rust/tests/pass/0weak_memory_consistency.rs
2022-06-21 23:21:12 -07:00

230 lines
6.6 KiB
Rust

// ignore-windows: Concurrency on Windows is not supported yet.
// compile-flags: -Zmiri-ignore-leaks -Zmiri-disable-stacked-borrows
// The following tests check whether our weak memory emulation produces
// any inconsistent execution outcomes
//
// Due to the random nature of choosing valid stores, it is always
// possible that our tests spuriously succeeds: even though our weak
// memory emulation code has incorrectly identified a store in
// modification order as being valid, it may be never chosen by
// the RNG and never observed in our tests.
//
// To mitigate this, each test is ran enough times such that the chance
// of spurious success is very low. These tests never supriously fail.
// Test cases and their consistent outcomes are from
// http://svr-pes20-cppmem.cl.cam.ac.uk/cppmem/
// Based on
// M. Batty, S. Owens, S. Sarkar, P. Sewell and T. Weber,
// "Mathematizing C++ concurrency", ACM SIGPLAN Notices, vol. 46, no. 1, pp. 55-66, 2011.
// Available: https://ss265.host.cs.st-andrews.ac.uk/papers/n3132.pdf.
use std::sync::atomic::AtomicUsize;
use std::sync::atomic::Ordering::*;
use std::thread::spawn;
#[derive(Copy, Clone)]
struct EvilSend<T>(pub T);
unsafe impl<T> Send for EvilSend<T> {}
unsafe impl<T> Sync for EvilSend<T> {}
// We can't create static items because we need to run each test
// multiple times
fn static_atomic(val: usize) -> &'static AtomicUsize {
let ret = Box::leak(Box::new(AtomicUsize::new(val)));
ret
}
// Spins until it acquires a pre-determined value.
fn acquires_value(loc: &AtomicUsize, val: usize) -> usize {
while loc.load(Acquire) != val {
std::hint::spin_loop();
}
val
}
fn test_corr() {
let x = static_atomic(0);
let y = static_atomic(0);
let j1 = spawn(move || {
x.store(1, Relaxed);
x.store(2, Relaxed);
});
#[rustfmt::skip]
let j2 = spawn(move || {
let r2 = x.load(Relaxed); // -------------------------------------+
y.store(1, Release); // ---------------------+ |
r2 // | |
}); // | |
#[rustfmt::skip] // |synchronizes-with |happens-before
let j3 = spawn(move || { // | |
acquires_value(&y, 1); // <------------------+ |
x.load(Relaxed) // <----------------------------------------------+
// The two reads on x are ordered by hb, so they cannot observe values
// differently from the modification order. If the first read observed
// 2, then the second read must observe 2 as well.
});
j1.join().unwrap();
let r2 = j2.join().unwrap();
let r3 = j3.join().unwrap();
if r2 == 2 {
assert_eq!(r3, 2);
}
}
fn test_wrc() {
let x = static_atomic(0);
let y = static_atomic(0);
#[rustfmt::skip]
let j1 = spawn(move || {
x.store(1, Release); // ---------------------+---------------------+
}); // | |
#[rustfmt::skip] // |synchronizes-with |
let j2 = spawn(move || { // | |
acquires_value(&x, 1); // <------------------+ |
y.store(1, Release); // ---------------------+ |happens-before
}); // | |
#[rustfmt::skip] // |synchronizes-with |
let j3 = spawn(move || { // | |
acquires_value(&y, 1); // <------------------+ |
x.load(Relaxed) // <-----------------------------------------------+
});
j1.join().unwrap();
j2.join().unwrap();
let r3 = j3.join().unwrap();
assert_eq!(r3, 1);
}
fn test_message_passing() {
let mut var = 0u32;
let ptr = &mut var as *mut u32;
let x = EvilSend(ptr);
let y = static_atomic(0);
#[rustfmt::skip]
let j1 = spawn(move || {
unsafe { *x.0 = 1 }; // -----------------------------------------+
y.store(1, Release); // ---------------------+ |
}); // | |
#[rustfmt::skip] // |synchronizes-with | happens-before
let j2 = spawn(move || { // | |
acquires_value(&y, 1); // <------------------+ |
unsafe { *x.0 } // <---------------------------------------------+
});
j1.join().unwrap();
let r2 = j2.join().unwrap();
assert_eq!(r2, 1);
}
// LB+acq_rel+acq_rel
fn test_load_buffering_acq_rel() {
let x = static_atomic(0);
let y = static_atomic(0);
let j1 = spawn(move || {
let r1 = x.load(Acquire);
y.store(1, Release);
r1
});
let j2 = spawn(move || {
let r2 = y.load(Acquire);
x.store(1, Release);
r2
});
let r1 = j1.join().unwrap();
let r2 = j2.join().unwrap();
// 3 consistent outcomes: (0,0), (0,1), (1,0)
assert_ne!((r1, r2), (1, 1));
}
fn test_mixed_access() {
/*
int main() {
atomic_int x = 0;
{{{
x.store(1, mo_relaxed);
}}}
x.store(2, mo_relaxed);
{{{
r1 = x.load(mo_relaxed);
}}}
return 0;
}
*/
let x = static_atomic(0);
spawn(move || {
x.store(1, Relaxed);
})
.join()
.unwrap();
x.store(2, Relaxed);
let r2 = spawn(move || x.load(Relaxed)).join().unwrap();
assert_eq!(r2, 2);
}
// The following two tests are taken from Repairing Sequential Consistency in C/C++11
// by Lahav et al.
// https://plv.mpi-sws.org/scfix/paper.pdf
// Test case SB
fn test_sc_store_buffering() {
let x = static_atomic(0);
let y = static_atomic(0);
let j1 = spawn(move || {
x.store(1, SeqCst);
y.load(SeqCst)
});
let j2 = spawn(move || {
y.store(1, SeqCst);
x.load(SeqCst)
});
let a = j1.join().unwrap();
let b = j2.join().unwrap();
assert_ne!((a, b), (0, 0));
}
fn test_single_thread() {
let x = AtomicUsize::new(42);
assert_eq!(x.load(Relaxed), 42);
x.store(43, Relaxed);
assert_eq!(x.load(Relaxed), 43);
}
pub fn main() {
for _ in 0..50 {
test_single_thread();
test_mixed_access();
test_load_buffering_acq_rel();
test_message_passing();
test_wrc();
test_corr();
test_sc_store_buffering();
}
}