df550de689
Fixes #31950
1174 lines
33 KiB
Rust
1174 lines
33 KiB
Rust
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
|
||
// file at the top-level directory of this distribution and at
|
||
// http://rust-lang.org/COPYRIGHT.
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
||
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
||
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
||
// option. This file may not be copied, modified, or distributed
|
||
// except according to those terms.
|
||
|
||
#![allow(deprecated)]
|
||
|
||
//! Thread-local reference-counted boxes (the `Rc<T>` type).
|
||
//!
|
||
//! The `Rc<T>` type provides shared ownership of an immutable value.
|
||
//! Destruction is deterministic, and will occur as soon as the last owner is
|
||
//! gone. It is marked as non-sendable because it avoids the overhead of atomic
|
||
//! reference counting.
|
||
//!
|
||
//! The `downgrade` method can be used to create a non-owning `Weak<T>` pointer
|
||
//! to the box. A `Weak<T>` pointer can be upgraded to an `Rc<T>` pointer, but
|
||
//! will return `None` if the value has already been dropped.
|
||
//!
|
||
//! For example, a tree with parent pointers can be represented by putting the
|
||
//! nodes behind strong `Rc<T>` pointers, and then storing the parent pointers
|
||
//! as `Weak<T>` pointers.
|
||
//!
|
||
//! # Examples
|
||
//!
|
||
//! Consider a scenario where a set of `Gadget`s are owned by a given `Owner`.
|
||
//! We want to have our `Gadget`s point to their `Owner`. We can't do this with
|
||
//! unique ownership, because more than one gadget may belong to the same
|
||
//! `Owner`. `Rc<T>` allows us to share an `Owner` between multiple `Gadget`s,
|
||
//! and have the `Owner` remain allocated as long as any `Gadget` points at it.
|
||
//!
|
||
//! ```rust
|
||
//! use std::rc::Rc;
|
||
//!
|
||
//! struct Owner {
|
||
//! name: String
|
||
//! // ...other fields
|
||
//! }
|
||
//!
|
||
//! struct Gadget {
|
||
//! id: i32,
|
||
//! owner: Rc<Owner>
|
||
//! // ...other fields
|
||
//! }
|
||
//!
|
||
//! fn main() {
|
||
//! // Create a reference counted Owner.
|
||
//! let gadget_owner : Rc<Owner> = Rc::new(
|
||
//! Owner { name: String::from("Gadget Man") }
|
||
//! );
|
||
//!
|
||
//! // Create Gadgets belonging to gadget_owner. To increment the reference
|
||
//! // count we clone the `Rc<T>` object.
|
||
//! let gadget1 = Gadget { id: 1, owner: gadget_owner.clone() };
|
||
//! let gadget2 = Gadget { id: 2, owner: gadget_owner.clone() };
|
||
//!
|
||
//! drop(gadget_owner);
|
||
//!
|
||
//! // Despite dropping gadget_owner, we're still able to print out the name
|
||
//! // of the Owner of the Gadgets. This is because we've only dropped the
|
||
//! // reference count object, not the Owner it wraps. As long as there are
|
||
//! // other `Rc<T>` objects pointing at the same Owner, it will remain
|
||
//! // allocated. Notice that the `Rc<T>` wrapper around Gadget.owner gets
|
||
//! // automatically dereferenced for us.
|
||
//! println!("Gadget {} owned by {}", gadget1.id, gadget1.owner.name);
|
||
//! println!("Gadget {} owned by {}", gadget2.id, gadget2.owner.name);
|
||
//!
|
||
//! // At the end of the method, gadget1 and gadget2 get destroyed, and with
|
||
//! // them the last counted references to our Owner. Gadget Man now gets
|
||
//! // destroyed as well.
|
||
//! }
|
||
//! ```
|
||
//!
|
||
//! If our requirements change, and we also need to be able to traverse from
|
||
//! Owner → Gadget, we will run into problems: an `Rc<T>` pointer from Owner
|
||
//! → Gadget introduces a cycle between the objects. This means that their
|
||
//! reference counts can never reach 0, and the objects will remain allocated: a
|
||
//! memory leak. In order to get around this, we can use `Weak<T>` pointers.
|
||
//! These pointers don't contribute to the total count.
|
||
//!
|
||
//! Rust actually makes it somewhat difficult to produce this loop in the first
|
||
//! place: in order to end up with two objects that point at each other, one of
|
||
//! them needs to be mutable. This is problematic because `Rc<T>` enforces
|
||
//! memory safety by only giving out shared references to the object it wraps,
|
||
//! and these don't allow direct mutation. We need to wrap the part of the
|
||
//! object we wish to mutate in a `RefCell`, which provides *interior
|
||
//! mutability*: a method to achieve mutability through a shared reference.
|
||
//! `RefCell` enforces Rust's borrowing rules at runtime. Read the `Cell`
|
||
//! documentation for more details on interior mutability.
|
||
//!
|
||
//! ```rust
|
||
//! use std::rc::Rc;
|
||
//! use std::rc::Weak;
|
||
//! use std::cell::RefCell;
|
||
//!
|
||
//! struct Owner {
|
||
//! name: String,
|
||
//! gadgets: RefCell<Vec<Weak<Gadget>>>,
|
||
//! // ...other fields
|
||
//! }
|
||
//!
|
||
//! struct Gadget {
|
||
//! id: i32,
|
||
//! owner: Rc<Owner>,
|
||
//! // ...other fields
|
||
//! }
|
||
//!
|
||
//! fn main() {
|
||
//! // Create a reference counted Owner. Note the fact that we've put the
|
||
//! // Owner's vector of Gadgets inside a RefCell so that we can mutate it
|
||
//! // through a shared reference.
|
||
//! let gadget_owner : Rc<Owner> = Rc::new(
|
||
//! Owner {
|
||
//! name: "Gadget Man".to_string(),
|
||
//! gadgets: RefCell::new(Vec::new()),
|
||
//! }
|
||
//! );
|
||
//!
|
||
//! // Create Gadgets belonging to gadget_owner as before.
|
||
//! let gadget1 = Rc::new(Gadget{id: 1, owner: gadget_owner.clone()});
|
||
//! let gadget2 = Rc::new(Gadget{id: 2, owner: gadget_owner.clone()});
|
||
//!
|
||
//! // Add the Gadgets to their Owner. To do this we mutably borrow from
|
||
//! // the RefCell holding the Owner's Gadgets.
|
||
//! gadget_owner.gadgets.borrow_mut().push(Rc::downgrade(&gadget1));
|
||
//! gadget_owner.gadgets.borrow_mut().push(Rc::downgrade(&gadget2));
|
||
//!
|
||
//! // Iterate over our Gadgets, printing their details out
|
||
//! for gadget_opt in gadget_owner.gadgets.borrow().iter() {
|
||
//!
|
||
//! // gadget_opt is a Weak<Gadget>. Since weak pointers can't guarantee
|
||
//! // that their object is still allocated, we need to call upgrade()
|
||
//! // on them to turn them into a strong reference. This returns an
|
||
//! // Option, which contains a reference to our object if it still
|
||
//! // exists.
|
||
//! let gadget = gadget_opt.upgrade().unwrap();
|
||
//! println!("Gadget {} owned by {}", gadget.id, gadget.owner.name);
|
||
//! }
|
||
//!
|
||
//! // At the end of the method, gadget_owner, gadget1 and gadget2 get
|
||
//! // destroyed. There are now no strong (`Rc<T>`) references to the gadgets.
|
||
//! // Once they get destroyed, the Gadgets get destroyed. This zeroes the
|
||
//! // reference count on Gadget Man, they get destroyed as well.
|
||
//! }
|
||
//! ```
|
||
|
||
#![stable(feature = "rust1", since = "1.0.0")]
|
||
|
||
#[cfg(not(test))]
|
||
use boxed::Box;
|
||
#[cfg(test)]
|
||
use std::boxed::Box;
|
||
|
||
use core::borrow;
|
||
use core::cell::Cell;
|
||
use core::cmp::Ordering;
|
||
use core::fmt;
|
||
use core::hash::{Hasher, Hash};
|
||
use core::intrinsics::{assume, abort};
|
||
use core::marker;
|
||
use core::marker::Unsize;
|
||
use core::mem::{self, align_of_val, size_of_val, forget, uninitialized};
|
||
use core::ops::Deref;
|
||
use core::ops::CoerceUnsized;
|
||
use core::ptr::{self, Shared};
|
||
use core::convert::From;
|
||
|
||
use heap::deallocate;
|
||
|
||
struct RcBox<T: ?Sized> {
|
||
strong: Cell<usize>,
|
||
weak: Cell<usize>,
|
||
value: T,
|
||
}
|
||
|
||
|
||
/// A reference-counted pointer type over an immutable value.
|
||
///
|
||
/// See the [module level documentation](./index.html) for more details.
|
||
#[unsafe_no_drop_flag]
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub struct Rc<T: ?Sized> {
|
||
// FIXME #12808: strange names to try to avoid interfering with field
|
||
// accesses of the contained type via Deref
|
||
_ptr: Shared<RcBox<T>>,
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: ?Sized> !marker::Send for Rc<T> {}
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: ?Sized> !marker::Sync for Rc<T> {}
|
||
|
||
#[unstable(feature = "coerce_unsized", issue = "27732")]
|
||
impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Rc<U>> for Rc<T> {}
|
||
|
||
impl<T> Rc<T> {
|
||
/// Constructs a new `Rc<T>`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::rc::Rc;
|
||
///
|
||
/// let five = Rc::new(5);
|
||
/// ```
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
pub fn new(value: T) -> Rc<T> {
|
||
unsafe {
|
||
Rc {
|
||
// there is an implicit weak pointer owned by all the strong
|
||
// pointers, which ensures that the weak destructor never frees
|
||
// the allocation while the strong destructor is running, even
|
||
// if the weak pointer is stored inside the strong one.
|
||
_ptr: Shared::new(Box::into_raw(box RcBox {
|
||
strong: Cell::new(1),
|
||
weak: Cell::new(1),
|
||
value: value,
|
||
})),
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Unwraps the contained value if the `Rc<T>` has exactly one strong reference.
|
||
///
|
||
/// Otherwise, an `Err` is returned with the same `Rc<T>`.
|
||
///
|
||
/// This will succeed even if there are outstanding weak references.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::rc::Rc;
|
||
///
|
||
/// let x = Rc::new(3);
|
||
/// assert_eq!(Rc::try_unwrap(x), Ok(3));
|
||
///
|
||
/// let x = Rc::new(4);
|
||
/// let _y = x.clone();
|
||
/// assert_eq!(Rc::try_unwrap(x), Err(Rc::new(4)));
|
||
/// ```
|
||
#[inline]
|
||
#[stable(feature = "rc_unique", since = "1.4.0")]
|
||
pub fn try_unwrap(this: Self) -> Result<T, Self> {
|
||
if Rc::would_unwrap(&this) {
|
||
unsafe {
|
||
let val = ptr::read(&*this); // copy the contained object
|
||
|
||
// Indicate to Weaks that they can't be promoted by decrememting
|
||
// the strong count, and then remove the implicit "strong weak"
|
||
// pointer while also handling drop logic by just crafting a
|
||
// fake Weak.
|
||
this.dec_strong();
|
||
let _weak = Weak { _ptr: this._ptr };
|
||
forget(this);
|
||
Ok(val)
|
||
}
|
||
} else {
|
||
Err(this)
|
||
}
|
||
}
|
||
|
||
/// Checks if `Rc::try_unwrap` would return `Ok`.
|
||
#[unstable(feature = "rc_would_unwrap",
|
||
reason = "just added for niche usecase",
|
||
issue = "28356")]
|
||
pub fn would_unwrap(this: &Self) -> bool {
|
||
Rc::strong_count(&this) == 1
|
||
}
|
||
}
|
||
|
||
impl<T: ?Sized> Rc<T> {
|
||
/// Downgrades the `Rc<T>` to a `Weak<T>` reference.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::rc::Rc;
|
||
///
|
||
/// let five = Rc::new(5);
|
||
///
|
||
/// let weak_five = Rc::downgrade(&five);
|
||
/// ```
|
||
#[stable(feature = "rc_weak", since = "1.4.0")]
|
||
pub fn downgrade(this: &Self) -> Weak<T> {
|
||
this.inc_weak();
|
||
Weak { _ptr: this._ptr }
|
||
}
|
||
|
||
/// Get the number of weak references to this value.
|
||
#[inline]
|
||
#[unstable(feature = "rc_counts", reason = "not clearly useful",
|
||
issue = "28356")]
|
||
pub fn weak_count(this: &Self) -> usize {
|
||
this.weak() - 1
|
||
}
|
||
|
||
/// Get the number of strong references to this value.
|
||
#[inline]
|
||
#[unstable(feature = "rc_counts", reason = "not clearly useful",
|
||
issue = "28356")]
|
||
pub fn strong_count(this: &Self) -> usize {
|
||
this.strong()
|
||
}
|
||
|
||
/// Returns true if there are no other `Rc` or `Weak<T>` values that share
|
||
/// the same inner value.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(rc_counts)]
|
||
///
|
||
/// use std::rc::Rc;
|
||
///
|
||
/// let five = Rc::new(5);
|
||
///
|
||
/// assert!(Rc::is_unique(&five));
|
||
/// ```
|
||
#[inline]
|
||
#[unstable(feature = "rc_counts", reason = "uniqueness has unclear meaning",
|
||
issue = "28356")]
|
||
pub fn is_unique(this: &Self) -> bool {
|
||
Rc::weak_count(this) == 0 && Rc::strong_count(this) == 1
|
||
}
|
||
|
||
/// Returns a mutable reference to the contained value if the `Rc<T>` has
|
||
/// one strong reference and no weak references.
|
||
///
|
||
/// Returns `None` if the `Rc<T>` is not unique.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::rc::Rc;
|
||
///
|
||
/// let mut x = Rc::new(3);
|
||
/// *Rc::get_mut(&mut x).unwrap() = 4;
|
||
/// assert_eq!(*x, 4);
|
||
///
|
||
/// let _y = x.clone();
|
||
/// assert!(Rc::get_mut(&mut x).is_none());
|
||
/// ```
|
||
#[inline]
|
||
#[stable(feature = "rc_unique", since = "1.4.0")]
|
||
pub fn get_mut(this: &mut Self) -> Option<&mut T> {
|
||
if Rc::is_unique(this) {
|
||
let inner = unsafe { &mut **this._ptr };
|
||
Some(&mut inner.value)
|
||
} else {
|
||
None
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T: Clone> Rc<T> {
|
||
/// Make a mutable reference into the given `Rc<T>` by cloning the inner
|
||
/// data if the `Rc<T>` doesn't have one strong reference and no weak
|
||
/// references.
|
||
///
|
||
/// This is also referred to as a copy-on-write.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::rc::Rc;
|
||
///
|
||
/// let mut data = Rc::new(5);
|
||
///
|
||
/// *Rc::make_mut(&mut data) += 1; // Won't clone anything
|
||
/// let mut other_data = data.clone(); // Won't clone inner data
|
||
/// *Rc::make_mut(&mut data) += 1; // Clones inner data
|
||
/// *Rc::make_mut(&mut data) += 1; // Won't clone anything
|
||
/// *Rc::make_mut(&mut other_data) *= 2; // Won't clone anything
|
||
///
|
||
/// // Note: data and other_data now point to different numbers
|
||
/// assert_eq!(*data, 8);
|
||
/// assert_eq!(*other_data, 12);
|
||
///
|
||
/// ```
|
||
#[inline]
|
||
#[stable(feature = "rc_unique", since = "1.4.0")]
|
||
pub fn make_mut(this: &mut Self) -> &mut T {
|
||
if Rc::strong_count(this) != 1 {
|
||
// Gotta clone the data, there are other Rcs
|
||
*this = Rc::new((**this).clone())
|
||
} else if Rc::weak_count(this) != 0 {
|
||
// Can just steal the data, all that's left is Weaks
|
||
unsafe {
|
||
let mut swap = Rc::new(ptr::read(&(**this._ptr).value));
|
||
mem::swap(this, &mut swap);
|
||
swap.dec_strong();
|
||
// Remove implicit strong-weak ref (no need to craft a fake
|
||
// Weak here -- we know other Weaks can clean up for us)
|
||
swap.dec_weak();
|
||
forget(swap);
|
||
}
|
||
}
|
||
// This unsafety is ok because we're guaranteed that the pointer
|
||
// returned is the *only* pointer that will ever be returned to T. Our
|
||
// reference count is guaranteed to be 1 at this point, and we required
|
||
// the `Rc<T>` itself to be `mut`, so we're returning the only possible
|
||
// reference to the inner value.
|
||
let inner = unsafe { &mut **this._ptr };
|
||
&mut inner.value
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: ?Sized> Deref for Rc<T> {
|
||
type Target = T;
|
||
|
||
#[inline(always)]
|
||
fn deref(&self) -> &T {
|
||
&self.inner().value
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: ?Sized> Drop for Rc<T> {
|
||
/// Drops the `Rc<T>`.
|
||
///
|
||
/// This will decrement the strong reference count. If the strong reference
|
||
/// count becomes zero and the only other references are `Weak<T>` ones,
|
||
/// `drop`s the inner value.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::rc::Rc;
|
||
///
|
||
/// {
|
||
/// let five = Rc::new(5);
|
||
///
|
||
/// // stuff
|
||
///
|
||
/// drop(five); // explicit drop
|
||
/// }
|
||
/// {
|
||
/// let five = Rc::new(5);
|
||
///
|
||
/// // stuff
|
||
///
|
||
/// } // implicit drop
|
||
/// ```
|
||
#[unsafe_destructor_blind_to_params]
|
||
fn drop(&mut self) {
|
||
unsafe {
|
||
let ptr = *self._ptr;
|
||
let thin = ptr as *const ();
|
||
|
||
if thin as usize != mem::POST_DROP_USIZE {
|
||
self.dec_strong();
|
||
if self.strong() == 0 {
|
||
// destroy the contained object
|
||
ptr::drop_in_place(&mut (*ptr).value);
|
||
|
||
// remove the implicit "strong weak" pointer now that we've
|
||
// destroyed the contents.
|
||
self.dec_weak();
|
||
|
||
if self.weak() == 0 {
|
||
deallocate(ptr as *mut u8, size_of_val(&*ptr), align_of_val(&*ptr))
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: ?Sized> Clone for Rc<T> {
|
||
/// Makes a clone of the `Rc<T>`.
|
||
///
|
||
/// When you clone an `Rc<T>`, it will create another pointer to the data and
|
||
/// increase the strong reference counter.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::rc::Rc;
|
||
///
|
||
/// let five = Rc::new(5);
|
||
///
|
||
/// five.clone();
|
||
/// ```
|
||
#[inline]
|
||
fn clone(&self) -> Rc<T> {
|
||
self.inc_strong();
|
||
Rc { _ptr: self._ptr }
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: Default> Default for Rc<T> {
|
||
/// Creates a new `Rc<T>`, with the `Default` value for `T`.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::rc::Rc;
|
||
///
|
||
/// let x: Rc<i32> = Default::default();
|
||
/// ```
|
||
#[inline]
|
||
fn default() -> Rc<T> {
|
||
Rc::new(Default::default())
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: ?Sized + PartialEq> PartialEq for Rc<T> {
|
||
/// Equality for two `Rc<T>`s.
|
||
///
|
||
/// Two `Rc<T>`s are equal if their inner value are equal.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::rc::Rc;
|
||
///
|
||
/// let five = Rc::new(5);
|
||
///
|
||
/// five == Rc::new(5);
|
||
/// ```
|
||
#[inline(always)]
|
||
fn eq(&self, other: &Rc<T>) -> bool {
|
||
**self == **other
|
||
}
|
||
|
||
/// Inequality for two `Rc<T>`s.
|
||
///
|
||
/// Two `Rc<T>`s are unequal if their inner value are unequal.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::rc::Rc;
|
||
///
|
||
/// let five = Rc::new(5);
|
||
///
|
||
/// five != Rc::new(5);
|
||
/// ```
|
||
#[inline(always)]
|
||
fn ne(&self, other: &Rc<T>) -> bool {
|
||
**self != **other
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: ?Sized + Eq> Eq for Rc<T> {}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: ?Sized + PartialOrd> PartialOrd for Rc<T> {
|
||
/// Partial comparison for two `Rc<T>`s.
|
||
///
|
||
/// The two are compared by calling `partial_cmp()` on their inner values.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::rc::Rc;
|
||
///
|
||
/// let five = Rc::new(5);
|
||
///
|
||
/// five.partial_cmp(&Rc::new(5));
|
||
/// ```
|
||
#[inline(always)]
|
||
fn partial_cmp(&self, other: &Rc<T>) -> Option<Ordering> {
|
||
(**self).partial_cmp(&**other)
|
||
}
|
||
|
||
/// Less-than comparison for two `Rc<T>`s.
|
||
///
|
||
/// The two are compared by calling `<` on their inner values.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::rc::Rc;
|
||
///
|
||
/// let five = Rc::new(5);
|
||
///
|
||
/// five < Rc::new(5);
|
||
/// ```
|
||
#[inline(always)]
|
||
fn lt(&self, other: &Rc<T>) -> bool {
|
||
**self < **other
|
||
}
|
||
|
||
/// 'Less-than or equal to' comparison for two `Rc<T>`s.
|
||
///
|
||
/// The two are compared by calling `<=` on their inner values.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::rc::Rc;
|
||
///
|
||
/// let five = Rc::new(5);
|
||
///
|
||
/// five <= Rc::new(5);
|
||
/// ```
|
||
#[inline(always)]
|
||
fn le(&self, other: &Rc<T>) -> bool {
|
||
**self <= **other
|
||
}
|
||
|
||
/// Greater-than comparison for two `Rc<T>`s.
|
||
///
|
||
/// The two are compared by calling `>` on their inner values.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::rc::Rc;
|
||
///
|
||
/// let five = Rc::new(5);
|
||
///
|
||
/// five > Rc::new(5);
|
||
/// ```
|
||
#[inline(always)]
|
||
fn gt(&self, other: &Rc<T>) -> bool {
|
||
**self > **other
|
||
}
|
||
|
||
/// 'Greater-than or equal to' comparison for two `Rc<T>`s.
|
||
///
|
||
/// The two are compared by calling `>=` on their inner values.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::rc::Rc;
|
||
///
|
||
/// let five = Rc::new(5);
|
||
///
|
||
/// five >= Rc::new(5);
|
||
/// ```
|
||
#[inline(always)]
|
||
fn ge(&self, other: &Rc<T>) -> bool {
|
||
**self >= **other
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: ?Sized + Ord> Ord for Rc<T> {
|
||
/// Comparison for two `Rc<T>`s.
|
||
///
|
||
/// The two are compared by calling `cmp()` on their inner values.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::rc::Rc;
|
||
///
|
||
/// let five = Rc::new(5);
|
||
///
|
||
/// five.partial_cmp(&Rc::new(5));
|
||
/// ```
|
||
#[inline]
|
||
fn cmp(&self, other: &Rc<T>) -> Ordering {
|
||
(**self).cmp(&**other)
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: ?Sized + Hash> Hash for Rc<T> {
|
||
fn hash<H: Hasher>(&self, state: &mut H) {
|
||
(**self).hash(state);
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: ?Sized + fmt::Display> fmt::Display for Rc<T> {
|
||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||
fmt::Display::fmt(&**self, f)
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: ?Sized + fmt::Debug> fmt::Debug for Rc<T> {
|
||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||
fmt::Debug::fmt(&**self, f)
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: ?Sized> fmt::Pointer for Rc<T> {
|
||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||
fmt::Pointer::fmt(&*self._ptr, f)
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "from_for_ptrs", since = "1.6.0")]
|
||
impl<T> From<T> for Rc<T> {
|
||
fn from(t: T) -> Self {
|
||
Rc::new(t)
|
||
}
|
||
}
|
||
|
||
/// A weak version of `Rc<T>`.
|
||
///
|
||
/// Weak references do not count when determining if the inner value should be
|
||
/// dropped.
|
||
///
|
||
/// See the [module level documentation](./index.html) for more.
|
||
#[unsafe_no_drop_flag]
|
||
#[stable(feature = "rc_weak", since = "1.4.0")]
|
||
pub struct Weak<T: ?Sized> {
|
||
// FIXME #12808: strange names to try to avoid interfering with
|
||
// field accesses of the contained type via Deref
|
||
_ptr: Shared<RcBox<T>>,
|
||
}
|
||
|
||
#[stable(feature = "rc_weak", since = "1.4.0")]
|
||
impl<T: ?Sized> !marker::Send for Weak<T> {}
|
||
#[stable(feature = "rc_weak", since = "1.4.0")]
|
||
impl<T: ?Sized> !marker::Sync for Weak<T> {}
|
||
|
||
#[unstable(feature = "coerce_unsized", issue = "27732")]
|
||
impl<T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Weak<U>> for Weak<T> {}
|
||
|
||
impl<T: ?Sized> Weak<T> {
|
||
/// Upgrades a weak reference to a strong reference.
|
||
///
|
||
/// Upgrades the `Weak<T>` reference to an `Rc<T>`, if possible.
|
||
///
|
||
/// Returns `None` if there were no strong references and the data was
|
||
/// destroyed.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::rc::Rc;
|
||
///
|
||
/// let five = Rc::new(5);
|
||
///
|
||
/// let weak_five = Rc::downgrade(&five);
|
||
///
|
||
/// let strong_five: Option<Rc<_>> = weak_five.upgrade();
|
||
/// ```
|
||
#[stable(feature = "rc_weak", since = "1.4.0")]
|
||
pub fn upgrade(&self) -> Option<Rc<T>> {
|
||
if self.strong() == 0 {
|
||
None
|
||
} else {
|
||
self.inc_strong();
|
||
Some(Rc { _ptr: self._ptr })
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rc_weak", since = "1.4.0")]
|
||
impl<T: ?Sized> Drop for Weak<T> {
|
||
/// Drops the `Weak<T>`.
|
||
///
|
||
/// This will decrement the weak reference count.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::rc::Rc;
|
||
///
|
||
/// {
|
||
/// let five = Rc::new(5);
|
||
/// let weak_five = Rc::downgrade(&five);
|
||
///
|
||
/// // stuff
|
||
///
|
||
/// drop(weak_five); // explicit drop
|
||
/// }
|
||
/// {
|
||
/// let five = Rc::new(5);
|
||
/// let weak_five = Rc::downgrade(&five);
|
||
///
|
||
/// // stuff
|
||
///
|
||
/// } // implicit drop
|
||
/// ```
|
||
fn drop(&mut self) {
|
||
unsafe {
|
||
let ptr = *self._ptr;
|
||
let thin = ptr as *const ();
|
||
|
||
if thin as usize != mem::POST_DROP_USIZE {
|
||
self.dec_weak();
|
||
// the weak count starts at 1, and will only go to zero if all
|
||
// the strong pointers have disappeared.
|
||
if self.weak() == 0 {
|
||
deallocate(ptr as *mut u8, size_of_val(&*ptr), align_of_val(&*ptr))
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rc_weak", since = "1.4.0")]
|
||
impl<T: ?Sized> Clone for Weak<T> {
|
||
/// Makes a clone of the `Weak<T>`.
|
||
///
|
||
/// This increases the weak reference count.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// use std::rc::Rc;
|
||
///
|
||
/// let weak_five = Rc::downgrade(&Rc::new(5));
|
||
///
|
||
/// weak_five.clone();
|
||
/// ```
|
||
#[inline]
|
||
fn clone(&self) -> Weak<T> {
|
||
self.inc_weak();
|
||
Weak { _ptr: self._ptr }
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rc_weak", since = "1.4.0")]
|
||
impl<T: ?Sized + fmt::Debug> fmt::Debug for Weak<T> {
|
||
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
||
write!(f, "(Weak)")
|
||
}
|
||
}
|
||
|
||
impl<T> Weak<T> {
|
||
/// Constructs a new `Weak<T>` without an accompanying instance of T.
|
||
///
|
||
/// This allocates memory for T, but does not initialize it. Calling
|
||
/// Weak<T>::upgrade() on the return value always gives None.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```
|
||
/// #![feature(downgraded_weak)]
|
||
///
|
||
/// use std::rc::Weak;
|
||
///
|
||
/// let empty: Weak<i64> = Weak::new();
|
||
/// ```
|
||
#[unstable(feature = "downgraded_weak",
|
||
reason = "recently added",
|
||
issue="30425")]
|
||
pub fn new() -> Weak<T> {
|
||
unsafe {
|
||
Weak {
|
||
_ptr: Shared::new(Box::into_raw(box RcBox {
|
||
strong: Cell::new(0),
|
||
weak: Cell::new(1),
|
||
value: uninitialized(),
|
||
})),
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// NOTE: We checked_add here to deal with mem::forget safety. In particular
|
||
// if you mem::forget Rcs (or Weaks), the ref-count can overflow, and then
|
||
// you can free the allocation while outstanding Rcs (or Weaks) exist.
|
||
// We abort because this is such a degenerate scenario that we don't care about
|
||
// what happens -- no real program should ever experience this.
|
||
//
|
||
// This should have negligible overhead since you don't actually need to
|
||
// clone these much in Rust thanks to ownership and move-semantics.
|
||
|
||
#[doc(hidden)]
|
||
trait RcBoxPtr<T: ?Sized> {
|
||
fn inner(&self) -> &RcBox<T>;
|
||
|
||
#[inline]
|
||
fn strong(&self) -> usize {
|
||
self.inner().strong.get()
|
||
}
|
||
|
||
#[inline]
|
||
fn inc_strong(&self) {
|
||
self.inner().strong.set(self.strong().checked_add(1).unwrap_or_else(|| unsafe { abort() }));
|
||
}
|
||
|
||
#[inline]
|
||
fn dec_strong(&self) {
|
||
self.inner().strong.set(self.strong() - 1);
|
||
}
|
||
|
||
#[inline]
|
||
fn weak(&self) -> usize {
|
||
self.inner().weak.get()
|
||
}
|
||
|
||
#[inline]
|
||
fn inc_weak(&self) {
|
||
self.inner().weak.set(self.weak().checked_add(1).unwrap_or_else(|| unsafe { abort() }));
|
||
}
|
||
|
||
#[inline]
|
||
fn dec_weak(&self) {
|
||
self.inner().weak.set(self.weak() - 1);
|
||
}
|
||
}
|
||
|
||
impl<T: ?Sized> RcBoxPtr<T> for Rc<T> {
|
||
#[inline(always)]
|
||
fn inner(&self) -> &RcBox<T> {
|
||
unsafe {
|
||
// Safe to assume this here, as if it weren't true, we'd be breaking
|
||
// the contract anyway.
|
||
// This allows the null check to be elided in the destructor if we
|
||
// manipulated the reference count in the same function.
|
||
assume(!(*(&self._ptr as *const _ as *const *const ())).is_null());
|
||
&(**self._ptr)
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T: ?Sized> RcBoxPtr<T> for Weak<T> {
|
||
#[inline(always)]
|
||
fn inner(&self) -> &RcBox<T> {
|
||
unsafe {
|
||
// Safe to assume this here, as if it weren't true, we'd be breaking
|
||
// the contract anyway.
|
||
// This allows the null check to be elided in the destructor if we
|
||
// manipulated the reference count in the same function.
|
||
assume(!(*(&self._ptr as *const _ as *const *const ())).is_null());
|
||
&(**self._ptr)
|
||
}
|
||
}
|
||
}
|
||
|
||
#[cfg(test)]
|
||
mod tests {
|
||
use super::{Rc, Weak};
|
||
use std::boxed::Box;
|
||
use std::cell::RefCell;
|
||
use std::option::Option;
|
||
use std::option::Option::{Some, None};
|
||
use std::result::Result::{Err, Ok};
|
||
use std::mem::drop;
|
||
use std::clone::Clone;
|
||
use std::convert::From;
|
||
|
||
#[test]
|
||
fn test_clone() {
|
||
let x = Rc::new(RefCell::new(5));
|
||
let y = x.clone();
|
||
*x.borrow_mut() = 20;
|
||
assert_eq!(*y.borrow(), 20);
|
||
}
|
||
|
||
#[test]
|
||
fn test_simple() {
|
||
let x = Rc::new(5);
|
||
assert_eq!(*x, 5);
|
||
}
|
||
|
||
#[test]
|
||
fn test_simple_clone() {
|
||
let x = Rc::new(5);
|
||
let y = x.clone();
|
||
assert_eq!(*x, 5);
|
||
assert_eq!(*y, 5);
|
||
}
|
||
|
||
#[test]
|
||
fn test_destructor() {
|
||
let x: Rc<Box<_>> = Rc::new(box 5);
|
||
assert_eq!(**x, 5);
|
||
}
|
||
|
||
#[test]
|
||
fn test_live() {
|
||
let x = Rc::new(5);
|
||
let y = Rc::downgrade(&x);
|
||
assert!(y.upgrade().is_some());
|
||
}
|
||
|
||
#[test]
|
||
fn test_dead() {
|
||
let x = Rc::new(5);
|
||
let y = Rc::downgrade(&x);
|
||
drop(x);
|
||
assert!(y.upgrade().is_none());
|
||
}
|
||
|
||
#[test]
|
||
fn weak_self_cyclic() {
|
||
struct Cycle {
|
||
x: RefCell<Option<Weak<Cycle>>>,
|
||
}
|
||
|
||
let a = Rc::new(Cycle { x: RefCell::new(None) });
|
||
let b = Rc::downgrade(&a.clone());
|
||
*a.x.borrow_mut() = Some(b);
|
||
|
||
// hopefully we don't double-free (or leak)...
|
||
}
|
||
|
||
#[test]
|
||
fn is_unique() {
|
||
let x = Rc::new(3);
|
||
assert!(Rc::is_unique(&x));
|
||
let y = x.clone();
|
||
assert!(!Rc::is_unique(&x));
|
||
drop(y);
|
||
assert!(Rc::is_unique(&x));
|
||
let w = Rc::downgrade(&x);
|
||
assert!(!Rc::is_unique(&x));
|
||
drop(w);
|
||
assert!(Rc::is_unique(&x));
|
||
}
|
||
|
||
#[test]
|
||
fn test_strong_count() {
|
||
let a = Rc::new(0u32);
|
||
assert!(Rc::strong_count(&a) == 1);
|
||
let w = Rc::downgrade(&a);
|
||
assert!(Rc::strong_count(&a) == 1);
|
||
let b = w.upgrade().expect("upgrade of live rc failed");
|
||
assert!(Rc::strong_count(&b) == 2);
|
||
assert!(Rc::strong_count(&a) == 2);
|
||
drop(w);
|
||
drop(a);
|
||
assert!(Rc::strong_count(&b) == 1);
|
||
let c = b.clone();
|
||
assert!(Rc::strong_count(&b) == 2);
|
||
assert!(Rc::strong_count(&c) == 2);
|
||
}
|
||
|
||
#[test]
|
||
fn test_weak_count() {
|
||
let a = Rc::new(0u32);
|
||
assert!(Rc::strong_count(&a) == 1);
|
||
assert!(Rc::weak_count(&a) == 0);
|
||
let w = Rc::downgrade(&a);
|
||
assert!(Rc::strong_count(&a) == 1);
|
||
assert!(Rc::weak_count(&a) == 1);
|
||
drop(w);
|
||
assert!(Rc::strong_count(&a) == 1);
|
||
assert!(Rc::weak_count(&a) == 0);
|
||
let c = a.clone();
|
||
assert!(Rc::strong_count(&a) == 2);
|
||
assert!(Rc::weak_count(&a) == 0);
|
||
drop(c);
|
||
}
|
||
|
||
#[test]
|
||
fn try_unwrap() {
|
||
let x = Rc::new(3);
|
||
assert_eq!(Rc::try_unwrap(x), Ok(3));
|
||
let x = Rc::new(4);
|
||
let _y = x.clone();
|
||
assert_eq!(Rc::try_unwrap(x), Err(Rc::new(4)));
|
||
let x = Rc::new(5);
|
||
let _w = Rc::downgrade(&x);
|
||
assert_eq!(Rc::try_unwrap(x), Ok(5));
|
||
}
|
||
|
||
#[test]
|
||
fn get_mut() {
|
||
let mut x = Rc::new(3);
|
||
*Rc::get_mut(&mut x).unwrap() = 4;
|
||
assert_eq!(*x, 4);
|
||
let y = x.clone();
|
||
assert!(Rc::get_mut(&mut x).is_none());
|
||
drop(y);
|
||
assert!(Rc::get_mut(&mut x).is_some());
|
||
let _w = Rc::downgrade(&x);
|
||
assert!(Rc::get_mut(&mut x).is_none());
|
||
}
|
||
|
||
#[test]
|
||
fn test_cowrc_clone_make_unique() {
|
||
let mut cow0 = Rc::new(75);
|
||
let mut cow1 = cow0.clone();
|
||
let mut cow2 = cow1.clone();
|
||
|
||
assert!(75 == *Rc::make_mut(&mut cow0));
|
||
assert!(75 == *Rc::make_mut(&mut cow1));
|
||
assert!(75 == *Rc::make_mut(&mut cow2));
|
||
|
||
*Rc::make_mut(&mut cow0) += 1;
|
||
*Rc::make_mut(&mut cow1) += 2;
|
||
*Rc::make_mut(&mut cow2) += 3;
|
||
|
||
assert!(76 == *cow0);
|
||
assert!(77 == *cow1);
|
||
assert!(78 == *cow2);
|
||
|
||
// none should point to the same backing memory
|
||
assert!(*cow0 != *cow1);
|
||
assert!(*cow0 != *cow2);
|
||
assert!(*cow1 != *cow2);
|
||
}
|
||
|
||
#[test]
|
||
fn test_cowrc_clone_unique2() {
|
||
let mut cow0 = Rc::new(75);
|
||
let cow1 = cow0.clone();
|
||
let cow2 = cow1.clone();
|
||
|
||
assert!(75 == *cow0);
|
||
assert!(75 == *cow1);
|
||
assert!(75 == *cow2);
|
||
|
||
*Rc::make_mut(&mut cow0) += 1;
|
||
|
||
assert!(76 == *cow0);
|
||
assert!(75 == *cow1);
|
||
assert!(75 == *cow2);
|
||
|
||
// cow1 and cow2 should share the same contents
|
||
// cow0 should have a unique reference
|
||
assert!(*cow0 != *cow1);
|
||
assert!(*cow0 != *cow2);
|
||
assert!(*cow1 == *cow2);
|
||
}
|
||
|
||
#[test]
|
||
fn test_cowrc_clone_weak() {
|
||
let mut cow0 = Rc::new(75);
|
||
let cow1_weak = Rc::downgrade(&cow0);
|
||
|
||
assert!(75 == *cow0);
|
||
assert!(75 == *cow1_weak.upgrade().unwrap());
|
||
|
||
*Rc::make_mut(&mut cow0) += 1;
|
||
|
||
assert!(76 == *cow0);
|
||
assert!(cow1_weak.upgrade().is_none());
|
||
}
|
||
|
||
#[test]
|
||
fn test_show() {
|
||
let foo = Rc::new(75);
|
||
assert_eq!(format!("{:?}", foo), "75");
|
||
}
|
||
|
||
#[test]
|
||
fn test_unsized() {
|
||
let foo: Rc<[i32]> = Rc::new([1, 2, 3]);
|
||
assert_eq!(foo, foo.clone());
|
||
}
|
||
|
||
#[test]
|
||
fn test_from_owned() {
|
||
let foo = 123;
|
||
let foo_rc = Rc::from(foo);
|
||
assert!(123 == *foo_rc);
|
||
}
|
||
|
||
#[test]
|
||
fn test_new_weak() {
|
||
let foo: Weak<usize> = Weak::new();
|
||
assert!(foo.upgrade().is_none());
|
||
}
|
||
}
|
||
|
||
#[stable(feature = "rust1", since = "1.0.0")]
|
||
impl<T: ?Sized> borrow::Borrow<T> for Rc<T> {
|
||
fn borrow(&self) -> &T {
|
||
&**self
|
||
}
|
||
}
|
||
|
||
#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
|
||
impl<T: ?Sized> AsRef<T> for Rc<T> {
|
||
fn as_ref(&self) -> &T {
|
||
&**self
|
||
}
|
||
}
|