Vadim Petrochenkov e2d3a4f631 rustc_metadata: Store a flag telling whether an item may have doc links in its attributes
This should be cheap on rustc side, but it's significant optimization for rustdoc that won't need to decode and process attributes unnecessarily
2022-04-19 22:53:46 +03:00

1917 lines
70 KiB
Rust

// Decoding metadata from a single crate's metadata
use crate::creader::{CStore, CrateMetadataRef};
use crate::rmeta::table::{FixedSizeEncoding, Table};
use crate::rmeta::*;
use rustc_ast as ast;
use rustc_ast::ptr::P;
use rustc_attr as attr;
use rustc_data_structures::captures::Captures;
use rustc_data_structures::fx::FxHashMap;
use rustc_data_structures::svh::Svh;
use rustc_data_structures::sync::{Lock, LockGuard, Lrc, OnceCell};
use rustc_data_structures::unhash::UnhashMap;
use rustc_expand::base::{SyntaxExtension, SyntaxExtensionKind};
use rustc_expand::proc_macro::{AttrProcMacro, BangProcMacro, ProcMacroDerive};
use rustc_hir::def::{CtorKind, CtorOf, DefKind, Res};
use rustc_hir::def_id::{CrateNum, DefId, DefIndex, CRATE_DEF_INDEX, LOCAL_CRATE};
use rustc_hir::definitions::{DefKey, DefPath, DefPathData, DefPathHash};
use rustc_hir::diagnostic_items::DiagnosticItems;
use rustc_hir::lang_items;
use rustc_index::vec::{Idx, IndexVec};
use rustc_middle::arena::ArenaAllocatable;
use rustc_middle::metadata::ModChild;
use rustc_middle::middle::exported_symbols::{ExportedSymbol, SymbolExportLevel};
use rustc_middle::middle::stability::DeprecationEntry;
use rustc_middle::mir::interpret::{AllocDecodingSession, AllocDecodingState};
use rustc_middle::thir;
use rustc_middle::ty::codec::TyDecoder;
use rustc_middle::ty::fast_reject::SimplifiedType;
use rustc_middle::ty::GeneratorDiagnosticData;
use rustc_middle::ty::{self, Ty, TyCtxt, Visibility};
use rustc_serialize::{opaque, Decodable, Decoder};
use rustc_session::cstore::{
CrateSource, ExternCrate, ForeignModule, LinkagePreference, NativeLib,
};
use rustc_session::Session;
use rustc_span::hygiene::{ExpnIndex, MacroKind};
use rustc_span::source_map::{respan, Spanned};
use rustc_span::symbol::{sym, Ident, Symbol};
use rustc_span::{self, BytePos, ExpnId, Pos, Span, SyntaxContext, DUMMY_SP};
use proc_macro::bridge::client::ProcMacro;
use std::io;
use std::mem;
use std::num::NonZeroUsize;
use std::path::Path;
use tracing::debug;
pub(super) use cstore_impl::provide;
pub use cstore_impl::provide_extern;
use rustc_span::hygiene::HygieneDecodeContext;
mod cstore_impl;
/// A reference to the raw binary version of crate metadata.
/// A `MetadataBlob` internally is just a reference counted pointer to
/// the actual data, so cloning it is cheap.
#[derive(Clone)]
crate struct MetadataBlob(Lrc<MetadataRef>);
// This is needed so we can create an OwningRef into the blob.
// The data behind a `MetadataBlob` has a stable address because it is
// contained within an Rc/Arc.
unsafe impl rustc_data_structures::owning_ref::StableAddress for MetadataBlob {}
// This is needed so we can create an OwningRef into the blob.
impl std::ops::Deref for MetadataBlob {
type Target = [u8];
#[inline]
fn deref(&self) -> &[u8] {
&self.0[..]
}
}
// A map from external crate numbers (as decoded from some crate file) to
// local crate numbers (as generated during this session). Each external
// crate may refer to types in other external crates, and each has their
// own crate numbers.
crate type CrateNumMap = IndexVec<CrateNum, CrateNum>;
crate struct CrateMetadata {
/// The primary crate data - binary metadata blob.
blob: MetadataBlob,
// --- Some data pre-decoded from the metadata blob, usually for performance ---
/// Properties of the whole crate.
/// NOTE(eddyb) we pass `'static` to a `'tcx` parameter because this
/// lifetime is only used behind `Lazy`, and therefore acts like a
/// universal (`for<'tcx>`), that is paired up with whichever `TyCtxt`
/// is being used to decode those values.
root: CrateRoot<'static>,
/// Trait impl data.
/// FIXME: Used only from queries and can use query cache,
/// so pre-decoding can probably be avoided.
trait_impls: FxHashMap<(u32, DefIndex), Lazy<[(DefIndex, Option<SimplifiedType>)]>>,
/// Inherent impls which do not follow the normal coherence rules.
///
/// These can be introduced using either `#![rustc_coherence_is_core]`
/// or `#[rustc_allow_incoherent_impl]`.
incoherent_impls: FxHashMap<SimplifiedType, Lazy<[DefIndex]>>,
/// Proc macro descriptions for this crate, if it's a proc macro crate.
raw_proc_macros: Option<&'static [ProcMacro]>,
/// Source maps for code from the crate.
source_map_import_info: OnceCell<Vec<ImportedSourceFile>>,
/// For every definition in this crate, maps its `DefPathHash` to its `DefIndex`.
def_path_hash_map: DefPathHashMapRef<'static>,
/// Likewise for ExpnHash.
expn_hash_map: OnceCell<UnhashMap<ExpnHash, ExpnIndex>>,
/// Used for decoding interpret::AllocIds in a cached & thread-safe manner.
alloc_decoding_state: AllocDecodingState,
/// Caches decoded `DefKey`s.
def_key_cache: Lock<FxHashMap<DefIndex, DefKey>>,
/// Caches decoded `DefPathHash`es.
def_path_hash_cache: Lock<FxHashMap<DefIndex, DefPathHash>>,
// --- Other significant crate properties ---
/// ID of this crate, from the current compilation session's point of view.
cnum: CrateNum,
/// Maps crate IDs as they are were seen from this crate's compilation sessions into
/// IDs as they are seen from the current compilation session.
cnum_map: CrateNumMap,
/// Same ID set as `cnum_map` plus maybe some injected crates like panic runtime.
dependencies: Lock<Vec<CrateNum>>,
/// How to link (or not link) this crate to the currently compiled crate.
dep_kind: Lock<CrateDepKind>,
/// Filesystem location of this crate.
source: Lrc<CrateSource>,
/// Whether or not this crate should be consider a private dependency
/// for purposes of the 'exported_private_dependencies' lint
private_dep: bool,
/// The hash for the host proc macro. Used to support `-Z dual-proc-macro`.
host_hash: Option<Svh>,
/// Additional data used for decoding `HygieneData` (e.g. `SyntaxContext`
/// and `ExpnId`).
/// Note that we store a `HygieneDecodeContext` for each `CrateMetadat`. This is
/// because `SyntaxContext` ids are not globally unique, so we need
/// to track which ids we've decoded on a per-crate basis.
hygiene_context: HygieneDecodeContext,
// --- Data used only for improving diagnostics ---
/// Information about the `extern crate` item or path that caused this crate to be loaded.
/// If this is `None`, then the crate was injected (e.g., by the allocator).
extern_crate: Lock<Option<ExternCrate>>,
}
/// Holds information about a rustc_span::SourceFile imported from another crate.
/// See `imported_source_files()` for more information.
struct ImportedSourceFile {
/// This SourceFile's byte-offset within the source_map of its original crate
original_start_pos: rustc_span::BytePos,
/// The end of this SourceFile within the source_map of its original crate
original_end_pos: rustc_span::BytePos,
/// The imported SourceFile's representation within the local source_map
translated_source_file: Lrc<rustc_span::SourceFile>,
}
pub(super) struct DecodeContext<'a, 'tcx> {
opaque: opaque::Decoder<'a>,
cdata: Option<CrateMetadataRef<'a>>,
blob: &'a MetadataBlob,
sess: Option<&'tcx Session>,
tcx: Option<TyCtxt<'tcx>>,
// Cache the last used source_file for translating spans as an optimization.
last_source_file_index: usize,
lazy_state: LazyState,
// Used for decoding interpret::AllocIds in a cached & thread-safe manner.
alloc_decoding_session: Option<AllocDecodingSession<'a>>,
}
/// Abstract over the various ways one can create metadata decoders.
pub(super) trait Metadata<'a, 'tcx>: Copy {
fn blob(self) -> &'a MetadataBlob;
fn cdata(self) -> Option<CrateMetadataRef<'a>> {
None
}
fn sess(self) -> Option<&'tcx Session> {
None
}
fn tcx(self) -> Option<TyCtxt<'tcx>> {
None
}
fn decoder(self, pos: usize) -> DecodeContext<'a, 'tcx> {
let tcx = self.tcx();
DecodeContext {
opaque: opaque::Decoder::new(self.blob(), pos),
cdata: self.cdata(),
blob: self.blob(),
sess: self.sess().or(tcx.map(|tcx| tcx.sess)),
tcx,
last_source_file_index: 0,
lazy_state: LazyState::NoNode,
alloc_decoding_session: self
.cdata()
.map(|cdata| cdata.cdata.alloc_decoding_state.new_decoding_session()),
}
}
}
impl<'a, 'tcx> Metadata<'a, 'tcx> for &'a MetadataBlob {
#[inline]
fn blob(self) -> &'a MetadataBlob {
self
}
}
impl<'a, 'tcx> Metadata<'a, 'tcx> for (&'a MetadataBlob, &'tcx Session) {
#[inline]
fn blob(self) -> &'a MetadataBlob {
self.0
}
#[inline]
fn sess(self) -> Option<&'tcx Session> {
let (_, sess) = self;
Some(sess)
}
}
impl<'a, 'tcx> Metadata<'a, 'tcx> for CrateMetadataRef<'a> {
#[inline]
fn blob(self) -> &'a MetadataBlob {
&self.cdata.blob
}
#[inline]
fn cdata(self) -> Option<CrateMetadataRef<'a>> {
Some(self)
}
}
impl<'a, 'tcx> Metadata<'a, 'tcx> for (CrateMetadataRef<'a>, &'tcx Session) {
#[inline]
fn blob(self) -> &'a MetadataBlob {
&self.0.cdata.blob
}
#[inline]
fn cdata(self) -> Option<CrateMetadataRef<'a>> {
Some(self.0)
}
#[inline]
fn sess(self) -> Option<&'tcx Session> {
Some(self.1)
}
}
impl<'a, 'tcx> Metadata<'a, 'tcx> for (CrateMetadataRef<'a>, TyCtxt<'tcx>) {
#[inline]
fn blob(self) -> &'a MetadataBlob {
&self.0.cdata.blob
}
#[inline]
fn cdata(self) -> Option<CrateMetadataRef<'a>> {
Some(self.0)
}
#[inline]
fn tcx(self) -> Option<TyCtxt<'tcx>> {
Some(self.1)
}
}
impl<'a, 'tcx, T: Decodable<DecodeContext<'a, 'tcx>>> Lazy<T> {
fn decode<M: Metadata<'a, 'tcx>>(self, metadata: M) -> T {
let mut dcx = metadata.decoder(self.position.get());
dcx.lazy_state = LazyState::NodeStart(self.position);
T::decode(&mut dcx)
}
}
impl<'a: 'x, 'tcx: 'x, 'x, T: Decodable<DecodeContext<'a, 'tcx>>> Lazy<[T]> {
fn decode<M: Metadata<'a, 'tcx>>(
self,
metadata: M,
) -> impl ExactSizeIterator<Item = T> + Captures<'a> + Captures<'tcx> + 'x {
let mut dcx = metadata.decoder(self.position.get());
dcx.lazy_state = LazyState::NodeStart(self.position);
(0..self.meta).map(move |_| T::decode(&mut dcx))
}
}
trait LazyQueryDecodable<'a, 'tcx, T> {
fn decode_query(
self,
cdata: CrateMetadataRef<'a>,
tcx: TyCtxt<'tcx>,
err: impl FnOnce() -> !,
) -> T;
}
impl<'a, 'tcx, T> LazyQueryDecodable<'a, 'tcx, T> for T {
fn decode_query(self, _: CrateMetadataRef<'a>, _: TyCtxt<'tcx>, _: impl FnOnce() -> !) -> T {
self
}
}
impl<'a, 'tcx, T> LazyQueryDecodable<'a, 'tcx, T> for Option<T> {
fn decode_query(self, _: CrateMetadataRef<'a>, _: TyCtxt<'tcx>, err: impl FnOnce() -> !) -> T {
if let Some(l) = self { l } else { err() }
}
}
impl<'a, 'tcx, T> LazyQueryDecodable<'a, 'tcx, T> for Option<Lazy<T>>
where
T: Decodable<DecodeContext<'a, 'tcx>>,
{
fn decode_query(
self,
cdata: CrateMetadataRef<'a>,
tcx: TyCtxt<'tcx>,
err: impl FnOnce() -> !,
) -> T {
if let Some(l) = self { l.decode((cdata, tcx)) } else { err() }
}
}
impl<'a, 'tcx, T> LazyQueryDecodable<'a, 'tcx, &'tcx T> for Option<Lazy<T>>
where
T: Decodable<DecodeContext<'a, 'tcx>>,
T: ArenaAllocatable<'tcx>,
{
fn decode_query(
self,
cdata: CrateMetadataRef<'a>,
tcx: TyCtxt<'tcx>,
err: impl FnOnce() -> !,
) -> &'tcx T {
if let Some(l) = self { tcx.arena.alloc(l.decode((cdata, tcx))) } else { err() }
}
}
impl<'a, 'tcx, T> LazyQueryDecodable<'a, 'tcx, Option<T>> for Option<Lazy<T>>
where
T: Decodable<DecodeContext<'a, 'tcx>>,
{
fn decode_query(
self,
cdata: CrateMetadataRef<'a>,
tcx: TyCtxt<'tcx>,
_err: impl FnOnce() -> !,
) -> Option<T> {
self.map(|l| l.decode((cdata, tcx)))
}
}
impl<'a, 'tcx, T, E> LazyQueryDecodable<'a, 'tcx, Result<Option<T>, E>> for Option<Lazy<T>>
where
T: Decodable<DecodeContext<'a, 'tcx>>,
{
fn decode_query(
self,
cdata: CrateMetadataRef<'a>,
tcx: TyCtxt<'tcx>,
_err: impl FnOnce() -> !,
) -> Result<Option<T>, E> {
Ok(self.map(|l| l.decode((cdata, tcx))))
}
}
impl<'a, 'tcx, T> LazyQueryDecodable<'a, 'tcx, &'tcx [T]> for Option<Lazy<[T], usize>>
where
T: Decodable<DecodeContext<'a, 'tcx>> + Copy,
{
fn decode_query(
self,
cdata: CrateMetadataRef<'a>,
tcx: TyCtxt<'tcx>,
_err: impl FnOnce() -> !,
) -> &'tcx [T] {
if let Some(l) = self { tcx.arena.alloc_from_iter(l.decode((cdata, tcx))) } else { &[] }
}
}
impl<'a, 'tcx> LazyQueryDecodable<'a, 'tcx, Option<DeprecationEntry>>
for Option<Lazy<attr::Deprecation>>
{
fn decode_query(
self,
cdata: CrateMetadataRef<'a>,
tcx: TyCtxt<'tcx>,
_err: impl FnOnce() -> !,
) -> Option<DeprecationEntry> {
self.map(|l| l.decode((cdata, tcx))).map(DeprecationEntry::external)
}
}
impl<'a, 'tcx> LazyQueryDecodable<'a, 'tcx, Option<DefId>> for Option<RawDefId> {
fn decode_query(
self,
cdata: CrateMetadataRef<'a>,
_: TyCtxt<'tcx>,
_: impl FnOnce() -> !,
) -> Option<DefId> {
self.map(|raw_def_id| raw_def_id.decode(cdata))
}
}
impl<'a, 'tcx> DecodeContext<'a, 'tcx> {
#[inline]
fn tcx(&self) -> TyCtxt<'tcx> {
debug_assert!(self.tcx.is_some(), "missing TyCtxt in DecodeContext");
self.tcx.unwrap()
}
#[inline]
pub fn blob(&self) -> &'a MetadataBlob {
self.blob
}
#[inline]
pub fn cdata(&self) -> CrateMetadataRef<'a> {
debug_assert!(self.cdata.is_some(), "missing CrateMetadata in DecodeContext");
self.cdata.unwrap()
}
#[inline]
fn map_encoded_cnum_to_current(&self, cnum: CrateNum) -> CrateNum {
self.cdata().map_encoded_cnum_to_current(cnum)
}
fn read_lazy_with_meta<T: ?Sized + LazyMeta>(&mut self, meta: T::Meta) -> Lazy<T> {
let distance = self.read_usize();
let position = match self.lazy_state {
LazyState::NoNode => bug!("read_lazy_with_meta: outside of a metadata node"),
LazyState::NodeStart(start) => {
let start = start.get();
assert!(distance <= start);
start - distance
}
LazyState::Previous(last_pos) => last_pos.get() + distance,
};
self.lazy_state = LazyState::Previous(NonZeroUsize::new(position).unwrap());
Lazy::from_position_and_meta(NonZeroUsize::new(position).unwrap(), meta)
}
#[inline]
pub fn read_raw_bytes(&mut self, len: usize) -> &[u8] {
self.opaque.read_raw_bytes(len)
}
}
impl<'a, 'tcx> TyDecoder<'tcx> for DecodeContext<'a, 'tcx> {
const CLEAR_CROSS_CRATE: bool = true;
#[inline]
fn tcx(&self) -> TyCtxt<'tcx> {
self.tcx.expect("missing TyCtxt in DecodeContext")
}
#[inline]
fn peek_byte(&self) -> u8 {
self.opaque.data[self.opaque.position()]
}
#[inline]
fn position(&self) -> usize {
self.opaque.position()
}
fn cached_ty_for_shorthand<F>(&mut self, shorthand: usize, or_insert_with: F) -> Ty<'tcx>
where
F: FnOnce(&mut Self) -> Ty<'tcx>,
{
let tcx = self.tcx();
let key = ty::CReaderCacheKey { cnum: Some(self.cdata().cnum), pos: shorthand };
if let Some(&ty) = tcx.ty_rcache.borrow().get(&key) {
return ty;
}
let ty = or_insert_with(self);
tcx.ty_rcache.borrow_mut().insert(key, ty);
ty
}
fn with_position<F, R>(&mut self, pos: usize, f: F) -> R
where
F: FnOnce(&mut Self) -> R,
{
let new_opaque = opaque::Decoder::new(self.opaque.data, pos);
let old_opaque = mem::replace(&mut self.opaque, new_opaque);
let old_state = mem::replace(&mut self.lazy_state, LazyState::NoNode);
let r = f(self);
self.opaque = old_opaque;
self.lazy_state = old_state;
r
}
fn decode_alloc_id(&mut self) -> rustc_middle::mir::interpret::AllocId {
if let Some(alloc_decoding_session) = self.alloc_decoding_session {
alloc_decoding_session.decode_alloc_id(self)
} else {
bug!("Attempting to decode interpret::AllocId without CrateMetadata")
}
}
}
impl<'a, 'tcx> Decodable<DecodeContext<'a, 'tcx>> for CrateNum {
fn decode(d: &mut DecodeContext<'a, 'tcx>) -> CrateNum {
let cnum = CrateNum::from_u32(d.read_u32());
d.map_encoded_cnum_to_current(cnum)
}
}
impl<'a, 'tcx> Decodable<DecodeContext<'a, 'tcx>> for DefIndex {
fn decode(d: &mut DecodeContext<'a, 'tcx>) -> DefIndex {
DefIndex::from_u32(d.read_u32())
}
}
impl<'a, 'tcx> Decodable<DecodeContext<'a, 'tcx>> for ExpnIndex {
fn decode(d: &mut DecodeContext<'a, 'tcx>) -> ExpnIndex {
ExpnIndex::from_u32(d.read_u32())
}
}
impl<'a, 'tcx> Decodable<DecodeContext<'a, 'tcx>> for SyntaxContext {
fn decode(decoder: &mut DecodeContext<'a, 'tcx>) -> SyntaxContext {
let cdata = decoder.cdata();
let sess = decoder.sess.unwrap();
let cname = cdata.root.name;
rustc_span::hygiene::decode_syntax_context(decoder, &cdata.hygiene_context, |_, id| {
debug!("SpecializedDecoder<SyntaxContext>: decoding {}", id);
cdata
.root
.syntax_contexts
.get(cdata, id)
.unwrap_or_else(|| panic!("Missing SyntaxContext {:?} for crate {:?}", id, cname))
.decode((cdata, sess))
})
}
}
impl<'a, 'tcx> Decodable<DecodeContext<'a, 'tcx>> for ExpnId {
fn decode(decoder: &mut DecodeContext<'a, 'tcx>) -> ExpnId {
let local_cdata = decoder.cdata();
let sess = decoder.sess.unwrap();
let cnum = CrateNum::decode(decoder);
let index = u32::decode(decoder);
let expn_id = rustc_span::hygiene::decode_expn_id(cnum, index, |expn_id| {
let ExpnId { krate: cnum, local_id: index } = expn_id;
// Lookup local `ExpnData`s in our own crate data. Foreign `ExpnData`s
// are stored in the owning crate, to avoid duplication.
debug_assert_ne!(cnum, LOCAL_CRATE);
let crate_data = if cnum == local_cdata.cnum {
local_cdata
} else {
local_cdata.cstore.get_crate_data(cnum)
};
let expn_data = crate_data
.root
.expn_data
.get(crate_data, index)
.unwrap()
.decode((crate_data, sess));
let expn_hash = crate_data
.root
.expn_hashes
.get(crate_data, index)
.unwrap()
.decode((crate_data, sess));
(expn_data, expn_hash)
});
expn_id
}
}
impl<'a, 'tcx> Decodable<DecodeContext<'a, 'tcx>> for Span {
fn decode(decoder: &mut DecodeContext<'a, 'tcx>) -> Span {
let ctxt = SyntaxContext::decode(decoder);
let tag = u8::decode(decoder);
if tag == TAG_PARTIAL_SPAN {
return DUMMY_SP.with_ctxt(ctxt);
}
debug_assert!(tag == TAG_VALID_SPAN_LOCAL || tag == TAG_VALID_SPAN_FOREIGN);
let lo = BytePos::decode(decoder);
let len = BytePos::decode(decoder);
let hi = lo + len;
let Some(sess) = decoder.sess else {
bug!("Cannot decode Span without Session.")
};
// There are two possibilities here:
// 1. This is a 'local span', which is located inside a `SourceFile`
// that came from this crate. In this case, we use the source map data
// encoded in this crate. This branch should be taken nearly all of the time.
// 2. This is a 'foreign span', which is located inside a `SourceFile`
// that came from a *different* crate (some crate upstream of the one
// whose metadata we're looking at). For example, consider this dependency graph:
//
// A -> B -> C
//
// Suppose that we're currently compiling crate A, and start deserializing
// metadata from crate B. When we deserialize a Span from crate B's metadata,
// there are two possibilities:
//
// 1. The span references a file from crate B. This makes it a 'local' span,
// which means that we can use crate B's serialized source map information.
// 2. The span references a file from crate C. This makes it a 'foreign' span,
// which means we need to use Crate *C* (not crate B) to determine the source
// map information. We only record source map information for a file in the
// crate that 'owns' it, so deserializing a Span may require us to look at
// a transitive dependency.
//
// When we encode a foreign span, we adjust its 'lo' and 'high' values
// to be based on the *foreign* crate (e.g. crate C), not the crate
// we are writing metadata for (e.g. crate B). This allows us to
// treat the 'local' and 'foreign' cases almost identically during deserialization:
// we can call `imported_source_files` for the proper crate, and binary search
// through the returned slice using our span.
let imported_source_files = if tag == TAG_VALID_SPAN_LOCAL {
decoder.cdata().imported_source_files(sess)
} else {
// When we encode a proc-macro crate, all `Span`s should be encoded
// with `TAG_VALID_SPAN_LOCAL`
if decoder.cdata().root.is_proc_macro_crate() {
// Decode `CrateNum` as u32 - using `CrateNum::decode` will ICE
// since we don't have `cnum_map` populated.
let cnum = u32::decode(decoder);
panic!(
"Decoding of crate {:?} tried to access proc-macro dep {:?}",
decoder.cdata().root.name,
cnum
);
}
// tag is TAG_VALID_SPAN_FOREIGN, checked by `debug_assert` above
let cnum = CrateNum::decode(decoder);
debug!(
"SpecializedDecoder<Span>::specialized_decode: loading source files from cnum {:?}",
cnum
);
// Decoding 'foreign' spans should be rare enough that it's
// not worth it to maintain a per-CrateNum cache for `last_source_file_index`.
// We just set it to 0, to ensure that we don't try to access something out
// of bounds for our initial 'guess'
decoder.last_source_file_index = 0;
let foreign_data = decoder.cdata().cstore.get_crate_data(cnum);
foreign_data.imported_source_files(sess)
};
let source_file = {
// Optimize for the case that most spans within a translated item
// originate from the same source_file.
let last_source_file = &imported_source_files[decoder.last_source_file_index];
if lo >= last_source_file.original_start_pos && lo <= last_source_file.original_end_pos
{
last_source_file
} else {
let index = imported_source_files
.binary_search_by_key(&lo, |source_file| source_file.original_start_pos)
.unwrap_or_else(|index| index - 1);
// Don't try to cache the index for foreign spans,
// as this would require a map from CrateNums to indices
if tag == TAG_VALID_SPAN_LOCAL {
decoder.last_source_file_index = index;
}
&imported_source_files[index]
}
};
// Make sure our binary search above is correct.
debug_assert!(
lo >= source_file.original_start_pos && lo <= source_file.original_end_pos,
"Bad binary search: lo={:?} source_file.original_start_pos={:?} source_file.original_end_pos={:?}",
lo,
source_file.original_start_pos,
source_file.original_end_pos
);
// Make sure we correctly filtered out invalid spans during encoding
debug_assert!(
hi >= source_file.original_start_pos && hi <= source_file.original_end_pos,
"Bad binary search: hi={:?} source_file.original_start_pos={:?} source_file.original_end_pos={:?}",
hi,
source_file.original_start_pos,
source_file.original_end_pos
);
let lo =
(lo + source_file.translated_source_file.start_pos) - source_file.original_start_pos;
let hi =
(hi + source_file.translated_source_file.start_pos) - source_file.original_start_pos;
// Do not try to decode parent for foreign spans.
Span::new(lo, hi, ctxt, None)
}
}
impl<'a, 'tcx> Decodable<DecodeContext<'a, 'tcx>> for &'tcx [thir::abstract_const::Node<'tcx>] {
fn decode(d: &mut DecodeContext<'a, 'tcx>) -> Self {
ty::codec::RefDecodable::decode(d)
}
}
impl<'a, 'tcx> Decodable<DecodeContext<'a, 'tcx>> for &'tcx [(ty::Predicate<'tcx>, Span)] {
fn decode(d: &mut DecodeContext<'a, 'tcx>) -> Self {
ty::codec::RefDecodable::decode(d)
}
}
impl<'a, 'tcx, T: Decodable<DecodeContext<'a, 'tcx>>> Decodable<DecodeContext<'a, 'tcx>>
for Lazy<T>
{
fn decode(decoder: &mut DecodeContext<'a, 'tcx>) -> Self {
decoder.read_lazy_with_meta(())
}
}
impl<'a, 'tcx, T: Decodable<DecodeContext<'a, 'tcx>>> Decodable<DecodeContext<'a, 'tcx>>
for Lazy<[T]>
{
fn decode(decoder: &mut DecodeContext<'a, 'tcx>) -> Self {
let len = decoder.read_usize();
if len == 0 { Lazy::empty() } else { decoder.read_lazy_with_meta(len) }
}
}
impl<'a, 'tcx, I: Idx, T> Decodable<DecodeContext<'a, 'tcx>> for Lazy<Table<I, T>>
where
Option<T>: FixedSizeEncoding,
{
fn decode(decoder: &mut DecodeContext<'a, 'tcx>) -> Self {
let len = decoder.read_usize();
decoder.read_lazy_with_meta(len)
}
}
implement_ty_decoder!(DecodeContext<'a, 'tcx>);
impl<'tcx> MetadataBlob {
crate fn new(metadata_ref: MetadataRef) -> MetadataBlob {
MetadataBlob(Lrc::new(metadata_ref))
}
crate fn is_compatible(&self) -> bool {
self.blob().starts_with(METADATA_HEADER)
}
crate fn get_rustc_version(&self) -> String {
Lazy::<String>::from_position(NonZeroUsize::new(METADATA_HEADER.len() + 4).unwrap())
.decode(self)
}
crate fn get_root(&self) -> CrateRoot<'tcx> {
let slice = &self.blob()[..];
let offset = METADATA_HEADER.len();
let pos = (((slice[offset + 0] as u32) << 24)
| ((slice[offset + 1] as u32) << 16)
| ((slice[offset + 2] as u32) << 8)
| ((slice[offset + 3] as u32) << 0)) as usize;
Lazy::<CrateRoot<'tcx>>::from_position(NonZeroUsize::new(pos).unwrap()).decode(self)
}
crate fn list_crate_metadata(&self, out: &mut dyn io::Write) -> io::Result<()> {
let root = self.get_root();
writeln!(out, "Crate info:")?;
writeln!(out, "name {}{}", root.name, root.extra_filename)?;
writeln!(out, "hash {} stable_crate_id {:?}", root.hash, root.stable_crate_id)?;
writeln!(out, "proc_macro {:?}", root.proc_macro_data.is_some())?;
writeln!(out, "=External Dependencies=")?;
for (i, dep) in root.crate_deps.decode(self).enumerate() {
writeln!(
out,
"{} {}{} hash {} host_hash {:?} kind {:?}",
i + 1,
dep.name,
dep.extra_filename,
dep.hash,
dep.host_hash,
dep.kind
)?;
}
write!(out, "\n")?;
Ok(())
}
}
impl CrateRoot<'_> {
crate fn is_proc_macro_crate(&self) -> bool {
self.proc_macro_data.is_some()
}
crate fn name(&self) -> Symbol {
self.name
}
crate fn hash(&self) -> Svh {
self.hash
}
crate fn stable_crate_id(&self) -> StableCrateId {
self.stable_crate_id
}
crate fn triple(&self) -> &TargetTriple {
&self.triple
}
crate fn decode_crate_deps<'a>(
&self,
metadata: &'a MetadataBlob,
) -> impl ExactSizeIterator<Item = CrateDep> + Captures<'a> {
self.crate_deps.decode(metadata)
}
}
impl<'a, 'tcx> CrateMetadataRef<'a> {
fn raw_proc_macro(self, id: DefIndex) -> &'a ProcMacro {
// DefIndex's in root.proc_macro_data have a one-to-one correspondence
// with items in 'raw_proc_macros'.
let pos = self
.root
.proc_macro_data
.as_ref()
.unwrap()
.macros
.decode(self)
.position(|i| i == id)
.unwrap();
&self.raw_proc_macros.unwrap()[pos]
}
fn opt_item_name(self, item_index: DefIndex) -> Option<Symbol> {
self.def_key(item_index).disambiguated_data.data.get_opt_name()
}
fn item_name(self, item_index: DefIndex) -> Symbol {
self.opt_item_name(item_index).expect("no encoded ident for item")
}
fn opt_item_ident(self, item_index: DefIndex, sess: &Session) -> Option<Ident> {
let name = self.opt_item_name(item_index)?;
let span = match self.root.tables.def_ident_span.get(self, item_index) {
Some(lazy_span) => lazy_span.decode((self, sess)),
None => {
// FIXME: this weird case of a name with no span is specific to `extern crate`
// items, which are supposed to be treated like `use` items and only be encoded
// to metadata as `Export`s, return `None` because that's what all the callers
// expect in this case.
assert_eq!(self.def_kind(item_index), DefKind::ExternCrate);
return None;
}
};
Some(Ident::new(name, span))
}
fn item_ident(self, item_index: DefIndex, sess: &Session) -> Ident {
self.opt_item_ident(item_index, sess).expect("no encoded ident for item")
}
fn maybe_kind(self, item_id: DefIndex) -> Option<EntryKind> {
self.root.tables.kind.get(self, item_id).map(|k| k.decode(self))
}
#[inline]
pub(super) fn map_encoded_cnum_to_current(self, cnum: CrateNum) -> CrateNum {
if cnum == LOCAL_CRATE { self.cnum } else { self.cnum_map[cnum] }
}
fn kind(self, item_id: DefIndex) -> EntryKind {
self.maybe_kind(item_id).unwrap_or_else(|| {
bug!(
"CrateMetadata::kind({:?}): id not found, in crate {:?} with number {}",
item_id,
self.root.name,
self.cnum,
)
})
}
fn def_kind(self, item_id: DefIndex) -> DefKind {
self.root.tables.opt_def_kind.get(self, item_id).unwrap_or_else(|| {
bug!(
"CrateMetadata::def_kind({:?}): id not found, in crate {:?} with number {}",
item_id,
self.root.name,
self.cnum,
)
})
}
fn get_span(self, index: DefIndex, sess: &Session) -> Span {
self.root
.tables
.def_span
.get(self, index)
.unwrap_or_else(|| panic!("Missing span for {:?}", index))
.decode((self, sess))
}
fn load_proc_macro(self, id: DefIndex, sess: &Session) -> SyntaxExtension {
let (name, kind, helper_attrs) = match *self.raw_proc_macro(id) {
ProcMacro::CustomDerive { trait_name, attributes, client } => {
let helper_attrs =
attributes.iter().cloned().map(Symbol::intern).collect::<Vec<_>>();
(
trait_name,
SyntaxExtensionKind::Derive(Box::new(ProcMacroDerive { client })),
helper_attrs,
)
}
ProcMacro::Attr { name, client } => {
(name, SyntaxExtensionKind::Attr(Box::new(AttrProcMacro { client })), Vec::new())
}
ProcMacro::Bang { name, client } => {
(name, SyntaxExtensionKind::Bang(Box::new(BangProcMacro { client })), Vec::new())
}
};
let attrs: Vec<_> = self.get_item_attrs(id, sess).collect();
SyntaxExtension::new(
sess,
kind,
self.get_span(id, sess),
helper_attrs,
self.root.edition,
Symbol::intern(name),
&attrs,
)
}
fn get_variant(self, kind: &EntryKind, index: DefIndex, parent_did: DefId) -> ty::VariantDef {
let data = match kind {
EntryKind::Variant(data) | EntryKind::Struct(data) | EntryKind::Union(data) => {
data.decode(self)
}
_ => bug!(),
};
let adt_kind = match kind {
EntryKind::Variant(_) => ty::AdtKind::Enum,
EntryKind::Struct(..) => ty::AdtKind::Struct,
EntryKind::Union(..) => ty::AdtKind::Union,
_ => bug!(),
};
let variant_did =
if adt_kind == ty::AdtKind::Enum { Some(self.local_def_id(index)) } else { None };
let ctor_did = data.ctor.map(|index| self.local_def_id(index));
ty::VariantDef::new(
self.item_name(index),
variant_did,
ctor_did,
data.discr,
self.root
.tables
.children
.get(self, index)
.unwrap_or_else(Lazy::empty)
.decode(self)
.map(|index| ty::FieldDef {
did: self.local_def_id(index),
name: self.item_name(index),
vis: self.get_visibility(index),
})
.collect(),
data.ctor_kind,
adt_kind,
parent_did,
false,
data.is_non_exhaustive,
)
}
fn get_adt_def(self, item_id: DefIndex, tcx: TyCtxt<'tcx>) -> ty::AdtDef<'tcx> {
let kind = self.kind(item_id);
let did = self.local_def_id(item_id);
let adt_kind = match kind {
EntryKind::Enum => ty::AdtKind::Enum,
EntryKind::Struct(_) => ty::AdtKind::Struct,
EntryKind::Union(_) => ty::AdtKind::Union,
_ => bug!("get_adt_def called on a non-ADT {:?}", did),
};
let repr = self.root.tables.repr_options.get(self, item_id).unwrap().decode(self);
let variants = if let ty::AdtKind::Enum = adt_kind {
self.root
.tables
.children
.get(self, item_id)
.unwrap_or_else(Lazy::empty)
.decode(self)
.map(|index| self.get_variant(&self.kind(index), index, did))
.collect()
} else {
std::iter::once(self.get_variant(&kind, item_id, did)).collect()
};
tcx.alloc_adt_def(did, adt_kind, variants, repr)
}
fn get_generics(self, item_id: DefIndex, sess: &Session) -> ty::Generics {
self.root.tables.generics_of.get(self, item_id).unwrap().decode((self, sess))
}
fn get_visibility(self, id: DefIndex) -> ty::Visibility {
self.root.tables.visibility.get(self, id).unwrap().decode(self)
}
fn get_trait_item_def_id(self, id: DefIndex) -> Option<DefId> {
self.root.tables.trait_item_def_id.get(self, id).map(|d| d.decode(self))
}
fn get_expn_that_defined(self, id: DefIndex, sess: &Session) -> ExpnId {
self.root.tables.expn_that_defined.get(self, id).unwrap().decode((self, sess))
}
/// Iterates over all the stability attributes in the given crate.
fn get_lib_features(self, tcx: TyCtxt<'tcx>) -> &'tcx [(Symbol, Option<Symbol>)] {
tcx.arena.alloc_from_iter(self.root.lib_features.decode(self))
}
/// Iterates over the language items in the given crate.
fn get_lang_items(self, tcx: TyCtxt<'tcx>) -> &'tcx [(DefId, usize)] {
tcx.arena.alloc_from_iter(
self.root
.lang_items
.decode(self)
.map(move |(def_index, index)| (self.local_def_id(def_index), index)),
)
}
/// Iterates over the diagnostic items in the given crate.
fn get_diagnostic_items(self) -> DiagnosticItems {
let mut id_to_name = FxHashMap::default();
let name_to_id = self
.root
.diagnostic_items
.decode(self)
.map(|(name, def_index)| {
let id = self.local_def_id(def_index);
id_to_name.insert(id, name);
(name, id)
})
.collect();
DiagnosticItems { id_to_name, name_to_id }
}
/// Iterates over all named children of the given module,
/// including both proper items and reexports.
/// Module here is understood in name resolution sense - it can be a `mod` item,
/// or a crate root, or an enum, or a trait.
fn for_each_module_child(
self,
id: DefIndex,
mut callback: impl FnMut(ModChild),
sess: &Session,
) {
if let Some(data) = &self.root.proc_macro_data {
// If we are loading as a proc macro, we want to return
// the view of this crate as a proc macro crate.
if id == CRATE_DEF_INDEX {
for def_index in data.macros.decode(self) {
let raw_macro = self.raw_proc_macro(def_index);
let res = Res::Def(
DefKind::Macro(macro_kind(raw_macro)),
self.local_def_id(def_index),
);
let ident = self.item_ident(def_index, sess);
callback(ModChild {
ident,
res,
vis: ty::Visibility::Public,
span: ident.span,
macro_rules: false,
});
}
}
return;
}
// Iterate over all children.
if let Some(children) = self.root.tables.children.get(self, id) {
for child_index in children.decode((self, sess)) {
let ident = self.item_ident(child_index, sess);
let kind = self.def_kind(child_index);
let def_id = self.local_def_id(child_index);
let res = Res::Def(kind, def_id);
let vis = self.get_visibility(child_index);
let span = self.get_span(child_index, sess);
let macro_rules = match kind {
DefKind::Macro(..) => match self.kind(child_index) {
EntryKind::MacroDef(_, macro_rules) => macro_rules,
_ => unreachable!(),
},
_ => false,
};
callback(ModChild { ident, res, vis, span, macro_rules });
// For non-re-export structs and variants add their constructors to children.
// Re-export lists automatically contain constructors when necessary.
match kind {
DefKind::Struct => {
if let Some((ctor_def_id, ctor_kind)) =
self.get_ctor_def_id_and_kind(child_index)
{
let ctor_res =
Res::Def(DefKind::Ctor(CtorOf::Struct, ctor_kind), ctor_def_id);
let vis = self.get_visibility(ctor_def_id.index);
callback(ModChild {
ident,
res: ctor_res,
vis,
span,
macro_rules: false,
});
}
}
DefKind::Variant => {
// Braced variants, unlike structs, generate unusable names in
// value namespace, they are reserved for possible future use.
// It's ok to use the variant's id as a ctor id since an
// error will be reported on any use of such resolution anyway.
let (ctor_def_id, ctor_kind) = self
.get_ctor_def_id_and_kind(child_index)
.unwrap_or((def_id, CtorKind::Fictive));
let ctor_res =
Res::Def(DefKind::Ctor(CtorOf::Variant, ctor_kind), ctor_def_id);
let mut vis = self.get_visibility(ctor_def_id.index);
if ctor_def_id == def_id && vis.is_public() {
// For non-exhaustive variants lower the constructor visibility to
// within the crate. We only need this for fictive constructors,
// for other constructors correct visibilities
// were already encoded in metadata.
let mut attrs = self.get_item_attrs(def_id.index, sess);
if attrs.any(|item| item.has_name(sym::non_exhaustive)) {
let crate_def_id = self.local_def_id(CRATE_DEF_INDEX);
vis = ty::Visibility::Restricted(crate_def_id);
}
}
callback(ModChild { ident, res: ctor_res, vis, span, macro_rules: false });
}
_ => {}
}
}
}
match self.kind(id) {
EntryKind::Mod(exports) => {
for exp in exports.decode((self, sess)) {
callback(exp);
}
}
EntryKind::Enum | EntryKind::Trait => {}
_ => bug!("`for_each_module_child` is called on a non-module: {:?}", self.def_kind(id)),
}
}
fn is_ctfe_mir_available(self, id: DefIndex) -> bool {
self.root.tables.mir_for_ctfe.get(self, id).is_some()
}
fn is_item_mir_available(self, id: DefIndex) -> bool {
self.root.tables.optimized_mir.get(self, id).is_some()
}
fn module_expansion(self, id: DefIndex, sess: &Session) -> ExpnId {
match self.kind(id) {
EntryKind::Mod(_) | EntryKind::Enum | EntryKind::Trait => {
self.get_expn_that_defined(id, sess)
}
_ => panic!("Expected module, found {:?}", self.local_def_id(id)),
}
}
fn get_fn_has_self_parameter(self, id: DefIndex) -> bool {
match self.kind(id) {
EntryKind::AssocFn(data) => data.decode(self).has_self,
_ => false,
}
}
fn get_associated_item_def_ids(
self,
id: DefIndex,
sess: &'a Session,
) -> impl Iterator<Item = DefId> + 'a {
self.root
.tables
.children
.get(self, id)
.unwrap_or_else(Lazy::empty)
.decode((self, sess))
.map(move |child_index| self.local_def_id(child_index))
}
fn get_associated_item(self, id: DefIndex) -> ty::AssocItem {
let def_key = self.def_key(id);
let parent = self.local_def_id(def_key.parent.unwrap());
let name = self.item_name(id);
let (kind, container, has_self) = match self.kind(id) {
EntryKind::AssocConst(container) => (ty::AssocKind::Const, container, false),
EntryKind::AssocFn(data) => {
let data = data.decode(self);
(ty::AssocKind::Fn, data.container, data.has_self)
}
EntryKind::AssocType(container) => (ty::AssocKind::Type, container, false),
_ => bug!("cannot get associated-item of `{:?}`", def_key),
};
ty::AssocItem {
name,
kind,
vis: self.get_visibility(id),
defaultness: container.defaultness(),
def_id: self.local_def_id(id),
trait_item_def_id: self.get_trait_item_def_id(id),
container: container.with_def_id(parent),
fn_has_self_parameter: has_self,
}
}
fn get_ctor_def_id_and_kind(self, node_id: DefIndex) -> Option<(DefId, CtorKind)> {
match self.kind(node_id) {
EntryKind::Struct(data) | EntryKind::Variant(data) => {
let vdata = data.decode(self);
vdata.ctor.map(|index| (self.local_def_id(index), vdata.ctor_kind))
}
_ => None,
}
}
fn get_item_attrs(
self,
id: DefIndex,
sess: &'a Session,
) -> impl Iterator<Item = ast::Attribute> + 'a {
self.root
.tables
.attributes
.get(self, id)
.unwrap_or_else(|| {
// Structure and variant constructors don't have any attributes encoded for them,
// but we assume that someone passing a constructor ID actually wants to look at
// the attributes on the corresponding struct or variant.
let def_key = self.def_key(id);
assert_eq!(def_key.disambiguated_data.data, DefPathData::Ctor);
let parent_id = def_key.parent.expect("no parent for a constructor");
self.root
.tables
.attributes
.get(self, parent_id)
.expect("no encoded attributes for a structure or variant")
})
.decode((self, sess))
}
fn get_struct_field_names(
self,
id: DefIndex,
sess: &'a Session,
) -> impl Iterator<Item = Spanned<Symbol>> + 'a {
self.root
.tables
.children
.get(self, id)
.unwrap_or_else(Lazy::empty)
.decode(self)
.map(move |index| respan(self.get_span(index, sess), self.item_name(index)))
}
fn get_struct_field_visibilities(self, id: DefIndex) -> impl Iterator<Item = Visibility> + 'a {
self.root
.tables
.children
.get(self, id)
.unwrap_or_else(Lazy::empty)
.decode(self)
.map(move |field_index| self.get_visibility(field_index))
}
fn get_inherent_implementations_for_type(
self,
tcx: TyCtxt<'tcx>,
id: DefIndex,
) -> &'tcx [DefId] {
tcx.arena.alloc_from_iter(
self.root
.tables
.inherent_impls
.get(self, id)
.unwrap_or_else(Lazy::empty)
.decode(self)
.map(|index| self.local_def_id(index)),
)
}
/// Decodes all inherent impls in the crate (for rustdoc).
fn get_inherent_impls(self) -> impl Iterator<Item = (DefId, DefId)> + 'a {
(0..self.root.tables.inherent_impls.size()).flat_map(move |i| {
let ty_index = DefIndex::from_usize(i);
let ty_def_id = self.local_def_id(ty_index);
self.root
.tables
.inherent_impls
.get(self, ty_index)
.unwrap_or_else(Lazy::empty)
.decode(self)
.map(move |impl_index| (ty_def_id, self.local_def_id(impl_index)))
})
}
/// Decodes all traits in the crate (for rustdoc and rustc diagnostics).
fn get_traits(self) -> impl Iterator<Item = DefId> + 'a {
self.root.traits.decode(self).map(move |index| self.local_def_id(index))
}
/// Decodes all trait impls in the crate (for rustdoc).
fn get_trait_impls(self) -> impl Iterator<Item = (DefId, DefId, Option<SimplifiedType>)> + 'a {
self.cdata.trait_impls.iter().flat_map(move |(&(trait_cnum_raw, trait_index), impls)| {
let trait_def_id = DefId {
krate: self.cnum_map[CrateNum::from_u32(trait_cnum_raw)],
index: trait_index,
};
impls.decode(self).map(move |(impl_index, simplified_self_ty)| {
(trait_def_id, self.local_def_id(impl_index), simplified_self_ty)
})
})
}
fn get_all_incoherent_impls(self) -> impl Iterator<Item = DefId> + 'a {
self.cdata
.incoherent_impls
.values()
.flat_map(move |impls| impls.decode(self).map(move |idx| self.local_def_id(idx)))
}
fn get_incoherent_impls(self, tcx: TyCtxt<'tcx>, simp: SimplifiedType) -> &'tcx [DefId] {
if let Some(impls) = self.cdata.incoherent_impls.get(&simp) {
tcx.arena.alloc_from_iter(impls.decode(self).map(|idx| self.local_def_id(idx)))
} else {
&[]
}
}
fn get_implementations_of_trait(
self,
tcx: TyCtxt<'tcx>,
trait_def_id: DefId,
) -> &'tcx [(DefId, Option<SimplifiedType>)] {
if self.trait_impls.is_empty() {
return &[];
}
// Do a reverse lookup beforehand to avoid touching the crate_num
// hash map in the loop below.
let key = match self.reverse_translate_def_id(trait_def_id) {
Some(def_id) => (def_id.krate.as_u32(), def_id.index),
None => return &[],
};
if let Some(impls) = self.trait_impls.get(&key) {
tcx.arena.alloc_from_iter(
impls
.decode(self)
.map(|(idx, simplified_self_ty)| (self.local_def_id(idx), simplified_self_ty)),
)
} else {
&[]
}
}
fn get_trait_of_item(self, id: DefIndex) -> Option<DefId> {
let def_key = self.def_key(id);
match def_key.disambiguated_data.data {
DefPathData::TypeNs(..) | DefPathData::ValueNs(..) => (),
// Not an associated item
_ => return None,
}
def_key.parent.and_then(|parent_index| match self.kind(parent_index) {
EntryKind::Trait | EntryKind::TraitAlias => Some(self.local_def_id(parent_index)),
_ => None,
})
}
fn get_native_libraries(self, sess: &'a Session) -> impl Iterator<Item = NativeLib> + 'a {
self.root.native_libraries.decode((self, sess))
}
fn get_proc_macro_quoted_span(self, index: usize, sess: &Session) -> Span {
self.root
.tables
.proc_macro_quoted_spans
.get(self, index)
.unwrap_or_else(|| panic!("Missing proc macro quoted span: {:?}", index))
.decode((self, sess))
}
fn get_foreign_modules(self, sess: &'a Session) -> impl Iterator<Item = ForeignModule> + '_ {
self.root.foreign_modules.decode((self, sess))
}
fn get_dylib_dependency_formats(
self,
tcx: TyCtxt<'tcx>,
) -> &'tcx [(CrateNum, LinkagePreference)] {
tcx.arena.alloc_from_iter(
self.root.dylib_dependency_formats.decode(self).enumerate().flat_map(|(i, link)| {
let cnum = CrateNum::new(i + 1);
link.map(|link| (self.cnum_map[cnum], link))
}),
)
}
fn get_missing_lang_items(self, tcx: TyCtxt<'tcx>) -> &'tcx [lang_items::LangItem] {
tcx.arena.alloc_from_iter(self.root.lang_items_missing.decode(self))
}
fn exported_symbols(
self,
tcx: TyCtxt<'tcx>,
) -> &'tcx [(ExportedSymbol<'tcx>, SymbolExportLevel)] {
tcx.arena.alloc_from_iter(self.root.exported_symbols.decode((self, tcx)))
}
fn get_macro(self, id: DefIndex, sess: &Session) -> ast::MacroDef {
match self.kind(id) {
EntryKind::MacroDef(mac_args, macro_rules) => {
ast::MacroDef { body: P(mac_args.decode((self, sess))), macro_rules }
}
_ => bug!(),
}
}
fn is_foreign_item(self, id: DefIndex) -> bool {
match self.kind(id) {
EntryKind::ForeignStatic | EntryKind::ForeignFn => true,
_ => false,
}
}
#[inline]
fn def_key(self, index: DefIndex) -> DefKey {
*self
.def_key_cache
.lock()
.entry(index)
.or_insert_with(|| self.root.tables.def_keys.get(self, index).unwrap().decode(self))
}
// Returns the path leading to the thing with this `id`.
fn def_path(self, id: DefIndex) -> DefPath {
debug!("def_path(cnum={:?}, id={:?})", self.cnum, id);
DefPath::make(self.cnum, id, |parent| self.def_key(parent))
}
fn def_path_hash_unlocked(
self,
index: DefIndex,
def_path_hashes: &mut FxHashMap<DefIndex, DefPathHash>,
) -> DefPathHash {
*def_path_hashes
.entry(index)
.or_insert_with(|| self.root.tables.def_path_hashes.get(self, index).unwrap())
}
#[inline]
fn def_path_hash(self, index: DefIndex) -> DefPathHash {
let mut def_path_hashes = self.def_path_hash_cache.lock();
self.def_path_hash_unlocked(index, &mut def_path_hashes)
}
#[inline]
fn def_path_hash_to_def_index(self, hash: DefPathHash) -> DefIndex {
self.def_path_hash_map.def_path_hash_to_def_index(&hash)
}
fn expn_hash_to_expn_id(self, sess: &Session, index_guess: u32, hash: ExpnHash) -> ExpnId {
debug_assert_eq!(ExpnId::from_hash(hash), None);
let index_guess = ExpnIndex::from_u32(index_guess);
let old_hash = self.root.expn_hashes.get(self, index_guess).map(|lazy| lazy.decode(self));
let index = if old_hash == Some(hash) {
// Fast path: the expn and its index is unchanged from the
// previous compilation session. There is no need to decode anything
// else.
index_guess
} else {
// Slow path: We need to find out the new `DefIndex` of the provided
// `DefPathHash`, if its still exists. This requires decoding every `DefPathHash`
// stored in this crate.
let map = self.cdata.expn_hash_map.get_or_init(|| {
let end_id = self.root.expn_hashes.size() as u32;
let mut map =
UnhashMap::with_capacity_and_hasher(end_id as usize, Default::default());
for i in 0..end_id {
let i = ExpnIndex::from_u32(i);
if let Some(hash) = self.root.expn_hashes.get(self, i) {
map.insert(hash.decode(self), i);
}
}
map
});
map[&hash]
};
let data = self.root.expn_data.get(self, index).unwrap().decode((self, sess));
rustc_span::hygiene::register_expn_id(self.cnum, index, data, hash)
}
/// Imports the source_map from an external crate into the source_map of the crate
/// currently being compiled (the "local crate").
///
/// The import algorithm works analogous to how AST items are inlined from an
/// external crate's metadata:
/// For every SourceFile in the external source_map an 'inline' copy is created in the
/// local source_map. The correspondence relation between external and local
/// SourceFiles is recorded in the `ImportedSourceFile` objects returned from this
/// function. When an item from an external crate is later inlined into this
/// crate, this correspondence information is used to translate the span
/// information of the inlined item so that it refers the correct positions in
/// the local source_map (see `<decoder::DecodeContext as SpecializedDecoder<Span>>`).
///
/// The import algorithm in the function below will reuse SourceFiles already
/// existing in the local source_map. For example, even if the SourceFile of some
/// source file of libstd gets imported many times, there will only ever be
/// one SourceFile object for the corresponding file in the local source_map.
///
/// Note that imported SourceFiles do not actually contain the source code of the
/// file they represent, just information about length, line breaks, and
/// multibyte characters. This information is enough to generate valid debuginfo
/// for items inlined from other crates.
///
/// Proc macro crates don't currently export spans, so this function does not have
/// to work for them.
fn imported_source_files(self, sess: &Session) -> &'a [ImportedSourceFile] {
// Translate the virtual `/rustc/$hash` prefix back to a real directory
// that should hold actual sources, where possible.
//
// NOTE: if you update this, you might need to also update bootstrap's code for generating
// the `rust-src` component in `Src::run` in `src/bootstrap/dist.rs`.
let virtual_rust_source_base_dir = option_env!("CFG_VIRTUAL_RUST_SOURCE_BASE_DIR")
.map(Path::new)
.filter(|_| {
// Only spend time on further checks if we have what to translate *to*.
sess.opts.real_rust_source_base_dir.is_some()
})
.filter(|virtual_dir| {
// Don't translate away `/rustc/$hash` if we're still remapping to it,
// since that means we're still building `std`/`rustc` that need it,
// and we don't want the real path to leak into codegen/debuginfo.
!sess.opts.remap_path_prefix.iter().any(|(_from, to)| to == virtual_dir)
});
let try_to_translate_virtual_to_real = |name: &mut rustc_span::FileName| {
debug!(
"try_to_translate_virtual_to_real(name={:?}): \
virtual_rust_source_base_dir={:?}, real_rust_source_base_dir={:?}",
name, virtual_rust_source_base_dir, sess.opts.real_rust_source_base_dir,
);
if let Some(virtual_dir) = virtual_rust_source_base_dir {
if let Some(real_dir) = &sess.opts.real_rust_source_base_dir {
if let rustc_span::FileName::Real(old_name) = name {
if let rustc_span::RealFileName::Remapped { local_path: _, virtual_name } =
old_name
{
if let Ok(rest) = virtual_name.strip_prefix(virtual_dir) {
let virtual_name = virtual_name.clone();
// The std library crates are in
// `$sysroot/lib/rustlib/src/rust/library`, whereas other crates
// may be in `$sysroot/lib/rustlib/src/rust/` directly. So we
// detect crates from the std libs and handle them specially.
const STD_LIBS: &[&str] = &[
"core",
"alloc",
"std",
"test",
"term",
"unwind",
"proc_macro",
"panic_abort",
"panic_unwind",
"profiler_builtins",
"rtstartup",
"rustc-std-workspace-core",
"rustc-std-workspace-alloc",
"rustc-std-workspace-std",
"backtrace",
];
let is_std_lib = STD_LIBS.iter().any(|l| rest.starts_with(l));
let new_path = if is_std_lib {
real_dir.join("library").join(rest)
} else {
real_dir.join(rest)
};
debug!(
"try_to_translate_virtual_to_real: `{}` -> `{}`",
virtual_name.display(),
new_path.display(),
);
let new_name = rustc_span::RealFileName::Remapped {
local_path: Some(new_path),
virtual_name,
};
*old_name = new_name;
}
}
}
}
}
};
self.cdata.source_map_import_info.get_or_init(|| {
let external_source_map = self.root.source_map.decode(self);
external_source_map
.map(|source_file_to_import| {
// We can't reuse an existing SourceFile, so allocate a new one
// containing the information we need.
let rustc_span::SourceFile {
mut name,
src_hash,
start_pos,
end_pos,
mut lines,
mut multibyte_chars,
mut non_narrow_chars,
mut normalized_pos,
name_hash,
..
} = source_file_to_import;
// If this file is under $sysroot/lib/rustlib/src/ but has not been remapped
// during rust bootstrapping by `remap-debuginfo = true`, and the user
// wish to simulate that behaviour by -Z simulate-remapped-rust-src-base,
// then we change `name` to a similar state as if the rust was bootstrapped
// with `remap-debuginfo = true`.
// This is useful for testing so that tests about the effects of
// `try_to_translate_virtual_to_real` don't have to worry about how the
// compiler is bootstrapped.
if let Some(virtual_dir) =
&sess.opts.debugging_opts.simulate_remapped_rust_src_base
{
if let Some(real_dir) = &sess.opts.real_rust_source_base_dir {
if let rustc_span::FileName::Real(ref mut old_name) = name {
if let rustc_span::RealFileName::LocalPath(local) = old_name {
if let Ok(rest) = local.strip_prefix(real_dir) {
*old_name = rustc_span::RealFileName::Remapped {
local_path: None,
virtual_name: virtual_dir.join(rest),
};
}
}
}
}
}
// If this file's path has been remapped to `/rustc/$hash`,
// we might be able to reverse that (also see comments above,
// on `try_to_translate_virtual_to_real`).
try_to_translate_virtual_to_real(&mut name);
let source_length = (end_pos - start_pos).to_usize();
// Translate line-start positions and multibyte character
// position into frame of reference local to file.
// `SourceMap::new_imported_source_file()` will then translate those
// coordinates to their new global frame of reference when the
// offset of the SourceFile is known.
for pos in &mut lines {
*pos = *pos - start_pos;
}
for mbc in &mut multibyte_chars {
mbc.pos = mbc.pos - start_pos;
}
for swc in &mut non_narrow_chars {
*swc = *swc - start_pos;
}
for np in &mut normalized_pos {
np.pos = np.pos - start_pos;
}
let local_version = sess.source_map().new_imported_source_file(
name,
src_hash,
name_hash,
source_length,
self.cnum,
lines,
multibyte_chars,
non_narrow_chars,
normalized_pos,
start_pos,
end_pos,
);
debug!(
"CrateMetaData::imported_source_files alloc \
source_file {:?} original (start_pos {:?} end_pos {:?}) \
translated (start_pos {:?} end_pos {:?})",
local_version.name,
start_pos,
end_pos,
local_version.start_pos,
local_version.end_pos
);
ImportedSourceFile {
original_start_pos: start_pos,
original_end_pos: end_pos,
translated_source_file: local_version,
}
})
.collect()
})
}
fn get_generator_diagnostic_data(
self,
tcx: TyCtxt<'tcx>,
id: DefIndex,
) -> Option<GeneratorDiagnosticData<'tcx>> {
self.root
.tables
.generator_diagnostic_data
.get(self, id)
.map(|param| param.decode((self, tcx)))
.map(|generator_data| GeneratorDiagnosticData {
generator_interior_types: generator_data.generator_interior_types,
hir_owner: generator_data.hir_owner,
nodes_types: generator_data.nodes_types,
adjustments: generator_data.adjustments,
})
}
fn get_may_have_doc_links(self, index: DefIndex) -> bool {
self.root.tables.may_have_doc_links.get(self, index).is_some()
}
}
impl CrateMetadata {
crate fn new(
sess: &Session,
cstore: &CStore,
blob: MetadataBlob,
root: CrateRoot<'static>,
raw_proc_macros: Option<&'static [ProcMacro]>,
cnum: CrateNum,
cnum_map: CrateNumMap,
dep_kind: CrateDepKind,
source: CrateSource,
private_dep: bool,
host_hash: Option<Svh>,
) -> CrateMetadata {
let trait_impls = root
.impls
.decode((&blob, sess))
.map(|trait_impls| (trait_impls.trait_id, trait_impls.impls))
.collect();
let alloc_decoding_state =
AllocDecodingState::new(root.interpret_alloc_index.decode(&blob).collect());
let dependencies = Lock::new(cnum_map.iter().cloned().collect());
// Pre-decode the DefPathHash->DefIndex table. This is a cheap operation
// that does not copy any data. It just does some data verification.
let def_path_hash_map = root.def_path_hash_map.decode(&blob);
let mut cdata = CrateMetadata {
blob,
root,
trait_impls,
incoherent_impls: Default::default(),
raw_proc_macros,
source_map_import_info: OnceCell::new(),
def_path_hash_map,
expn_hash_map: Default::default(),
alloc_decoding_state,
cnum,
cnum_map,
dependencies,
dep_kind: Lock::new(dep_kind),
source: Lrc::new(source),
private_dep,
host_hash,
extern_crate: Lock::new(None),
hygiene_context: Default::default(),
def_key_cache: Default::default(),
def_path_hash_cache: Default::default(),
};
// Need `CrateMetadataRef` to decode `DefId`s in simplified types.
cdata.incoherent_impls = cdata
.root
.incoherent_impls
.decode(CrateMetadataRef { cdata: &cdata, cstore })
.map(|incoherent_impls| (incoherent_impls.self_ty, incoherent_impls.impls))
.collect();
cdata
}
crate fn dependencies(&self) -> LockGuard<'_, Vec<CrateNum>> {
self.dependencies.borrow()
}
crate fn add_dependency(&self, cnum: CrateNum) {
self.dependencies.borrow_mut().push(cnum);
}
crate fn update_extern_crate(&self, new_extern_crate: ExternCrate) -> bool {
let mut extern_crate = self.extern_crate.borrow_mut();
let update = Some(new_extern_crate.rank()) > extern_crate.as_ref().map(ExternCrate::rank);
if update {
*extern_crate = Some(new_extern_crate);
}
update
}
crate fn source(&self) -> &CrateSource {
&*self.source
}
crate fn dep_kind(&self) -> CrateDepKind {
*self.dep_kind.lock()
}
crate fn update_dep_kind(&self, f: impl FnOnce(CrateDepKind) -> CrateDepKind) {
self.dep_kind.with_lock(|dep_kind| *dep_kind = f(*dep_kind))
}
crate fn panic_strategy(&self) -> PanicStrategy {
self.root.panic_strategy
}
crate fn needs_panic_runtime(&self) -> bool {
self.root.needs_panic_runtime
}
crate fn is_panic_runtime(&self) -> bool {
self.root.panic_runtime
}
crate fn is_profiler_runtime(&self) -> bool {
self.root.profiler_runtime
}
crate fn needs_allocator(&self) -> bool {
self.root.needs_allocator
}
crate fn has_global_allocator(&self) -> bool {
self.root.has_global_allocator
}
crate fn has_default_lib_allocator(&self) -> bool {
self.root.has_default_lib_allocator
}
crate fn is_proc_macro_crate(&self) -> bool {
self.root.is_proc_macro_crate()
}
crate fn name(&self) -> Symbol {
self.root.name
}
crate fn stable_crate_id(&self) -> StableCrateId {
self.root.stable_crate_id
}
crate fn hash(&self) -> Svh {
self.root.hash
}
fn num_def_ids(&self) -> usize {
self.root.tables.def_keys.size()
}
fn local_def_id(&self, index: DefIndex) -> DefId {
DefId { krate: self.cnum, index }
}
// Translate a DefId from the current compilation environment to a DefId
// for an external crate.
fn reverse_translate_def_id(&self, did: DefId) -> Option<DefId> {
for (local, &global) in self.cnum_map.iter_enumerated() {
if global == did.krate {
return Some(DefId { krate: local, index: did.index });
}
}
None
}
}
// Cannot be implemented on 'ProcMacro', as libproc_macro
// does not depend on librustc_ast
fn macro_kind(raw: &ProcMacro) -> MacroKind {
match raw {
ProcMacro::CustomDerive { .. } => MacroKind::Derive,
ProcMacro::Attr { .. } => MacroKind::Attr,
ProcMacro::Bang { .. } => MacroKind::Bang,
}
}