function to iterate over the combinations
*/
pub fn each_permutation<T:Clone>(values: &[T], fun: &fn(perm : &[T]) -> bool) -> bool {
let length = values.len();
let mut permutation = vec::from_fn(length, |i| values[i].clone());
if length <= 1 {
fun(permutation);
return true;
}
let mut indices = vec::from_fn(length, |i| i);
loop {
if !fun(permutation) { return true; }
// find largest k such that indices[k] < indices[k+1]
// if no such k exists, all permutations have been generated
let mut k = length - 2;
while k > 0 && indices[k] >= indices[k+1] {
k -= 1;
}
if k == 0 && indices[0] > indices[1] { return true; }
// find largest l such that indices[k] < indices[l]
// k+1 is guaranteed to be such
let mut l = length - 1;
while indices[k] >= indices[l] {
l -= 1;
}
// swap indices[k] and indices[l]; sort indices[k+1..]
// (they're just reversed)
indices.swap(k, l);
indices.mut_slice(k+1, length).reverse();
// fixup permutation based on indices
for i in range(k, length) {
permutation[i] = values[indices[i]].clone();
}
}
}
/// An iterator over the (overlapping) slices of length `size` within
/// a vector.
#[deriving(Clone)]
pub struct WindowIter<'self, T> {
priv v: &'self [T],
priv size: uint
}
impl<'self, T> Iterator<&'self [T]> for WindowIter<'self, T> {
#[inline]
fn next(&mut self) -> Option<&'self [T]> {
if self.size > self.v.len() {
None
} else {
let ret = Some(self.v.slice(0, self.size));
self.v = self.v.slice(1, self.v.len());
ret
}
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
if self.size > self.v.len() {
(0, Some(0))
} else {
let x = self.v.len() - self.size;
(x.saturating_add(1), x.checked_add(&1u))
}
}
}
/// An iterator over a vector in (non-overlapping) chunks (`size`
/// elements at a time).
///
/// When the vector len is not evenly divided by the chunk size,
/// the last slice of the iteration will be the remainder.
#[deriving(Clone)]
pub struct ChunkIter<'self, T> {
priv v: &'self [T],
priv size: uint
}
impl<'self, T> Iterator<&'self [T]> for ChunkIter<'self, T> {
#[inline]
fn next(&mut self) -> Option<&'self [T]> {
if self.v.len() == 0 {
None
} else {
let chunksz = cmp::min(self.v.len(), self.size);
let (fst, snd) = (self.v.slice_to(chunksz),
self.v.slice_from(chunksz));
self.v = snd;
Some(fst)
}
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
if self.v.len() == 0 {
(0, Some(0))
} else {
let (n, rem) = self.v.len().div_rem(&self.size);
let n = if rem > 0 { n+1 } else { n };
(n, Some(n))
}
}
}
impl<'self, T> DoubleEndedIterator<&'self [T]> for ChunkIter<'self, T> {
#[inline]
fn next_back(&mut self) -> Option<&'self [T]> {
if self.v.len() == 0 {
None
} else {
let remainder = self.v.len() % self.size;
let chunksz = if remainder != 0 { remainder } else { self.size };
let (fst, snd) = (self.v.slice_to(self.v.len() - chunksz),
self.v.slice_from(self.v.len() - chunksz));
self.v = fst;
Some(snd)
}
}
}
impl<'self, T> RandomAccessIterator<&'self [T]> for ChunkIter<'self, T> {
#[inline]
fn indexable(&self) -> uint {
self.v.len()/self.size + if self.v.len() % self.size != 0 { 1 } else { 0 }
}
#[inline]
fn idx(&self, index: uint) -> Option<&'self [T]> {
if index < self.indexable() {
let lo = index * self.size;
let mut hi = lo + self.size;
if hi < lo || hi > self.v.len() { hi = self.v.len(); }
Some(self.v.slice(lo, hi))
} else {
None
}
}
}
// Equality
#[cfg(not(test))]
pub mod traits {
use super::*;
use clone::Clone;
use cmp::{Eq, Ord, TotalEq, TotalOrd, Ordering, Equiv};
use iterator::order;
use ops::Add;
impl<'self,T:Eq> Eq for &'self [T] {
fn eq(&self, other: & &'self [T]) -> bool {
self.len() == other.len() &&
order::eq(self.iter(), other.iter())
}
fn ne(&self, other: & &'self [T]) -> bool {
self.len() != other.len() ||
order::ne(self.iter(), other.iter())
}
}
impl<T:Eq> Eq for ~[T] {
#[inline]
fn eq(&self, other: &~[T]) -> bool { self.as_slice() == *other }
#[inline]
fn ne(&self, other: &~[T]) -> bool { !self.eq(other) }
}
impl<T:Eq> Eq for @[T] {
#[inline]
fn eq(&self, other: &@[T]) -> bool { self.as_slice() == *other }
#[inline]
fn ne(&self, other: &@[T]) -> bool { !self.eq(other) }
}
impl<'self,T:TotalEq> TotalEq for &'self [T] {
fn equals(&self, other: & &'self [T]) -> bool {
self.len() == other.len() &&
order::equals(self.iter(), other.iter())
}
}
impl<T:TotalEq> TotalEq for ~[T] {
#[inline]
fn equals(&self, other: &~[T]) -> bool { self.as_slice().equals(&other.as_slice()) }
}
impl<T:TotalEq> TotalEq for @[T] {
#[inline]
fn equals(&self, other: &@[T]) -> bool { self.as_slice().equals(&other.as_slice()) }
}
impl<'self,T:Eq, V: Vector<T>> Equiv<V> for &'self [T] {
#[inline]
fn equiv(&self, other: &V) -> bool { self.as_slice() == other.as_slice() }
}
impl<'self,T:Eq, V: Vector<T>> Equiv<V> for ~[T] {
#[inline]
fn equiv(&self, other: &V) -> bool { self.as_slice() == other.as_slice() }
}
impl<'self,T:Eq, V: Vector<T>> Equiv<V> for @[T] {
#[inline]
fn equiv(&self, other: &V) -> bool { self.as_slice() == other.as_slice() }
}
impl<'self,T:TotalOrd> TotalOrd for &'self [T] {
fn cmp(&self, other: & &'self [T]) -> Ordering {
order::cmp(self.iter(), other.iter())
}
}
impl<T: TotalOrd> TotalOrd for ~[T] {
#[inline]
fn cmp(&self, other: &~[T]) -> Ordering { self.as_slice().cmp(&other.as_slice()) }
}
impl<T: TotalOrd> TotalOrd for @[T] {
#[inline]
fn cmp(&self, other: &@[T]) -> Ordering { self.as_slice().cmp(&other.as_slice()) }
}
impl<'self, T: Eq + Ord> Ord for &'self [T] {
fn lt(&self, other: & &'self [T]) -> bool {
order::lt(self.iter(), other.iter())
}
#[inline]
fn le(&self, other: & &'self [T]) -> bool {
order::le(self.iter(), other.iter())
}
#[inline]
fn ge(&self, other: & &'self [T]) -> bool {
order::ge(self.iter(), other.iter())
}
#[inline]
fn gt(&self, other: & &'self [T]) -> bool {
order::gt(self.iter(), other.iter())
}
}
impl<T: Eq + Ord> Ord for ~[T] {
#[inline]
fn lt(&self, other: &~[T]) -> bool { self.as_slice() < other.as_slice() }
#[inline]
fn le(&self, other: &~[T]) -> bool { self.as_slice() <= other.as_slice() }
#[inline]
fn ge(&self, other: &~[T]) -> bool { self.as_slice() >= other.as_slice() }
#[inline]
fn gt(&self, other: &~[T]) -> bool { self.as_slice() > other.as_slice() }
}
impl<T: Eq + Ord> Ord for @[T] {
#[inline]
fn lt(&self, other: &@[T]) -> bool { self.as_slice() < other.as_slice() }
#[inline]
fn le(&self, other: &@[T]) -> bool { self.as_slice() <= other.as_slice() }
#[inline]
fn ge(&self, other: &@[T]) -> bool { self.as_slice() >= other.as_slice() }
#[inline]
fn gt(&self, other: &@[T]) -> bool { self.as_slice() > other.as_slice() }
}
impl<'self,T:Clone, V: Vector<T>> Add<V, ~[T]> for &'self [T] {
#[inline]
fn add(&self, rhs: &V) -> ~[T] {
let mut res = with_capacity(self.len() + rhs.as_slice().len());
res.push_all(*self);
res.push_all(rhs.as_slice());
res
}
}
impl<T:Clone, V: Vector<T>> Add<V, ~[T]> for ~[T] {
#[inline]
fn add(&self, rhs: &V) -> ~[T] {
self.as_slice() + rhs.as_slice()
}
}
}
#[cfg(test)]
pub mod traits {}
/// Any vector that can be represented as a slice.
pub trait Vector<T> {
/// Work with `self` as a slice.
fn as_slice<'a>(&'a self) -> &'a [T];
}
impl<'self,T> Vector<T> for &'self [T] {
#[inline(always)]
fn as_slice<'a>(&'a self) -> &'a [T] { *self }
}
impl<T> Vector<T> for ~[T] {
#[inline(always)]
fn as_slice<'a>(&'a self) -> &'a [T] { let v: &'a [T] = *self; v }
}
impl<T> Vector<T> for @[T] {
#[inline(always)]
fn as_slice<'a>(&'a self) -> &'a [T] { let v: &'a [T] = *self; v }
}
impl<'self, T> Container for &'self [T] {
/// Returns the length of a vector
#[inline]
fn len(&self) -> uint {
self.as_imm_buf(|_p, len| len)
}
}
impl<T> Container for ~[T] {
/// Returns the length of a vector
#[inline]
fn len(&self) -> uint {
self.as_imm_buf(|_p, len| len)
}
}
/// Extension methods for vector slices with copyable elements
pub trait CopyableVector<T> {
/// Copy `self` into a new owned vector
fn to_owned(&self) -> ~[T];
/// Convert `self` into a owned vector, not making a copy if possible.
fn into_owned(self) -> ~[T];
}
/// Extension methods for vector slices
impl<'self, T: Clone> CopyableVector<T> for &'self [T] {
/// Returns a copy of `v`.
#[inline]
fn to_owned(&self) -> ~[T] {
let mut result = with_capacity(self.len());
for e in self.iter() {
result.push((*e).clone());
}
result
}
#[inline(always)]
fn into_owned(self) -> ~[T] { self.to_owned() }
}
/// Extension methods for owned vectors
impl<T: Clone> CopyableVector<T> for ~[T] {
#[inline]
fn to_owned(&self) -> ~[T] { self.clone() }
#[inline(always)]
fn into_owned(self) -> ~[T] { self }
}
/// Extension methods for managed vectors
impl<T: Clone> CopyableVector<T> for @[T] {
#[inline]
fn to_owned(&self) -> ~[T] { self.as_slice().to_owned() }
#[inline(always)]
fn into_owned(self) -> ~[T] { self.to_owned() }
}
#[allow(missing_doc)]
pub trait ImmutableVector<'self, T> {
fn slice(&self, start: uint, end: uint) -> &'self [T];
fn slice_from(&self, start: uint) -> &'self [T];
fn slice_to(&self, end: uint) -> &'self [T];
fn iter(self) -> VecIterator<'self, T>;
fn rev_iter(self) -> RevIterator<'self, T>;
fn split_iter(self, pred: &'self fn(&T) -> bool) -> SplitIterator<'self, T>;
fn splitn_iter(self, n: uint, pred: &'self fn(&T) -> bool) -> SplitIterator<'self, T>;
fn rsplit_iter(self, pred: &'self fn(&T) -> bool) -> RSplitIterator<'self, T>;
fn rsplitn_iter(self, n: uint, pred: &'self fn(&T) -> bool) -> RSplitIterator<'self, T>;
fn window_iter(self, size: uint) -> WindowIter<'self, T>;
fn chunk_iter(self, size: uint) -> ChunkIter<'self, T>;
fn head(&self) -> &'self T;
fn head_opt(&self) -> Option<&'self T>;
fn tail(&self) -> &'self [T];
fn tailn(&self, n: uint) -> &'self [T];
fn init(&self) -> &'self [T];
fn initn(&self, n: uint) -> &'self [T];
fn last(&self) -> &'self T;
fn last_opt(&self) -> Option<&'self T>;
fn rposition(&self, f: &fn(t: &T) -> bool) -> Option<uint>;
fn flat_map<U>(&self, f: &fn(t: &T) -> ~[U]) -> ~[U];
unsafe fn unsafe_ref(&self, index: uint) -> *T;
fn bsearch(&self, f: &fn(&T) -> Ordering) -> Option<uint>;
fn map<U>(&self, &fn(t: &T) -> U) -> ~[U];
fn as_imm_buf<U>(&self, f: &fn(*T, uint) -> U) -> U;
}
/// Extension methods for vectors
impl<'self,T> ImmutableVector<'self, T> for &'self [T] {
/**
* Returns a slice of self between `start` and `end`.
*
* Fails when `start` or `end` point outside the bounds of self,
* or when `start` > `end`.
*/
#[inline]
fn slice(&self, start: uint, end: uint) -> &'self [T] {
assert!(start <= end);
assert!(end <= self.len());
do self.as_imm_buf |p, _len| {
unsafe {
cast::transmute(Slice {
data: ptr::offset(p, start as int),
len: (end - start) * sys::nonzero_size_of::<T>(),
})
}
}
}
/**
* Returns a slice of self from `start` to the end of the vec.
*
* Fails when `start` points outside the bounds of self.
*/
#[inline]
fn slice_from(&self, start: uint) -> &'self [T] {
self.slice(start, self.len())
}
/**
* Returns a slice of self from the start of the vec to `end`.
*
* Fails when `end` points outside the bounds of self.
*/
#[inline]
fn slice_to(&self, end: uint) -> &'self [T] {
self.slice(0, end)
}
#[inline]
fn iter(self) -> VecIterator<'self, T> {
unsafe {
let p = vec::raw::to_ptr(self);
if sys::size_of::<T>() == 0 {
VecIterator{ptr: p,
end: (p as uint + self.len()) as *T,
lifetime: cast::transmute(p)}
} else {
VecIterator{ptr: p,
end: p.offset(self.len() as int),
lifetime: cast::transmute(p)}
}
}
}
#[inline]
fn rev_iter(self) -> RevIterator<'self, T> {
self.iter().invert()
}
/// Returns an iterator over the subslices of the vector which are
/// separated by elements that match `pred`.
#[inline]
fn split_iter(self, pred: &'self fn(&T) -> bool) -> SplitIterator<'self, T> {
self.splitn_iter(uint::max_value, pred)
}
/// Returns an iterator over the subslices of the vector which are
/// separated by elements that match `pred`, limited to splitting
/// at most `n` times.
#[inline]
fn splitn_iter(self, n: uint, pred: &'self fn(&T) -> bool) -> SplitIterator<'self, T> {
SplitIterator {
v: self,
n: n,
pred: pred,
finished: false
}
}
/// Returns an iterator over the subslices of the vector which are
/// separated by elements that match `pred`. This starts at the
/// end of the vector and works backwards.
#[inline]
fn rsplit_iter(self, pred: &'self fn(&T) -> bool) -> RSplitIterator<'self, T> {
self.rsplitn_iter(uint::max_value, pred)
}
/// Returns an iterator over the subslices of the vector which are
/// separated by elements that match `pred` limited to splitting
/// at most `n` times. This starts at the end of the vector and
/// works backwards.
#[inline]
fn rsplitn_iter(self, n: uint, pred: &'self fn(&T) -> bool) -> RSplitIterator<'self, T> {
RSplitIterator {
v: self,
n: n,
pred: pred,
finished: false
}
}
/**
* Returns an iterator over all contiguous windows of length
* `size`. The windows overlap. If the vector is shorter than
* `size`, the iterator returns no values.
*
* # Failure
*
* Fails if `size` is 0.
*
* # Example
*
* Print the adjacent pairs of a vector (i.e. `[1,2]`, `[2,3]`,
* `[3,4]`):
*
* ~~~ {.rust}
* let v = &[1,2,3,4];
* for win in v.window_iter() {
* printfln!(win);
* }
* ~~~
*
*/
fn window_iter(self, size: uint) -> WindowIter<'self, T> {
assert!(size != 0);
WindowIter { v: self, size: size }
}
/**
*
* Returns an iterator over `size` elements of the vector at a
* time. The chunks do not overlap. If `size` does not divide the
* length of the vector, then the last chunk will not have length
* `size`.
*
* # Failure
*
* Fails if `size` is 0.
*
* # Example
*
* Print the vector two elements at a time (i.e. `[1,2]`,
* `[3,4]`, `[5]`):
*
* ~~~ {.rust}
* let v = &[1,2,3,4,5];
* for win in v.chunk_iter() {
* printfln!(win);
* }
* ~~~
*
*/
fn chunk_iter(self, size: uint) -> ChunkIter<'self, T> {
assert!(size != 0);
ChunkIter { v: self, size: size }
}
/// Returns the first element of a vector, failing if the vector is empty.
#[inline]
fn head(&self) -> &'self T {
if self.len() == 0 { fail!("head: empty vector") }
&self[0]
}
/// Returns the first element of a vector, or `None` if it is empty
#[inline]
fn head_opt(&self) -> Option<&'self T> {
if self.len() == 0 { None } else { Some(&self[0]) }
}
/// Returns all but the first element of a vector
#[inline]
fn tail(&self) -> &'self [T] { self.slice(1, self.len()) }
/// Returns all but the first `n' elements of a vector
#[inline]
fn tailn(&self, n: uint) -> &'self [T] { self.slice(n, self.len()) }
/// Returns all but the last element of a vector
#[inline]
fn init(&self) -> &'self [T] {
self.slice(0, self.len() - 1)
}
/// Returns all but the last `n' elemnts of a vector
#[inline]
fn initn(&self, n: uint) -> &'self [T] {
self.slice(0, self.len() - n)
}
/// Returns the last element of a vector, failing if the vector is empty.
#[inline]
fn last(&self) -> &'self T {
if self.len() == 0 { fail!("last: empty vector") }
&self[self.len() - 1]
}
/// Returns the last element of a vector, or `None` if it is empty.
#[inline]
fn last_opt(&self) -> Option<&'self T> {
if self.len() == 0 { None } else { Some(&self[self.len() - 1]) }
}
/**
* Find the last index matching some predicate
*
* Apply function `f` to each element of `v` in reverse order. When
* function `f` returns true then an option containing the index is
* returned. If `f` matches no elements then None is returned.
*/
#[inline]
fn rposition(&self, f: &fn(t: &T) -> bool) -> Option<uint> {
for (i, t) in self.rev_iter().enumerate() {
if f(t) { return Some(self.len() - i - 1); }
}
None
}
/**
* Apply a function to each element of a vector and return a concatenation
* of each result vector
*/
#[inline]
fn flat_map<U>(&self, f: &fn(t: &T) -> ~[U]) -> ~[U] {
flat_map(*self, f)
}
/// Returns a pointer to the element at the given index, without doing
/// bounds checking.
#[inline]
unsafe fn unsafe_ref(&self, index: uint) -> *T {
self.repr().data.offset(index as int)
}
/**
* Binary search a sorted vector with a comparator function.
*
* The comparator should implement an order consistent with the sort
* order of the underlying vector, returning an order code that indicates
* whether its argument is `Less`, `Equal` or `Greater` the desired target.
*
* Returns the index where the comparator returned `Equal`, or `None` if
* not found.
*/
fn bsearch(&self, f: &fn(&T) -> Ordering) -> Option<uint> {
let mut base : uint = 0;
let mut lim : uint = self.len();
while lim != 0 {
let ix = base + (lim >> 1);
match f(&self[ix]) {
Equal => return Some(ix),
Less => {
base = ix + 1;
lim -= 1;
}
Greater => ()
}
lim >>= 1;
}
return None;
}
/// Deprecated, use iterators where possible
/// (`self.iter().map(f)`). Apply a function to each element
/// of a vector and return the results.
fn map<U>(&self, f: &fn(t: &T) -> U) -> ~[U] {
self.iter().map(f).collect()
}
/**
* Work with the buffer of a vector.
*
* Allows for unsafe manipulation of vector contents, which is useful for
* foreign interop.
*/
#[inline]
fn as_imm_buf<U>(&self, f: &fn(*T, uint) -> U) -> U {
let s = self.repr();
f(s.data, s.len / sys::nonzero_size_of::<T>())
}
}
#[allow(missing_doc)]
pub trait ImmutableEqVector<T:Eq> {
fn position_elem(&self, t: &T) -> Option<uint>;
fn rposition_elem(&self, t: &T) -> Option<uint>;
fn contains(&self, x: &T) -> bool;
}
impl<'self,T:Eq> ImmutableEqVector<T> for &'self [T] {
/// Find the first index containing a matching value
#[inline]
fn position_elem(&self, x: &T) -> Option<uint> {
self.iter().position(|y| *x == *y)
}
/// Find the last index containing a matching value
#[inline]
fn rposition_elem(&self, t: &T) -> Option<uint> {
self.rposition(|x| *x == *t)
}
/// Return true if a vector contains an element with the given value
fn contains(&self, x: &T) -> bool {
for elt in self.iter() { if *x == *elt { return true; } }
false
}
}
#[allow(missing_doc)]
pub trait ImmutableTotalOrdVector<T: TotalOrd> {
fn bsearch_elem(&self, x: &T) -> Option<uint>;
}
impl<'self, T: TotalOrd> ImmutableTotalOrdVector<T> for &'self [T] {
/**
* Binary search a sorted vector for a given element.
*
* Returns the index of the element or None if not found.
*/
fn bsearch_elem(&self, x: &T) -> Option<uint> {
self.bsearch(|p| p.cmp(x))
}
}
#[allow(missing_doc)]
pub trait ImmutableCopyableVector<T> {
fn partitioned(&self, f: &fn(&T) -> bool) -> (~[T], ~[T]);
unsafe fn unsafe_get(&self, elem: uint) -> T;
}
/// Extension methods for vectors
impl<'self,T:Clone> ImmutableCopyableVector<T> for &'self [T] {
/**
* Partitions the vector into those that satisfies the predicate, and
* those that do not.
*/
#[inline]
fn partitioned(&self, f: &fn(&T) -> bool) -> (~[T], ~[T]) {
let mut lefts = ~[];
let mut rights = ~[];
for elt in self.iter() {
if f(elt) {
lefts.push((*elt).clone());
} else {
rights.push((*elt).clone());
}
}
(lefts, rights)
}
/// Returns the element at the given index, without doing bounds checking.
#[inline]
unsafe fn unsafe_get(&self, index: uint) -> T {
(*self.unsafe_ref(index)).clone()
}
}
#[allow(missing_doc)]
pub trait OwnedVector<T> {
fn move_iter(self) -> MoveIterator<T>;
fn move_rev_iter(self) -> MoveRevIterator<T>;
fn reserve(&mut self, n: uint);
fn reserve_at_least(&mut self, n: uint);
fn capacity(&self) -> uint;
fn shrink_to_fit(&mut self);
fn push(&mut self, t: T);
unsafe fn push_fast(&mut self, t: T);
fn push_all_move(&mut self, rhs: ~[T]);
fn pop(&mut self) -> T;
fn pop_opt(&mut self) -> Option<T>;
fn shift(&mut self) -> T;
fn shift_opt(&mut self) -> Option<T>;
fn unshift(&mut self, x: T);
fn insert(&mut self, i: uint, x:T);
fn remove(&mut self, i: uint) -> T;
fn swap_remove(&mut self, index: uint) -> T;
fn truncate(&mut self, newlen: uint);
fn retain(&mut self, f: &fn(t: &T) -> bool);
fn partition(self, f: &fn(&T) -> bool) -> (~[T], ~[T]);
fn grow_fn(&mut self, n: uint, op: &fn(uint) -> T);
}
impl<T> OwnedVector<T> for ~[T] {
/// Creates a consuming iterator, that is, one that moves each
/// value out of the vector (from start to end). The vector cannot
/// be used after calling this.
///
/// Note that this performs O(n) swaps, and so `move_rev_iter`
/// (which just calls `pop` repeatedly) is more efficient.
///
/// # Examples
///
/// ~~~ {.rust}
/// let v = ~[~"a", ~"b"];
/// for s in v.move_iter() {
/// // s has type ~str, not &~str
/// println(s);
/// }
/// ~~~
fn move_iter(self) -> MoveIterator<T> {
MoveIterator { v: self, idx: 0 }
}
/// Creates a consuming iterator that moves out of the vector in
/// reverse order. Also see `move_iter`, however note that this
/// is more efficient.
fn move_rev_iter(self) -> MoveRevIterator<T> {
MoveRevIterator { v: self }
}
/**
* Reserves capacity for exactly `n` elements in the given vector.
*
* If the capacity for `self` is already equal to or greater than the requested
* capacity, then no action is taken.
*
* # Arguments
*
* * n - The number of elements to reserve space for
*/
fn reserve(&mut self, n: uint) {
// Only make the (slow) call into the runtime if we have to
if self.capacity() < n {
unsafe {
let td = get_tydesc::<T>();
if contains_managed::<T>() {
let ptr: *mut *mut Box<Vec<()>> = cast::transmute(self);
::at_vec::raw::reserve_raw(td, ptr, n);
} else {
let ptr: *mut *mut Vec<()> = cast::transmute(self);
let alloc = n * sys::nonzero_size_of::<T>();
let size = alloc + sys::size_of::<Vec<()>>();
if alloc / sys::nonzero_size_of::<T>() != n || size < alloc {
fail!("vector size is too large: %u", n);
}
*ptr = realloc_raw(*ptr as *mut c_void, size)
as *mut Vec<()>;
(**ptr).alloc = alloc;
}
}
}
}
/**
* Reserves capacity for at least `n` elements in the given vector.
*
* This function will over-allocate in order to amortize the allocation costs
* in scenarios where the caller may need to repeatedly reserve additional
* space.
*
* If the capacity for `self` is already equal to or greater than the requested
* capacity, then no action is taken.
*
* # Arguments
*
* * n - The number of elements to reserve space for
*/
#[inline]
fn reserve_at_least(&mut self, n: uint) {
self.reserve(uint::next_power_of_two(n));
}
/// Returns the number of elements the vector can hold without reallocating.
#[inline]
fn capacity(&self) -> uint {
unsafe {
if contains_managed::<T>() {
let repr: **Box<Vec<()>> = cast::transmute(self);
(**repr).data.alloc / sys::nonzero_size_of::<T>()
} else {
let repr: **Vec<()> = cast::transmute(self);
(**repr).alloc / sys::nonzero_size_of::<T>()
}
}
}
/// Shrink the capacity of the vector to match the length
fn shrink_to_fit(&mut self) {
unsafe {
let ptr: *mut *mut Vec<()> = cast::transmute(self);
let alloc = (**ptr).fill;
let size = alloc + sys::size_of::<Vec<()>>();
*ptr = realloc_raw(*ptr as *mut c_void, size) as *mut Vec<()>;
(**ptr).alloc = alloc;
}
}
/// Append an element to a vector
#[inline]
fn push(&mut self, t: T) {
unsafe {
if contains_managed::<T>() {
let repr: **Box<Vec<()>> = cast::transmute(&mut *self);
let fill = (**repr).data.fill;
if (**repr).data.alloc <= fill {
let new_len = self.len() + 1;
self.reserve_at_least(new_len);
}
self.push_fast(t);
} else {
let repr: **Vec<()> = cast::transmute(&mut *self);
let fill = (**repr).fill;
if (**repr).alloc <= fill {
let new_len = self.len() + 1;
self.reserve_at_least(new_len);
}
self.push_fast(t);
}
}
}
// This doesn't bother to make sure we have space.
#[inline] // really pretty please
unsafe fn push_fast(&mut self, t: T) {
if contains_managed::<T>() {
let repr: **mut Box<Vec<u8>> = cast::transmute(self);
let fill = (**repr).data.fill;
(**repr).data.fill += sys::nonzero_size_of::<T>();
let p = to_unsafe_ptr(&((**repr).data.data));
let p = ptr::offset(p, fill as int) as *mut T;
intrinsics::move_val_init(&mut(*p), t);
} else {
let repr: **mut Vec<u8> = cast::transmute(self);
let fill = (**repr).fill;
(**repr).fill += sys::nonzero_size_of::<T>();
let p = to_unsafe_ptr(&((**repr).data));
let p = ptr::offset(p, fill as int) as *mut T;
intrinsics::move_val_init(&mut(*p), t);
}
}
/// Takes ownership of the vector `rhs`, moving all elements into
/// the current vector. This does not copy any elements, and it is
/// illegal to use the `rhs` vector after calling this method
/// (because it is moved here).
///
/// # Example
///
/// ~~~ {.rust}
/// let mut a = ~[~1];
/// a.push_all_move(~[~2, ~3, ~4]);
/// assert!(a == ~[~1, ~2, ~3, ~4]);
/// ~~~
#[inline]
fn push_all_move(&mut self, mut rhs: ~[T]) {
let self_len = self.len();
let rhs_len = rhs.len();
let new_len = self_len + rhs_len;
self.reserve_at_least(new_len);
unsafe { // Note: infallible.
let self_p = vec::raw::to_mut_ptr(*self);
let rhs_p = vec::raw::to_ptr(rhs);
ptr::copy_memory(ptr::mut_offset(self_p, self_len as int), rhs_p, rhs_len);
raw::set_len(self, new_len);
raw::set_len(&mut rhs, 0);
}
}
/// Remove the last element from a vector and return it, or `None` if it is empty
fn pop_opt(&mut self) -> Option<T> {
match self.len() {
0 => None,
ln => {
let valptr = ptr::to_mut_unsafe_ptr(&mut self[ln - 1u]);
unsafe {
raw::set_len(self, ln - 1u);
Some(ptr::read_ptr(valptr))
}
}
}
}
/// Remove the last element from a vector and return it, failing if it is empty
#[inline]
fn pop(&mut self) -> T {
self.pop_opt().expect("pop: empty vector")
}
/// Removes the first element from a vector and return it
#[inline]
fn shift(&mut self) -> T {
self.shift_opt().expect("shift: empty vector")
}
/// Removes the first element from a vector and return it, or `None` if it is empty
fn shift_opt(&mut self) -> Option<T> {
unsafe {
let ln = match self.len() {
0 => return None,
1 => return self.pop_opt(),
2 => {
let last = self.pop();
let first = self.pop_opt();
self.push(last);
return first;
}
x => x
};
let next_ln = self.len() - 1;
// Save the last element. We're going to overwrite its position
let work_elt = self.pop();
// We still should have room to work where what last element was
assert!(self.capacity() >= ln);
// Pretend like we have the original length so we can use
// the vector copy_memory to overwrite the hole we just made
raw::set_len(self, ln);
// Memcopy the head element (the one we want) to the location we just
// popped. For the moment it unsafely exists at both the head and last
// positions
{
let first_slice = self.slice(0, 1);
let last_slice = self.slice(next_ln, ln);
raw::copy_memory(cast::transmute(last_slice), first_slice, 1);
}
// Memcopy everything to the left one element
{
let init_slice = self.slice(0, next_ln);
let tail_slice = self.slice(1, ln);
raw::copy_memory(cast::transmute(init_slice),
tail_slice,
next_ln);
}
// Set the new length. Now the vector is back to normal
raw::set_len(self, next_ln);
// Swap out the element we want from the end
let vp = raw::to_mut_ptr(*self);
let vp = ptr::mut_offset(vp, (next_ln - 1) as int);
Some(ptr::replace_ptr(vp, work_elt))
}
}
/// Prepend an element to the vector
fn unshift(&mut self, x: T) {
let v = util::replace(self, ~[x]);
self.push_all_move(v);
}
/// Insert an element at position i within v, shifting all
/// elements after position i one position to the right.
fn insert(&mut self, i: uint, x:T) {
let len = self.len();
assert!(i <= len);
self.push(x);
let mut j = len;
while j > i {
self.swap(j, j - 1);
j -= 1;
}
}
/// Remove and return the element at position i within v, shifting
/// all elements after position i one position to the left.
fn remove(&mut self, i: uint) -> T {
let len = self.len();
assert!(i < len);
let mut j = i;
while j < len - 1 {
self.swap(j, j + 1);
j += 1;
}
self.pop()
}
/**
* Remove an element from anywhere in the vector and return it, replacing it
* with the last element. This does not preserve ordering, but is O(1).
*
* Fails if index >= length.
*/
fn swap_remove(&mut self, index: uint) -> T {
let ln = self.len();
if index >= ln {
fail!("vec::swap_remove - index %u >= length %u", index, ln);
}
if index < ln - 1 {
self.swap(index, ln - 1);
}
self.pop()
}
/// Shorten a vector, dropping excess elements.
fn truncate(&mut self, newlen: uint) {
do self.as_mut_buf |p, oldlen| {
assert!(newlen <= oldlen);
unsafe {
// This loop is optimized out for non-drop types.
for i in range(newlen, oldlen) {
ptr::read_and_zero_ptr(ptr::mut_offset(p, i as int));
}
}
}
unsafe { raw::set_len(self, newlen); }
}
/**
* Like `filter()`, but in place. Preserves order of `v`. Linear time.
*/
fn retain(&mut self, f: &fn(t: &T) -> bool) {
let len = self.len();
let mut deleted: uint = 0;
for i in range(0u, len) {
if !f(&self[i]) {
deleted += 1;
} else if deleted > 0 {
self.swap(i - deleted, i);
}
}
if deleted > 0 {
self.truncate(len - deleted);
}
}
/**
* Partitions the vector into those that satisfies the predicate, and
* those that do not.
*/
#[inline]
fn partition(self, f: &fn(&T) -> bool) -> (~[T], ~[T]) {
let mut lefts = ~[];
let mut rights = ~[];
for elt in self.move_iter() {
if f(&elt) {
lefts.push(elt);
} else {
rights.push(elt);
}
}
(lefts, rights)
}
/**
* Expands a vector in place, initializing the new elements to the result of
* a function
*
* Function `init_op` is called `n` times with the values [0..`n`)
*
* # Arguments
*
* * n - The number of elements to add
* * init_op - A function to call to retreive each appended element's
* value
*/
fn grow_fn(&mut self, n: uint, op: &fn(uint) -> T) {
let new_len = self.len() + n;
self.reserve_at_least(new_len);
let mut i: uint = 0u;
while i < n {
self.push(op(i));
i += 1u;
}
}
}
impl<T> Mutable for ~[T] {
/// Clear the vector, removing all values.
fn clear(&mut self) { self.truncate(0) }
}
#[allow(missing_doc)]
pub trait OwnedCopyableVector<T:Clone> {
fn push_all(&mut self, rhs: &[T]);
fn grow(&mut self, n: uint, initval: &T);
fn grow_set(&mut self, index: uint, initval: &T, val: T);
}
impl<T:Clone> OwnedCopyableVector<T> for ~[T] {
/// Iterates over the slice `rhs`, copies each element, and then appends it to
/// the vector provided `v`. The `rhs` vector is traversed in-order.
///
/// # Example
///
/// ~~~ {.rust}
/// let mut a = ~[1];
/// a.push_all([2, 3, 4]);
/// assert!(a == ~[1, 2, 3, 4]);
/// ~~~
#[inline]
fn push_all(&mut self, rhs: &[T]) {
let new_len = self.len() + rhs.len();
self.reserve(new_len);
for elt in rhs.iter() {
self.push((*elt).clone())
}
}
/**
* Expands a vector in place, initializing the new elements to a given value
*
* # Arguments
*
* * n - The number of elements to add
* * initval - The value for the new elements
*/
fn grow(&mut self, n: uint, initval: &T) {
let new_len = self.len() + n;
self.reserve_at_least(new_len);
let mut i: uint = 0u;
while i < n {
self.push((*initval).clone());
i += 1u;
}
}
/**
* Sets the value of a vector element at a given index, growing the vector as
* needed
*
* Sets the element at position `index` to `val`. If `index` is past the end
* of the vector, expands the vector by replicating `initval` to fill the
* intervening space.
*/
fn grow_set(&mut self, index: uint, initval: &T, val: T) {
let l = self.len();
if index >= l { self.grow(index - l + 1u, initval); }
self[index] = val;
}
}
#[allow(missing_doc)]
pub trait OwnedEqVector<T:Eq> {
fn dedup(&mut self);
}
impl<T:Eq> OwnedEqVector<T> for ~[T] {
/**
* Remove consecutive repeated elements from a vector; if the vector is
* sorted, this removes all duplicates.
*/
fn dedup(&mut self) {
unsafe {
// Although we have a mutable reference to `self`, we cannot make
// *arbitrary* changes. There exists the possibility that this
// vector is contained with an `@mut` box and hence is still
// readable by the outside world during the `Eq` comparisons.
// Moreover, those comparisons could fail, so we must ensure
// that the vector is in a valid state at all time.
//
// The way that we handle this is by using swaps; we iterate
// over all the elements, swapping as we go so that at the end
// the elements we wish to keep are in the front, and those we
// wish to reject are at the back. We can then truncate the
// vector. This operation is still O(n).
//
// Example: We start in this state, where `r` represents "next
// read" and `w` represents "next_write`.
//
// r
// +---+---+---+---+---+---+
// | 0 | 1 | 1 | 2 | 3 | 3 |
// +---+---+---+---+---+---+
// w
//
// Comparing self[r] against self[w-1], tis is not a duplicate, so
// we swap self[r] and self[w] (no effect as r==w) and then increment both
// r and w, leaving us with:
//
// r
// +---+---+---+---+---+---+
// | 0 | 1 | 1 | 2 | 3 | 3 |
// +---+---+---+---+---+---+
// w
//
// Comparing self[r] against self[w-1], this value is a duplicate,
// so we increment `r` but leave everything else unchanged:
//
// r
// +---+---+---+---+---+---+
// | 0 | 1 | 1 | 2 | 3 | 3 |
// +---+---+---+---+---+---+
// w
//
// Comparing self[r] against self[w-1], this is not a duplicate,
// so swap self[r] and self[w] and advance r and w:
//
// r
// +---+---+---+---+---+---+
// | 0 | 1 | 2 | 1 | 3 | 3 |
// +---+---+---+---+---+---+
// w
//
// Not a duplicate, repeat:
//
// r
// +---+---+---+---+---+---+
// | 0 | 1 | 2 | 3 | 1 | 3 |
// +---+---+---+---+---+---+
// w
//
// Duplicate, advance r. End of vec. Truncate to w.
let ln = self.len();
if ln < 1 { return; }
// Avoid bounds checks by using unsafe pointers.
let p = vec::raw::to_mut_ptr(*self);
let mut r = 1;
let mut w = 1;
while r < ln {
let p_r = ptr::mut_offset(p, r as int);
let p_wm1 = ptr::mut_offset(p, (w - 1) as int);
if *p_r != *p_wm1 {
if r != w {
let p_w = ptr::mut_offset(p_wm1, 1);
util::swap(&mut *p_r, &mut *p_w);
}
w += 1;
}
r += 1;
}
self.truncate(w);
}
}
}
#[allow(missing_doc)]
pub trait MutableVector<'self, T> {
fn mut_slice(self, start: uint, end: uint) -> &'self mut [T];
fn mut_slice_from(self, start: uint) -> &'self mut [T];
fn mut_slice_to(self, end: uint) -> &'self mut [T];
fn mut_iter(self) -> VecMutIterator<'self, T>;
fn mut_rev_iter(self) -> MutRevIterator<'self, T>;
fn swap(self, a: uint, b: uint);
/**
* Divides one `&mut` into two. The first will
* contain all indices from `0..mid` (excluding the index `mid`
* itself) and the second will contain all indices from
* `mid..len` (excluding the index `len` itself).
*/
fn mut_split(self, mid: uint) -> (&'self mut [T],
&'self mut [T]);
fn reverse(self);
/**
* Consumes `src` and moves as many elements as it can into `self`
* from the range [start,end).
*
* Returns the number of elements copied (the shorter of self.len()
* and end - start).
*
* # Arguments
*
* * src - A mutable vector of `T`
* * start - The index into `src` to start copying from
* * end - The index into `str` to stop copying from
*/
fn move_from(self, src: ~[T], start: uint, end: uint) -> uint;
unsafe fn unsafe_mut_ref(self, index: uint) -> *mut T;
unsafe fn unsafe_set(self, index: uint, val: T);
fn as_mut_buf<U>(self, f: &fn(*mut T, uint) -> U) -> U;
}
impl<'self,T> MutableVector<'self, T> for &'self mut [T] {
/// Return a slice that points into another slice.
#[inline]
fn mut_slice(self, start: uint, end: uint) -> &'self mut [T] {
assert!(start <= end);
assert!(end <= self.len());
do self.as_mut_buf |p, _len| {
unsafe {
cast::transmute(Slice {
data: ptr::mut_offset(p, start as int) as *T,
len: (end - start) * sys::nonzero_size_of::<T>()
})
}
}
}
/**
* Returns a slice of self from `start` to the end of the vec.
*
* Fails when `start` points outside the bounds of self.
*/
#[inline]
fn mut_slice_from(self, start: uint) -> &'self mut [T] {
let len = self.len();
self.mut_slice(start, len)
}
/**
* Returns a slice of self from the start of the vec to `end`.
*
* Fails when `end` points outside the bounds of self.
*/
#[inline]
fn mut_slice_to(self, end: uint) -> &'self mut [T] {
self.mut_slice(0, end)
}
#[inline]
fn mut_split(self, mid: uint) -> (&'self mut [T], &'self mut [T]) {
unsafe {
let len = self.len();
let self2: &'self mut [T] = cast::transmute_copy(&self);
(self.mut_slice(0, mid), self2.mut_slice(mid, len))
}
}
#[inline]
fn mut_iter(self) -> VecMutIterator<'self, T> {
unsafe {
let p = vec::raw::to_mut_ptr(self);
if sys::size_of::<T>() == 0 {
VecMutIterator{ptr: p,
end: (p as uint + self.len()) as *mut T,
lifetime: cast::transmute(p)}
} else {
VecMutIterator{ptr: p,
end: p.offset(self.len() as int),
lifetime: cast::transmute(p)}
}
}
}
#[inline]
fn mut_rev_iter(self) -> MutRevIterator<'self, T> {
self.mut_iter().invert()
}
/**
* Swaps two elements in a vector
*
* # Arguments
*
* * a - The index of the first element
* * b - The index of the second element
*/
fn swap(self, a: uint, b: uint) {
unsafe {
// Can't take two mutable loans from one vector, so instead just cast
// them to their raw pointers to do the swap
let pa: *mut T = &mut self[a];
let pb: *mut T = &mut self[b];
ptr::swap_ptr(pa, pb);
}
}
/// Reverse the order of elements in a vector, in place
fn reverse(self) {
let mut i: uint = 0;
let ln = self.len();
while i < ln / 2 {
self.swap(i, ln - i - 1);
i += 1;
}
}
#[inline]
fn move_from(self, mut src: ~[T], start: uint, end: uint) -> uint {
for (a, b) in self.mut_iter().zip(src.mut_slice(start, end).mut_iter()) {
util::swap(a, b);
}
cmp::min(self.len(), end-start)
}
#[inline]
unsafe fn unsafe_mut_ref(self, index: uint) -> *mut T {
ptr::mut_offset(self.repr().data as *mut T, index as int)
}
#[inline]
unsafe fn unsafe_set(self, index: uint, val: T) {
*self.unsafe_mut_ref(index) = val;
}
/// Similar to `as_imm_buf` but passing a `*mut T`
#[inline]
fn as_mut_buf<U>(self, f: &fn(*mut T, uint) -> U) -> U {
let Slice{ data, len } = self.repr();
f(data as *mut T, len / sys::nonzero_size_of::<T>())
}
}
/// Trait for &[T] where T is Cloneable
pub trait MutableCloneableVector<T> {
/// Copies as many elements from `src` as it can into `self`
/// (the shorter of self.len() and src.len()). Returns the number of elements copied.
fn copy_from(self, &[T]) -> uint;
}
impl<'self, T:Clone> MutableCloneableVector<T> for &'self mut [T] {
#[inline]
fn copy_from(self, src: &[T]) -> uint {
for (a, b) in self.mut_iter().zip(src.iter()) {
*a = b.clone();
}
cmp::min(self.len(), src.len())
}
}
/**
* Constructs a vector from an unsafe pointer to a buffer
*
* # Arguments
*
* * ptr - An unsafe pointer to a buffer of `T`
* * elts - The number of elements in the buffer
*/
// Wrapper for fn in raw: needs to be called by net_tcp::on_tcp_read_cb
pub unsafe fn from_buf<T>(ptr: *T, elts: uint) -> ~[T] {
raw::from_buf_raw(ptr, elts)
}
/// Unsafe operations
pub mod raw {
use cast;
use clone::Clone;
use option::Some;
use ptr;
use sys;
use unstable::intrinsics;
use vec::{with_capacity, ImmutableVector, MutableVector};
use unstable::intrinsics::contains_managed;
use unstable::raw::{Box, Vec, Slice};
/**
* Sets the length of a vector
*
* This will explicitly set the size of the vector, without actually
* modifying its buffers, so it is up to the caller to ensure that
* the vector is actually the specified size.
*/
#[inline]
pub unsafe fn set_len<T>(v: &mut ~[T], new_len: uint) {
if contains_managed::<T>() {
let repr: **mut Box<Vec<()>> = cast::transmute(v);
(**repr).data.fill = new_len * sys::nonzero_size_of::<T>();
} else {
let repr: **mut Vec<()> = cast::transmute(v);
(**repr).fill = new_len * sys::nonzero_size_of::<T>();
}
}
/**
* Returns an unsafe pointer to the vector's buffer
*
* The caller must ensure that the vector outlives the pointer this
* function returns, or else it will end up pointing to garbage.
*
* Modifying the vector may cause its buffer to be reallocated, which
* would also make any pointers to it invalid.
*/
#[inline]
pub fn to_ptr<T>(v: &[T]) -> *T {
v.repr().data
}
/** see `to_ptr()` */
#[inline]
pub fn to_mut_ptr<T>(v: &mut [T]) -> *mut T {
v.repr().data as *mut T
}
/**
* Form a slice from a pointer and length (as a number of units,
* not bytes).
*/
#[inline]
pub unsafe fn buf_as_slice<T,U>(p: *T,
len: uint,
f: &fn(v: &[T]) -> U) -> U {
f(cast::transmute(Slice {
data: p,
len: len * sys::nonzero_size_of::<T>()
}))
}
/**
* Form a slice from a pointer and length (as a number of units,
* not bytes).
*/
#[inline]
pub unsafe fn mut_buf_as_slice<T,U>(p: *mut T,
len: uint,
f: &fn(v: &mut [T]) -> U) -> U {
f(cast::transmute(Slice {
data: p as *T,
len: len * sys::nonzero_size_of::<T>()
}))
}
/**
* Unchecked vector indexing.
*/
#[inline]
pub unsafe fn get<T:Clone>(v: &[T], i: uint) -> T {
v.as_imm_buf(|p, _len| (*ptr::offset(p, i as int)).clone())
}
/**
* Unchecked vector index assignment. Does not drop the
* old value and hence is only suitable when the vector
* is newly allocated.
*/
#[inline]
pub unsafe fn init_elem<T>(v: &mut [T], i: uint, val: T) {
let mut box = Some(val);
do v.as_mut_buf |p, _len| {
intrinsics::move_val_init(&mut(*ptr::mut_offset(p, i as int)),
box.take_unwrap());
}
}
/**
* Constructs a vector from an unsafe pointer to a buffer
*
* # Arguments
*
* * ptr - An unsafe pointer to a buffer of `T`
* * elts - The number of elements in the buffer
*/
// Was in raw, but needs to be called by net_tcp::on_tcp_read_cb
#[inline]
pub unsafe fn from_buf_raw<T>(ptr: *T, elts: uint) -> ~[T] {
let mut dst = with_capacity(elts);
set_len(&mut dst, elts);
dst.as_mut_buf(|p_dst, _len_dst| ptr::copy_memory(p_dst, ptr, elts));
dst
}
/**
* Copies data from one vector to another.
*
* Copies `count` bytes from `src` to `dst`. The source and destination
* may overlap.
*/
#[inline]
pub unsafe fn copy_memory<T>(dst: &mut [T], src: &[T],
count: uint) {
assert!(dst.len() >= count);
assert!(src.len() >= count);
do dst.as_mut_buf |p_dst, _len_dst| {
do src.as_imm_buf |p_src, _len_src| {
ptr::copy_memory(p_dst, p_src, count)
}
}
}
}
/// Operations on `[u8]`
pub mod bytes {
use libc;
use num;
use vec::raw;
use vec;
use ptr;
/// A trait for operations on mutable operations on `[u8]`
pub trait MutableByteVector {
/// Sets all bytes of the receiver to the given value.
fn set_memory(self, value: u8);
}
impl<'self> MutableByteVector for &'self mut [u8] {
#[inline]
fn set_memory(self, value: u8) {
do self.as_mut_buf |p, len| {
unsafe { ptr::set_memory(p, value, len) };
}
}
}
/// Bytewise string comparison
pub fn memcmp(a: &~[u8], b: &~[u8]) -> int {
let a_len = a.len();
let b_len = b.len();
let n = num::min(a_len, b_len) as libc::size_t;
let r = unsafe {
libc::memcmp(raw::to_ptr(*a) as *libc::c_void,
raw::to_ptr(*b) as *libc::c_void, n) as int
};
if r != 0 { r } else {
if a_len == b_len {
0
} else if a_len < b_len {
-1
} else {
1
}
}
}
/// Bytewise less than or equal
pub fn lt(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) < 0 }
/// Bytewise less than or equal
pub fn le(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) <= 0 }
/// Bytewise equality
pub fn eq(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) == 0 }
/// Bytewise inequality
pub fn ne(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) != 0 }
/// Bytewise greater than or equal
pub fn ge(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) >= 0 }
/// Bytewise greater than
pub fn gt(a: &~[u8], b: &~[u8]) -> bool { memcmp(a, b) > 0 }
/**
* Copies data from one vector to another.
*
* Copies `count` bytes from `src` to `dst`. The source and destination
* may overlap.
*/
#[inline]
pub fn copy_memory(dst: &mut [u8], src: &[u8], count: uint) {
// Bound checks are done at vec::raw::copy_memory.
unsafe { vec::raw::copy_memory(dst, src, count) }
}
}
impl<A: Clone> Clone for ~[A] {
#[inline]
fn clone(&self) -> ~[A] {
self.iter().map(|item| item.clone()).collect()
}
}
impl<A: DeepClone> DeepClone for ~[A] {
#[inline]
fn deep_clone(&self) -> ~[A] {
self.iter().map(|item| item.deep_clone()).collect()
}
}
// This works because every lifetime is a sub-lifetime of 'static
impl<'self, A> Zero for &'self [A] {
fn zero() -> &'self [A] { &'self [] }
fn is_zero(&self) -> bool { self.is_empty() }
}
impl<A> Zero for ~[A] {
fn zero() -> ~[A] { ~[] }
fn is_zero(&self) -> bool { self.len() == 0 }
}
impl<A> Zero for @[A] {
fn zero() -> @[A] { @[] }
fn is_zero(&self) -> bool { self.len() == 0 }
}
macro_rules! iterator {
/* FIXME: #4375 Cannot attach documentation/attributes to a macro generated struct.
(struct $name:ident -> $ptr:ty, $elem:ty) => {
pub struct $name<'self, T> {
priv ptr: $ptr,
priv end: $ptr,
priv lifetime: $elem // FIXME: #5922
}
};*/
(impl $name:ident -> $elem:ty) => {
impl<'self, T> Iterator<$elem> for $name<'self, T> {
#[inline]
fn next(&mut self) -> Option<$elem> {
// could be implemented with slices, but this avoids bounds checks
unsafe {
if self.ptr == self.end {
None
} else {
let old = self.ptr;
self.ptr = if sys::size_of::<T>() == 0 {
// purposefully don't use 'ptr.offset' because for
// vectors with 0-size elements this would return the
// same pointer.
cast::transmute(self.ptr as uint + 1)
} else {
self.ptr.offset(1)
};
Some(cast::transmute(old))
}
}
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
let diff = (self.end as uint) - (self.ptr as uint);
let exact = diff / sys::nonzero_size_of::<T>();
(exact, Some(exact))
}
}
}
}
macro_rules! double_ended_iterator {
(impl $name:ident -> $elem:ty) => {
impl<'self, T> DoubleEndedIterator<$elem> for $name<'self, T> {
#[inline]
fn next_back(&mut self) -> Option<$elem> {
// could be implemented with slices, but this avoids bounds checks
unsafe {
if self.end == self.ptr {
None
} else {
self.end = if sys::size_of::<T>() == 0 {
// See above for why 'ptr.offset' isn't used
cast::transmute(self.end as uint - 1)
} else {
self.end.offset(-1)
};
Some(cast::transmute(self.end))
}
}
}
}
}
}
impl<'self, T> RandomAccessIterator<&'self T> for VecIterator<'self, T> {
#[inline]
fn indexable(&self) -> uint {
let (exact, _) = self.size_hint();
exact
}
#[inline]
fn idx(&self, index: uint) -> Option<&'self T> {
unsafe {
if index < self.indexable() {
cast::transmute(self.ptr.offset(index as int))
} else {
None
}
}
}
}
//iterator!{struct VecIterator -> *T, &'self T}
/// An iterator for iterating over a vector.
pub struct VecIterator<'self, T> {
priv ptr: *T,
priv end: *T,
priv lifetime: &'self T // FIXME: #5922
}
iterator!{impl VecIterator -> &'self T}
double_ended_iterator!{impl VecIterator -> &'self T}
pub type RevIterator<'self, T> = Invert<VecIterator<'self, T>>;
impl<'self, T> Clone for VecIterator<'self, T> {
fn clone(&self) -> VecIterator<'self, T> { *self }
}
//iterator!{struct VecMutIterator -> *mut T, &'self mut T}
/// An iterator for mutating the elements of a vector.
pub struct VecMutIterator<'self, T> {
priv ptr: *mut T,
priv end: *mut T,
priv lifetime: &'self mut T // FIXME: #5922
}
iterator!{impl VecMutIterator -> &'self mut T}
double_ended_iterator!{impl VecMutIterator -> &'self mut T}
pub type MutRevIterator<'self, T> = Invert<VecMutIterator<'self, T>>;
/// An iterator that moves out of a vector.
#[deriving(Clone)]
pub struct MoveIterator<T> {
priv v: ~[T],
priv idx: uint,
}
impl<T> Iterator<T> for MoveIterator<T> {
#[inline]
fn next(&mut self) -> Option<T> {
// this is peculiar, but is required for safety with respect
// to dtors. It traverses the first half of the vec, and
// removes them by swapping them with the last element (and
// popping), which results in the second half in reverse
// order, and so these can just be pop'd off. That is,
//
// [1,2,3,4,5] => 1, [5,2,3,4] => 2, [5,4,3] => 3, [5,4] => 4,
// [5] -> 5, []
let l = self.v.len();
if self.idx < l {
self.v.swap(self.idx, l - 1);
self.idx += 1;
}
self.v.pop_opt()
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
let l = self.v.len();
(l, Some(l))
}
}
/// An iterator that moves out of a vector in reverse order.
#[deriving(Clone)]
pub struct MoveRevIterator<T> {
priv v: ~[T]
}
impl<T> Iterator<T> for MoveRevIterator<T> {
#[inline]
fn next(&mut self) -> Option<T> {
self.v.pop_opt()
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
let l = self.v.len();
(l, Some(l))
}
}
impl<A> FromIterator<A> for ~[A] {
fn from_iterator<T: Iterator<A>>(iterator: &mut T) -> ~[A] {
let (lower, _) = iterator.size_hint();
let mut xs = with_capacity(lower);
for x in *iterator {
xs.push(x);
}
xs
}
}
impl<A> Extendable<A> for ~[A] {
fn extend<T: Iterator<A>>(&mut self, iterator: &mut T) {
let (lower, _) = iterator.size_hint();
let len = self.len();
self.reserve(len + lower);
for x in *iterator {
self.push(x);
}
}
}
#[cfg(test)]
mod tests {
use option::{None, Option, Some};
use sys;
use vec::*;
use cmp::*;
use prelude::*;
fn square(n: uint) -> uint { n * n }
fn square_ref(n: &uint) -> uint { square(*n) }
fn is_three(n: &uint) -> bool { *n == 3u }
fn is_odd(n: &uint) -> bool { *n % 2u == 1u }
fn is_equal(x: &uint, y:&uint) -> bool { *x == *y }
fn square_if_odd_r(n: &uint) -> Option<uint> {
if *n % 2u == 1u { Some(*n * *n) } else { None }
}
fn square_if_odd_v(n: uint) -> Option<uint> {
if n % 2u == 1u { Some(n * n) } else { None }
}
fn add(x: uint, y: &uint) -> uint { x + *y }
#[test]
fn test_unsafe_ptrs() {
unsafe {
// Test on-stack copy-from-buf.
let a = ~[1, 2, 3];
let mut ptr = raw::to_ptr(a);
let b = from_buf(ptr, 3u);
assert_eq!(b.len(), 3u);
assert_eq!(b[0], 1);
assert_eq!(b[1], 2);
assert_eq!(b[2], 3);
// Test on-heap copy-from-buf.
let c = ~[1, 2, 3, 4, 5];
ptr = raw::to_ptr(c);
let d = from_buf(ptr, 5u);
assert_eq!(d.len(), 5u);
assert_eq!(d[0], 1);
assert_eq!(d[1], 2);
assert_eq!(d[2], 3);
assert_eq!(d[3], 4);
assert_eq!(d[4], 5);
}
}
#[test]
fn test_from_fn() {
// Test on-stack from_fn.
let mut v = from_fn(3u, square);
assert_eq!(v.len(), 3u);
assert_eq!(v[0], 0u);
assert_eq!(v[1], 1u);
assert_eq!(v[2], 4u);
// Test on-heap from_fn.
v = from_fn(5u, square);
assert_eq!(v.len(), 5u);
assert_eq!(v[0], 0u);
assert_eq!(v[1], 1u);
assert_eq!(v[2], 4u);
assert_eq!(v[3], 9u);
assert_eq!(v[4], 16u);
}
#[test]
fn test_from_elem() {
// Test on-stack from_elem.
let mut v = from_elem(2u, 10u);
assert_eq!(v.len(), 2u);
assert_eq!(v[0], 10u);
assert_eq!(v[1], 10u);
// Test on-heap from_elem.
v = from_elem(6u, 20u);
assert_eq!(v[0], 20u);
assert_eq!(v[1], 20u);
assert_eq!(v[2], 20u);
assert_eq!(v[3], 20u);
assert_eq!(v[4], 20u);
assert_eq!(v[5], 20u);
}
#[test]
fn test_is_empty() {
let xs: [int, ..0] = [];
assert!(xs.is_empty());
assert!(![0].is_empty());
}
#[test]
fn test_len_divzero() {
type Z = [i8, ..0];
let v0 : &[Z] = &[];
let v1 : &[Z] = &[[]];
let v2 : &[Z] = &[[], []];
assert_eq!(sys::size_of::<Z>(), 0);
assert_eq!(v0.len(), 0);
assert_eq!(v1.len(), 1);
assert_eq!(v2.len(), 2);
}
#[test]
fn test_head() {
let mut a = ~[11];
assert_eq!(a.head(), &11);
a = ~[11, 12];
assert_eq!(a.head(), &11);
}
#[test]
#[should_fail]
fn test_head_empty() {
let a: ~[int] = ~[];
a.head();
}
#[test]
fn test_head_opt() {
let mut a = ~[];
assert_eq!(a.head_opt(), None);
a = ~[11];
assert_eq!(a.head_opt().unwrap(), &11);
a = ~[11, 12];
assert_eq!(a.head_opt().unwrap(), &11);
}
#[test]
fn test_tail() {
let mut a = ~[11];
assert_eq!(a.tail(), &[]);
a = ~[11, 12];
assert_eq!(a.tail(), &[12]);
}
#[test]
#[should_fail]
fn test_tail_empty() {
let a: ~[int] = ~[];
a.tail();
}
#[test]
fn test_tailn() {
let mut a = ~[11, 12, 13];
assert_eq!(a.tailn(0), &[11, 12, 13]);
a = ~[11, 12, 13];
assert_eq!(a.tailn(2), &[13]);
}
#[test]
#[should_fail]
fn test_tailn_empty() {
let a: ~[int] = ~[];
a.tailn(2);
}
#[test]
fn test_init() {
let mut a = ~[11];
assert_eq!(a.init(), &[]);
a = ~[11, 12];
assert_eq!(a.init(), &[11]);
}
#[init]
#[should_fail]
fn test_init_empty() {
let a: ~[int] = ~[];
a.init();
}
#[test]
fn test_initn() {
let mut a = ~[11, 12, 13];
assert_eq!(a.initn(0), &[11, 12, 13]);
a = ~[11, 12, 13];
assert_eq!(a.initn(2), &[11]);
}
#[init]
#[should_fail]
fn test_initn_empty() {
let a: ~[int] = ~[];
a.initn(2);
}
#[test]
fn test_last() {
let mut a = ~[11];
assert_eq!(a.last(), &11);
a = ~[11, 12];
assert_eq!(a.last(), &12);
}
#[test]
#[should_fail]
fn test_last_empty() {
let a: ~[int] = ~[];
a.last();
}
#[test]
fn test_last_opt() {
let mut a = ~[];
assert_eq!(a.last_opt(), None);
a = ~[11];
assert_eq!(a.last_opt().unwrap(), &11);
a = ~[11, 12];
assert_eq!(a.last_opt().unwrap(), &12);
}
#[test]
fn test_slice() {
// Test fixed length vector.
let vec_fixed = [1, 2, 3, 4];
let v_a = vec_fixed.slice(1u, vec_fixed.len()).to_owned();
assert_eq!(v_a.len(), 3u);
assert_eq!(v_a[0], 2);
assert_eq!(v_a[1], 3);
assert_eq!(v_a[2], 4);
// Test on stack.
let vec_stack = &[1, 2, 3];
let v_b = vec_stack.slice(1u, 3u).to_owned();
assert_eq!(v_b.len(), 2u);
assert_eq!(v_b[0], 2);
assert_eq!(v_b[1], 3);
// Test on managed heap.
let vec_managed = @[1, 2, 3, 4, 5];
let v_c = vec_managed.slice(0u, 3u).to_owned();
assert_eq!(v_c.len(), 3u);
assert_eq!(v_c[0], 1);
assert_eq!(v_c[1], 2);
assert_eq!(v_c[2], 3);
// Test on exchange heap.
let vec_unique = ~[1, 2, 3, 4, 5, 6];
let v_d = vec_unique.slice(1u, 6u).to_owned();
assert_eq!(v_d.len(), 5u);
assert_eq!(v_d[0], 2);
assert_eq!(v_d[1], 3);
assert_eq!(v_d[2], 4);
assert_eq!(v_d[3], 5);
assert_eq!(v_d[4], 6);
}
#[test]
fn test_slice_from() {
let vec = &[1, 2, 3, 4];
assert_eq!(vec.slice_from(0), vec);
assert_eq!(vec.slice_from(2), &[3, 4]);
assert_eq!(vec.slice_from(4), &[]);
}
#[test]
fn test_slice_to() {
let vec = &[1, 2, 3, 4];
assert_eq!(vec.slice_to(4), vec);
assert_eq!(vec.slice_to(2), &[1, 2]);
assert_eq!(vec.slice_to(0), &[]);
}
#[test]
fn test_pop() {
// Test on-heap pop.
let mut v = ~[1, 2, 3, 4, 5];
let e = v.pop();
assert_eq!(v.len(), 4u);
assert_eq!(v[0], 1);
assert_eq!(v[1], 2);
assert_eq!(v[2], 3);
assert_eq!(v[3], 4);
assert_eq!(e, 5);
}
#[test]
fn test_pop_opt() {
let mut v = ~[5];
let e = v.pop_opt();
assert_eq!(v.len(), 0);
assert_eq!(e, Some(5));
let f = v.pop_opt();
assert_eq!(f, None);
let g = v.pop_opt();
assert_eq!(g, None);
}
fn test_swap_remove() {
let mut v = ~[1, 2, 3, 4, 5];
let mut e = v.swap_remove(0);
assert_eq!(v.len(), 4);
assert_eq!(e, 1);
assert_eq!(v[0], 5);
e = v.swap_remove(3);
assert_eq!(v.len(), 3);
assert_eq!(e, 4);
assert_eq!(v[0], 5);
assert_eq!(v[1], 2);
assert_eq!(v[2], 3);
}
#[test]
fn test_swap_remove_noncopyable() {
// Tests that we don't accidentally run destructors twice.
let mut v = ~[::unstable::sync::Exclusive::new(()),
::unstable::sync::Exclusive::new(()),
::unstable::sync::Exclusive::new(())];
let mut _e = v.swap_remove(0);
assert_eq!(v.len(), 2);
_e = v.swap_remove(1);
assert_eq!(v.len(), 1);
_e = v.swap_remove(0);
assert_eq!(v.len(), 0);
}
#[test]
fn test_push() {
// Test on-stack push().
let mut v = ~[];
v.push(1);
assert_eq!(v.len(), 1u);
assert_eq!(v[0], 1);
// Test on-heap push().
v.push(2);
assert_eq!(v.len(), 2u);
assert_eq!(v[0], 1);
assert_eq!(v[1], 2);
}
#[test]
fn test_grow() {
// Test on-stack grow().
let mut v = ~[];
v.grow(2u, &1);
assert_eq!(v.len(), 2u);
assert_eq!(v[0], 1);
assert_eq!(v[1], 1);
// Test on-heap grow().
v.grow(3u, &2);
assert_eq!(v.len(), 5u);
assert_eq!(v[0], 1);
assert_eq!(v[1], 1);
assert_eq!(v[2], 2);
assert_eq!(v[3], 2);
assert_eq!(v[4], 2);
}
#[test]
fn test_grow_fn() {
let mut v = ~[];
v.grow_fn(3u, square);
assert_eq!(v.len(), 3u);
assert_eq!(v[0], 0u);
assert_eq!(v[1], 1u);
assert_eq!(v[2], 4u);
}
#[test]
fn test_grow_set() {
let mut v = ~[1, 2, 3];
v.grow_set(4u, &4, 5);
assert_eq!(v.len(), 5u);
assert_eq!(v[0], 1);
assert_eq!(v[1], 2);
assert_eq!(v[2], 3);
assert_eq!(v[3], 4);
assert_eq!(v[4], 5);
}
#[test]
fn test_truncate() {
let mut v = ~[@6,@5,@4];
v.truncate(1);
assert_eq!(v.len(), 1);
assert_eq!(*(v[0]), 6);
// If the unsafe block didn't drop things properly, we blow up here.
}
#[test]
fn test_clear() {
let mut v = ~[@6,@5,@4];
v.clear();
assert_eq!(v.len(), 0);
// If the unsafe block didn't drop things properly, we blow up here.
}
#[test]
fn test_dedup() {
fn case(a: ~[uint], b: ~[uint]) {
let mut v = a;
v.dedup();
assert_eq!(v, b);
}
case(~[], ~[]);
case(~[1], ~[1]);
case(~[1,1], ~[1]);
case(~[1,2,3], ~[1,2,3]);
case(~[1,1,2,3], ~[1,2,3]);
case(~[1,2,2,3], ~[1,2,3]);
case(~[1,2,3,3], ~[1,2,3]);
case(~[1,1,2,2,2,3,3], ~[1,2,3]);
}
#[test]
fn test_dedup_unique() {
let mut v0 = ~[~1, ~1, ~2, ~3];
v0.dedup();
let mut v1 = ~[~1, ~2, ~2, ~3];
v1.dedup();
let mut v2 = ~[~1, ~2, ~3, ~3];
v2.dedup();
/*
* If the ~pointers were leaked or otherwise misused, valgrind and/or
* rustrt should raise errors.
*/
}
#[test]
fn test_dedup_shared() {
let mut v0 = ~[@1, @1, @2, @3];
v0.dedup();
let mut v1 = ~[@1, @2, @2, @3];
v1.dedup();
let mut v2 = ~[@1, @2, @3, @3];
v2.dedup();
/*
* If the @pointers were leaked or otherwise misused, valgrind and/or
* rustrt should raise errors.
*/
}
#[test]
fn test_map() {
// Test on-stack map.
let v = &[1u, 2u, 3u];
let mut w = v.map(square_ref);
assert_eq!(w.len(), 3u);
assert_eq!(w[0], 1u);
assert_eq!(w[1], 4u);
assert_eq!(w[2], 9u);
// Test on-heap map.
let v = ~[1u, 2u, 3u, 4u, 5u];
w = v.map(square_ref);
assert_eq!(w.len(), 5u);
assert_eq!(w[0], 1u);
assert_eq!(w[1], 4u);
assert_eq!(w[2], 9u);
assert_eq!(w[3], 16u);
assert_eq!(w[4], 25u);
}
#[test]
fn test_retain() {
let mut v = ~[1, 2, 3, 4, 5];
v.retain(is_odd);
assert_eq!(v, ~[1, 3, 5]);
}
#[test]
fn test_each_permutation() {
let mut results: ~[~[int]];
results = ~[];
do each_permutation([]) |v| { results.push(v.to_owned()); true };
assert_eq!(results, ~[~[]]);
results = ~[];
do each_permutation([7]) |v| { results.push(v.to_owned()); true };
assert_eq!(results, ~[~[7]]);
results = ~[];
do each_permutation([1,1]) |v| { results.push(v.to_owned()); true };
assert_eq!(results, ~[~[1,1],~[1,1]]);
results = ~[];
do each_permutation([5,2,0]) |v| { results.push(v.to_owned()); true };
assert!(results ==
~[~[5,2,0],~[5,0,2],~[2,5,0],~[2,0,5],~[0,5,2],~[0,2,5]]);
}
#[test]
fn test_zip_unzip() {
let z1 = ~[(1, 4), (2, 5), (3, 6)];
let (left, right) = unzip(z1);
assert_eq!((1, 4), (left[0], right[0]));
assert_eq!((2, 5), (left[1], right[1]));
assert_eq!((3, 6), (left[2], right[2]));
}
#[test]
fn test_position_elem() {
assert!([].position_elem(&1).is_none());
let v1 = ~[1, 2, 3, 3, 2, 5];
assert_eq!(v1.position_elem(&1), Some(0u));
assert_eq!(v1.position_elem(&2), Some(1u));
assert_eq!(v1.position_elem(&5), Some(5u));
assert!(v1.position_elem(&4).is_none());
}
#[test]
fn test_rposition() {
fn f(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'b' }
fn g(xy: &(int, char)) -> bool { let (_x, y) = *xy; y == 'd' }
let v = ~[(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
assert_eq!(v.rposition(f), Some(3u));
assert!(v.rposition(g).is_none());
}
#[test]
fn test_bsearch_elem() {
assert_eq!([1,2,3,4,5].bsearch_elem(&5), Some(4));
assert_eq!([1,2,3,4,5].bsearch_elem(&4), Some(3));
assert_eq!([1,2,3,4,5].bsearch_elem(&3), Some(2));
assert_eq!([1,2,3,4,5].bsearch_elem(&2), Some(1));
assert_eq!([1,2,3,4,5].bsearch_elem(&1), Some(0));
assert_eq!([2,4,6,8,10].bsearch_elem(&1), None);
assert_eq!([2,4,6,8,10].bsearch_elem(&5), None);
assert_eq!([2,4,6,8,10].bsearch_elem(&4), Some(1));
assert_eq!([2,4,6,8,10].bsearch_elem(&10), Some(4));
assert_eq!([2,4,6,8].bsearch_elem(&1), None);
assert_eq!([2,4,6,8].bsearch_elem(&5), None);
assert_eq!([2,4,6,8].bsearch_elem(&4), Some(1));
assert_eq!([2,4,6,8].bsearch_elem(&8), Some(3));
assert_eq!([2,4,6].bsearch_elem(&1), None);
assert_eq!([2,4,6].bsearch_elem(&5), None);
assert_eq!([2,4,6].bsearch_elem(&4), Some(1));
assert_eq!([2,4,6].bsearch_elem(&6), Some(2));
assert_eq!([2,4].bsearch_elem(&1), None);
assert_eq!([2,4].bsearch_elem(&5), None);
assert_eq!([2,4].bsearch_elem(&2), Some(0));
assert_eq!([2,4].bsearch_elem(&4), Some(1));
assert_eq!([2].bsearch_elem(&1), None);
assert_eq!([2].bsearch_elem(&5), None);
assert_eq!([2].bsearch_elem(&2), Some(0));
assert_eq!([].bsearch_elem(&1), None);
assert_eq!([].bsearch_elem(&5), None);
assert!([1,1,1,1,1].bsearch_elem(&1) != None);
assert!([1,1,1,1,2].bsearch_elem(&1) != None);
assert!([1,1,1,2,2].bsearch_elem(&1) != None);
assert!([1,1,2,2,2].bsearch_elem(&1) != None);
assert_eq!([1,2,2,2,2].bsearch_elem(&1), Some(0));
assert_eq!([1,2,3,4,5].bsearch_elem(&6), None);
assert_eq!([1,2,3,4,5].bsearch_elem(&0), None);
}
#[test]
fn test_reverse() {
let mut v: ~[int] = ~[10, 20];
assert_eq!(v[0], 10);
assert_eq!(v[1], 20);
v.reverse();
assert_eq!(v[0], 20);
assert_eq!(v[1], 10);
let mut v3: ~[int] = ~[];
v3.reverse();
assert!(v3.is_empty());
}
#[test]
fn test_partition() {
assert_eq!((~[]).partition(|x: &int| *x < 3), (~[], ~[]));
assert_eq!((~[1, 2, 3]).partition(|x: &int| *x < 4), (~[1, 2, 3], ~[]));
assert_eq!((~[1, 2, 3]).partition(|x: &int| *x < 2), (~[1], ~[2, 3]));
assert_eq!((~[1, 2, 3]).partition(|x: &int| *x < 0), (~[], ~[1, 2, 3]));
}
#[test]
fn test_partitioned() {
assert_eq!(([]).partitioned(|x: &int| *x < 3), (~[], ~[]))
assert_eq!(([1, 2, 3]).partitioned(|x: &int| *x < 4), (~[1, 2, 3], ~[]));
assert_eq!(([1, 2, 3]).partitioned(|x: &int| *x < 2), (~[1], ~[2, 3]));
assert_eq!(([1, 2, 3]).partitioned(|x: &int| *x < 0), (~[], ~[1, 2, 3]));
}
#[test]
fn test_concat() {
assert_eq!(concat([~[1], ~[2,3]]), ~[1, 2, 3]);
assert_eq!([~[1], ~[2,3]].concat_vec(), ~[1, 2, 3]);
assert_eq!(concat_slices([&[1], &[2,3]]), ~[1, 2, 3]);
assert_eq!([&[1], &[2,3]].concat_vec(), ~[1, 2, 3]);
}
#[test]
fn test_connect() {
assert_eq!(connect([], &0), ~[]);
assert_eq!(connect([~[1], ~[2, 3]], &0), ~[1, 0, 2, 3]);
assert_eq!(connect([~[1], ~[2], ~[3]], &0), ~[1, 0, 2, 0, 3]);
assert_eq!([~[1], ~[2, 3]].connect_vec(&0), ~[1, 0, 2, 3]);
assert_eq!([~[1], ~[2], ~[3]].connect_vec(&0), ~[1, 0, 2, 0, 3]);
assert_eq!(connect_slices([], &0), ~[]);
assert_eq!(connect_slices([&[1], &[2, 3]], &0), ~[1, 0, 2, 3]);
assert_eq!(connect_slices([&[1], &[2], &[3]], &0), ~[1, 0, 2, 0, 3]);
assert_eq!([&[1], &[2, 3]].connect_vec(&0), ~[1, 0, 2, 3]);
assert_eq!([&[1], &[2], &[3]].connect_vec(&0), ~[1, 0, 2, 0, 3]);
}
#[test]
fn test_shift() {
let mut x = ~[1, 2, 3];
assert_eq!(x.shift(), 1);
assert_eq!(&x, &~[2, 3]);
assert_eq!(x.shift(), 2);
assert_eq!(x.shift(), 3);
assert_eq!(x.len(), 0);
}
#[test]
fn test_shift_opt() {
let mut x = ~[1, 2, 3];
assert_eq!(x.shift_opt(), Some(1));
assert_eq!(&x, &~[2, 3]);
assert_eq!(x.shift_opt(), Some(2));
assert_eq!(x.shift_opt(), Some(3));
assert_eq!(x.shift_opt(), None);
assert_eq!(x.len(), 0);
}
#[test]
fn test_unshift() {
let mut x = ~[1, 2, 3];
x.unshift(0);
assert_eq!(x, ~[0, 1, 2, 3]);
}
#[test]
fn test_insert() {
let mut a = ~[1, 2, 4];
a.insert(2, 3);
assert_eq!(a, ~[1, 2, 3, 4]);
let mut a = ~[1, 2, 3];
a.insert(0, 0);
assert_eq!(a, ~[0, 1, 2, 3]);
let mut a = ~[1, 2, 3];
a.insert(3, 4);
assert_eq!(a, ~[1, 2, 3, 4]);
let mut a = ~[];
a.insert(0, 1);
assert_eq!(a, ~[1]);
}
#[test]
#[should_fail]
fn test_insert_oob() {
let mut a = ~[1, 2, 3];
a.insert(4, 5);
}
#[test]
fn test_remove() {
let mut a = ~[1, 2, 3, 4];
a.remove(2);
assert_eq!(a, ~[1, 2, 4]);
let mut a = ~[1, 2, 3];
a.remove(0);
assert_eq!(a, ~[2, 3]);
let mut a = ~[1];
a.remove(0);
assert_eq!(a, ~[]);
}
#[test]
#[should_fail]
fn test_remove_oob() {
let mut a = ~[1, 2, 3];
a.remove(3);
}
#[test]
fn test_capacity() {
let mut v = ~[0u64];
v.reserve(10u);
assert_eq!(v.capacity(), 10u);
let mut v = ~[0u32];
v.reserve(10u);
assert_eq!(v.capacity(), 10u);
}
#[test]
fn test_slice_2() {
let v = ~[1, 2, 3, 4, 5];
let v = v.slice(1u, 3u);
assert_eq!(v.len(), 2u);
assert_eq!(v[0], 2);
assert_eq!(v[1], 3);
}
#[test]
#[should_fail]
fn test_from_fn_fail() {
do from_fn(100) |v| {
if v == 50 { fail!() }
(~0, @0)
};
}
#[test]
#[should_fail]
fn test_from_elem_fail() {
use cast;
struct S {
f: int,
boxes: (~int, @int)
}
impl Clone for S {
fn clone(&self) -> S {
let s = unsafe { cast::transmute_mut(self) };
s.f += 1;
if s.f == 10 { fail!() }
S { f: s.f, boxes: s.boxes.clone() }
}
}
let s = S { f: 0, boxes: (~0, @0) };
let _ = from_elem(100, s);
}
#[test]
#[should_fail]
fn test_build_fail() {
do build |push| {
push((~0, @0));
push((~0, @0));
push((~0, @0));
push((~0, @0));
fail!();
};
}
#[test]
#[should_fail]
fn test_grow_fn_fail() {
let mut v = ~[];
do v.grow_fn(100) |i| {
if i == 50 {
fail!()
}
(~0, @0)
}
}
#[test]
#[should_fail]
fn test_map_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do v.map |_elt| {
if i == 2 {
fail!()
}
i += 1;
~[(~0, @0)]
};
}
#[test]
#[should_fail]
fn test_flat_map_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do flat_map(v) |_elt| {
if i == 2 {
fail!()
}
i += 1;
~[(~0, @0)]
};
}
#[test]
#[should_fail]
fn test_rposition_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do v.rposition |_elt| {
if i == 2 {
fail!()
}
i += 1;
false
};
}
#[test]
#[should_fail]
fn test_permute_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
let mut i = 0;
do each_permutation(v) |_elt| {
if i == 2 {
fail!()
}
i += 1;
true
};
}
#[test]
#[should_fail]
fn test_as_imm_buf_fail() {
let v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
do v.as_imm_buf |_buf, _i| {
fail!()
}
}
#[test]
#[should_fail]
fn test_as_mut_buf_fail() {
let mut v = [(~0, @0), (~0, @0), (~0, @0), (~0, @0)];
do v.as_mut_buf |_buf, _i| {
fail!()
}
}
#[test]
#[should_fail]
fn test_copy_memory_oob() {
unsafe {
let mut a = [1, 2, 3, 4];
let b = [1, 2, 3, 4, 5];
raw::copy_memory(a, b, 5);
}
}
#[test]
fn test_total_ord() {
[1, 2, 3, 4].cmp(& &[1, 2, 3]) == Greater;
[1, 2, 3].cmp(& &[1, 2, 3, 4]) == Less;
[1, 2, 3, 4].cmp(& &[1, 2, 3, 4]) == Equal;
[1, 2, 3, 4, 5, 5, 5, 5].cmp(& &[1, 2, 3, 4, 5, 6]) == Less;
[2, 2].cmp(& &[1, 2, 3, 4]) == Greater;
}
#[test]
fn test_iterator() {
use iterator::*;
let xs = [1, 2, 5, 10, 11];
let mut it = xs.iter();
assert_eq!(it.size_hint(), (5, Some(5)));
assert_eq!(it.next().unwrap(), &1);
assert_eq!(it.size_hint(), (4, Some(4)));
assert_eq!(it.next().unwrap(), &2);
assert_eq!(it.size_hint(), (3, Some(3)));
assert_eq!(it.next().unwrap(), &5);
assert_eq!(it.size_hint(), (2, Some(2)));
assert_eq!(it.next().unwrap(), &10);
assert_eq!(it.size_hint(), (1, Some(1)));
assert_eq!(it.next().unwrap(), &11);
assert_eq!(it.size_hint(), (0, Some(0)));
assert!(it.next().is_none());
}
#[test]
fn test_random_access_iterator() {
use iterator::*;
let xs = [1, 2, 5, 10, 11];
let mut it = xs.iter();
assert_eq!(it.indexable(), 5);
assert_eq!(it.idx(0).unwrap(), &1);
assert_eq!(it.idx(2).unwrap(), &5);
assert_eq!(it.idx(4).unwrap(), &11);
assert!(it.idx(5).is_none());
assert_eq!(it.next().unwrap(), &1);
assert_eq!(it.indexable(), 4);
assert_eq!(it.idx(0).unwrap(), &2);
assert_eq!(it.idx(3).unwrap(), &11);
assert!(it.idx(4).is_none());
assert_eq!(it.next().unwrap(), &2);
assert_eq!(it.indexable(), 3);
assert_eq!(it.idx(1).unwrap(), &10);
assert!(it.idx(3).is_none());
assert_eq!(it.next().unwrap(), &5);
assert_eq!(it.indexable(), 2);
assert_eq!(it.idx(1).unwrap(), &11);
assert_eq!(it.next().unwrap(), &10);
assert_eq!(it.indexable(), 1);
assert_eq!(it.idx(0).unwrap(), &11);
assert!(it.idx(1).is_none());
assert_eq!(it.next().unwrap(), &11);
assert_eq!(it.indexable(), 0);
assert!(it.idx(0).is_none());
assert!(it.next().is_none());
}
#[test]
fn test_iter_size_hints() {
use iterator::*;
let mut xs = [1, 2, 5, 10, 11];
assert_eq!(xs.iter().size_hint(), (5, Some(5)));
assert_eq!(xs.rev_iter().size_hint(), (5, Some(5)));
assert_eq!(xs.mut_iter().size_hint(), (5, Some(5)));
assert_eq!(xs.mut_rev_iter().size_hint(), (5, Some(5)));
}
#[test]
fn test_iter_clone() {
let xs = [1, 2, 5];
let mut it = xs.iter();
it.next();
let mut jt = it.clone();
assert_eq!(it.next(), jt.next());
assert_eq!(it.next(), jt.next());
assert_eq!(it.next(), jt.next());
}
#[test]
fn test_mut_iterator() {
use iterator::*;
let mut xs = [1, 2, 3, 4, 5];
for x in xs.mut_iter() {
*x += 1;
}
assert_eq!(xs, [2, 3, 4, 5, 6])
}
#[test]
fn test_rev_iterator() {
use iterator::*;
let xs = [1, 2, 5, 10, 11];
let ys = [11, 10, 5, 2, 1];
let mut i = 0;
for &x in xs.rev_iter() {
assert_eq!(x, ys[i]);
i += 1;
}
assert_eq!(i, 5);
}
#[test]
fn test_mut_rev_iterator() {
use iterator::*;
let mut xs = [1u, 2, 3, 4, 5];
for (i,x) in xs.mut_rev_iter().enumerate() {
*x += i;
}
assert_eq!(xs, [5, 5, 5, 5, 5])
}
#[test]
fn test_move_iterator() {
use iterator::*;
let xs = ~[1u,2,3,4,5];
assert_eq!(xs.move_iter().fold(0, |a: uint, b: uint| 10*a + b), 12345);
}
#[test]
fn test_move_rev_iterator() {
use iterator::*;
let xs = ~[1u,2,3,4,5];
assert_eq!(xs.move_rev_iter().fold(0, |a: uint, b: uint| 10*a + b), 54321);
}
#[test]
fn test_split_iterator() {
let xs = &[1i,2,3,4,5];
assert_eq!(xs.split_iter(|x| *x % 2 == 0).collect::<~[&[int]]>(),
~[&[1], &[3], &[5]]);
assert_eq!(xs.split_iter(|x| *x == 1).collect::<~[&[int]]>(),
~[&[], &[2,3,4,5]]);
assert_eq!(xs.split_iter(|x| *x == 5).collect::<~[&[int]]>(),
~[&[1,2,3,4], &[]]);
assert_eq!(xs.split_iter(|x| *x == 10).collect::<~[&[int]]>(),
~[&[1,2,3,4,5]]);
assert_eq!(xs.split_iter(|_| true).collect::<~[&[int]]>(),
~[&[], &[], &[], &[], &[], &[]]);
let xs: &[int] = &[];
assert_eq!(xs.split_iter(|x| *x == 5).collect::<~[&[int]]>(), ~[&[]]);
}
#[test]
fn test_splitn_iterator() {
let xs = &[1i,2,3,4,5];
assert_eq!(xs.splitn_iter(0, |x| *x % 2 == 0).collect::<~[&[int]]>(),
~[&[1,2,3,4,5]]);
assert_eq!(xs.splitn_iter(1, |x| *x % 2 == 0).collect::<~[&[int]]>(),
~[&[1], &[3,4,5]]);
assert_eq!(xs.splitn_iter(3, |_| true).collect::<~[&[int]]>(),
~[&[], &[], &[], &[4,5]]);
let xs: &[int] = &[];
assert_eq!(xs.splitn_iter(1, |x| *x == 5).collect::<~[&[int]]>(), ~[&[]]);
}
#[test]
fn test_rsplit_iterator() {
let xs = &[1i,2,3,4,5];
assert_eq!(xs.rsplit_iter(|x| *x % 2 == 0).collect::<~[&[int]]>(),
~[&[5], &[3], &[1]]);
assert_eq!(xs.rsplit_iter(|x| *x == 1).collect::<~[&[int]]>(),
~[&[2,3,4,5], &[]]);
assert_eq!(xs.rsplit_iter(|x| *x == 5).collect::<~[&[int]]>(),
~[&[], &[1,2,3,4]]);
assert_eq!(xs.rsplit_iter(|x| *x == 10).collect::<~[&[int]]>(),
~[&[1,2,3,4,5]]);
let xs: &[int] = &[];
assert_eq!(xs.rsplit_iter(|x| *x == 5).collect::<~[&[int]]>(), ~[&[]]);
}
#[test]
fn test_rsplitn_iterator() {
let xs = &[1,2,3,4,5];
assert_eq!(xs.rsplitn_iter(0, |x| *x % 2 == 0).collect::<~[&[int]]>(),
~[&[1,2,3,4,5]]);
assert_eq!(xs.rsplitn_iter(1, |x| *x % 2 == 0).collect::<~[&[int]]>(),
~[&[5], &[1,2,3]]);
assert_eq!(xs.rsplitn_iter(3, |_| true).collect::<~[&[int]]>(),
~[&[], &[], &[], &[1,2]]);
let xs: &[int] = &[];
assert_eq!(xs.rsplitn_iter(1, |x| *x == 5).collect::<~[&[int]]>(), ~[&[]]);
}
#[test]
fn test_window_iterator() {
let v = &[1i,2,3,4];
assert_eq!(v.window_iter(2).collect::<~[&[int]]>(), ~[&[1,2], &[2,3], &[3,4]]);
assert_eq!(v.window_iter(3).collect::<~[&[int]]>(), ~[&[1i,2,3], &[2,3,4]]);
assert!(v.window_iter(6).next().is_none());
}
#[test]
#[should_fail]
fn test_window_iterator_0() {
let v = &[1i,2,3,4];
let _it = v.window_iter(0);
}
#[test]
fn test_chunk_iterator() {
let v = &[1i,2,3,4,5];
assert_eq!(v.chunk_iter(2).collect::<~[&[int]]>(), ~[&[1i,2], &[3,4], &[5]]);
assert_eq!(v.chunk_iter(3).collect::<~[&[int]]>(), ~[&[1i,2,3], &[4,5]]);
assert_eq!(v.chunk_iter(6).collect::<~[&[int]]>(), ~[&[1i,2,3,4,5]]);
assert_eq!(v.chunk_iter(2).invert().collect::<~[&[int]]>(), ~[&[5i], &[3,4], &[1,2]]);
let it = v.chunk_iter(2);
assert_eq!(it.indexable(), 3);
assert_eq!(it.idx(0).unwrap(), &[1,2]);
assert_eq!(it.idx(1).unwrap(), &[3,4]);
assert_eq!(it.idx(2).unwrap(), &[5]);
assert_eq!(it.idx(3), None);
}
#[test]
#[should_fail]
fn test_chunk_iterator_0() {
let v = &[1i,2,3,4];
let _it = v.chunk_iter(0);
}
#[test]
fn test_move_from() {
let mut a = [1,2,3,4,5];
let b = ~[6,7,8];
assert_eq!(a.move_from(b, 0, 3), 3);
assert_eq!(a, [6,7,8,4,5]);
let mut a = [7,2,8,1];
let b = ~[3,1,4,1,5,9];
assert_eq!(a.move_from(b, 0, 6), 4);
assert_eq!(a, [3,1,4,1]);
let mut a = [1,2,3,4];
let b = ~[5,6,7,8,9,0];
assert_eq!(a.move_from(b, 2, 3), 1);
assert_eq!(a, [7,2,3,4]);
let mut a = [1,2,3,4,5];
let b = ~[5,6,7,8,9,0];
assert_eq!(a.mut_slice(2,4).move_from(b,1,6), 2);
assert_eq!(a, [1,2,6,7,5]);
}
#[test]
fn test_copy_from() {
let mut a = [1,2,3,4,5];
let b = [6,7,8];
assert_eq!(a.copy_from(b), 3);
assert_eq!(a, [6,7,8,4,5]);
let mut c = [7,2,8,1];
let d = [3,1,4,1,5,9];
assert_eq!(c.copy_from(d), 4);
assert_eq!(c, [3,1,4,1]);
}
#[test]
fn test_reverse_part() {
let mut values = [1,2,3,4,5];
values.mut_slice(1, 4).reverse();
assert_eq!(values, [1,4,3,2,5]);
}
#[test]
fn test_permutations0() {
let values = [];
let mut v : ~[~[int]] = ~[];
do each_permutation(values) |p| {
v.push(p.to_owned());
true
};
assert_eq!(v, ~[~[]]);
}
#[test]
fn test_permutations1() {
let values = [1];
let mut v : ~[~[int]] = ~[];
do each_permutation(values) |p| {
v.push(p.to_owned());
true
};
assert_eq!(v, ~[~[1]]);
}
#[test]
fn test_permutations2() {
let values = [1,2];
let mut v : ~[~[int]] = ~[];
do each_permutation(values) |p| {
v.push(p.to_owned());
true
};
assert_eq!(v, ~[~[1,2],~[2,1]]);
}
#[test]
fn test_permutations3() {
let values = [1,2,3];
let mut v : ~[~[int]] = ~[];
do each_permutation(values) |p| {
v.push(p.to_owned());
true
};
assert_eq!(v, ~[~[1,2,3],~[1,3,2],~[2,1,3],~[2,3,1],~[3,1,2],~[3,2,1]]);
}
#[test]
fn test_vec_zero() {
use num::Zero;
macro_rules! t (
($ty:ty) => {{
let v: $ty = Zero::zero();
assert!(v.is_empty());
assert!(v.is_zero());
}}
);
t!(&[int]);
t!(@[int]);
t!(~[int]);
}
#[test]
fn test_bytes_set_memory() {
use vec::bytes::MutableByteVector;
let mut values = [1u8,2,3,4,5];
values.mut_slice(0,5).set_memory(0xAB);
assert_eq!(values, [0xAB, 0xAB, 0xAB, 0xAB, 0xAB]);
values.mut_slice(2,4).set_memory(0xFF);
assert_eq!(values, [0xAB, 0xAB, 0xFF, 0xFF, 0xAB]);
}
#[test]
#[should_fail]
fn test_overflow_does_not_cause_segfault() {
let mut v = ~[];
v.reserve(-1);
v.push(1);
v.push(2);
}
#[test]
fn test_mut_split() {
let mut values = [1u8,2,3,4,5];
{
let (left, right) = values.mut_split(2);
assert_eq!(left.slice(0, left.len()), [1, 2]);
for p in left.mut_iter() {
*p += 1;
}
assert_eq!(right.slice(0, right.len()), [3, 4, 5]);
for p in right.mut_iter() {
*p += 2;
}
}
assert_eq!(values, [2, 3, 5, 6, 7]);
}
#[deriving(Clone, Eq)]
struct Foo;
#[test]
fn test_iter_zero_sized() {
let mut v = ~[Foo, Foo, Foo];
assert_eq!(v.len(), 3);
let mut cnt = 0;
for f in v.iter() {
assert!(*f == Foo);
cnt += 1;
}
assert_eq!(cnt, 3);
for f in v.slice(1, 3).iter() {
assert!(*f == Foo);
cnt += 1;
}
assert_eq!(cnt, 5);
for f in v.mut_iter() {
assert!(*f == Foo);
cnt += 1;
}
assert_eq!(cnt, 8);
for f in v.move_iter() {
assert!(f == Foo);
cnt += 1;
}
assert_eq!(cnt, 11);
let xs = ~[Foo, Foo, Foo];
assert_eq!(fmt!("%?", xs.slice(0, 2).to_owned()), ~"~[{}, {}]");
let xs: [Foo, ..3] = [Foo, Foo, Foo];
assert_eq!(fmt!("%?", xs.slice(0, 2).to_owned()), ~"~[{}, {}]");
cnt = 0;
for f in xs.iter() {
assert!(*f == Foo);
cnt += 1;
}
assert!(cnt == 3);
}
#[test]
fn test_shrink_to_fit() {
let mut xs = ~[0, 1, 2, 3];
for i in range(4, 100) {
xs.push(i)
}
assert_eq!(xs.capacity(), 128);
xs.shrink_to_fit();
assert_eq!(xs.capacity(), 100);
assert_eq!(xs, range(0, 100).to_owned_vec());
}
}
#[cfg(test)]
mod bench {
use extra::test::BenchHarness;
use vec;
use option::*;
#[bench]
fn iterator(bh: &mut BenchHarness) {
// peculiar numbers to stop LLVM from optimising the summation
// out.
let v = vec::from_fn(100, |i| i ^ (i << 1) ^ (i >> 1));
do bh.iter {
let mut sum = 0;
for x in v.iter() {
sum += *x;
}
// sum == 11806, to stop dead code elimination.
if sum == 0 {fail!()}
}
}
#[bench]
fn mut_iterator(bh: &mut BenchHarness) {
let mut v = vec::from_elem(100, 0);
do bh.iter {
let mut i = 0;
for x in v.mut_iter() {
*x = i;
i += 1;
}
}
}
#[bench]
fn add(b: &mut BenchHarness) {
let xs: &[int] = [5, ..10];
let ys: &[int] = [5, ..10];
do b.iter() {
xs + ys;
}
}
}