rust/src/libcore/uint-template.rs

294 lines
7.9 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// NB: transitionary, de-mode-ing.
#[forbid(deprecated_mode)];
#[forbid(deprecated_pattern)];
use T = self::inst::T;
use char;
use cmp::{Eq, Ord};
use from_str::FromStr;
use iter;
use num;
use str;
use uint;
use vec;
pub const bits : uint = inst::bits;
pub const bytes : uint = (inst::bits / 8);
pub const min_value: T = 0 as T;
pub const max_value: T = 0 as T - 1 as T;
pub pure fn min(x: T, y: T) -> T { if x < y { x } else { y } }
pub pure fn max(x: T, y: T) -> T { if x > y { x } else { y } }
pub pure fn add(x: T, y: T) -> T { x + y }
pub pure fn sub(x: T, y: T) -> T { x - y }
pub pure fn mul(x: T, y: T) -> T { x * y }
pub pure fn div(x: T, y: T) -> T { x / y }
pub pure fn rem(x: T, y: T) -> T { x % y }
pub pure fn lt(x: T, y: T) -> bool { x < y }
pub pure fn le(x: T, y: T) -> bool { x <= y }
pub pure fn eq(x: T, y: T) -> bool { x == y }
pub pure fn ne(x: T, y: T) -> bool { x != y }
pub pure fn ge(x: T, y: T) -> bool { x >= y }
pub pure fn gt(x: T, y: T) -> bool { x > y }
pub pure fn is_positive(x: T) -> bool { x > 0 as T }
pub pure fn is_negative(x: T) -> bool { x < 0 as T }
pub pure fn is_nonpositive(x: T) -> bool { x <= 0 as T }
pub pure fn is_nonnegative(x: T) -> bool { x >= 0 as T }
#[inline(always)]
/// Iterate over the range [`lo`..`hi`)
pub pure fn range(lo: T, hi: T, it: fn(T) -> bool) {
let mut i = lo;
while i < hi {
if !it(i) { break }
i += 1 as T;
}
}
/// Computes the bitwise complement
pub pure fn compl(i: T) -> T {
max_value ^ i
}
#[cfg(notest)]
impl T : Ord {
pure fn lt(&self, other: &T) -> bool { (*self) < (*other) }
pure fn le(&self, other: &T) -> bool { (*self) <= (*other) }
pure fn ge(&self, other: &T) -> bool { (*self) >= (*other) }
pure fn gt(&self, other: &T) -> bool { (*self) > (*other) }
}
#[cfg(notest)]
impl T : Eq {
pure fn eq(&self, other: &T) -> bool { return (*self) == (*other); }
pure fn ne(&self, other: &T) -> bool { return (*self) != (*other); }
}
impl T: num::Num {
pure fn add(&self, other: &T) -> T { return *self + *other; }
pure fn sub(&self, other: &T) -> T { return *self - *other; }
pure fn mul(&self, other: &T) -> T { return *self * *other; }
pure fn div(&self, other: &T) -> T { return *self / *other; }
pure fn modulo(&self, other: &T) -> T { return *self % *other; }
pure fn neg(&self) -> T { return -*self; }
pure fn to_int(&self) -> int { return *self as int; }
static pure fn from_int(n: int) -> T { return n as T; }
}
impl T: num::Zero {
static pure fn zero() -> T { 0 }
}
impl T: num::One {
static pure fn one() -> T { 1 }
}
impl T: iter::Times {
#[inline(always)]
#[doc = "A convenience form for basic iteration. Given a variable `x` \
of any numeric type, the expression `for x.times { /* anything */ }` \
will execute the given function exactly x times. If we assume that \
`x` is an int, this is functionally equivalent to \
`for int::range(0, x) |_i| { /* anything */ }`."]
pure fn times(&self, it: fn() -> bool) {
let mut i = *self;
while i > 0 {
if !it() { break }
i -= 1;
}
}
}
/**
* Parse a buffer of bytes
*
* # Arguments
*
* * buf - A byte buffer
* * radix - The base of the number
*
* # Failure
*
* `buf` must not be empty
*/
pub pure fn parse_bytes(buf: &[const u8], radix: uint) -> Option<T> {
if vec::len(buf) == 0u { return None; }
let mut i = vec::len(buf) - 1u;
let mut power = 1u as T;
let mut n = 0u as T;
loop {
match char::to_digit(buf[i] as char, radix) {
Some(d) => n += d as T * power,
None => return None
}
power *= radix as T;
if i == 0u { return Some(n); }
i -= 1u;
};
}
/// Parse a string to an int
pub pure fn from_str(s: &str) -> Option<T>
{
parse_bytes(str::to_bytes(s), 10u)
}
impl T : FromStr {
static pure fn from_str(s: &str) -> Option<T> { from_str(s) }
}
/// Parse a string as an unsigned integer.
pub fn from_str_radix(buf: &str, radix: u64) -> Option<u64> {
if str::len(buf) == 0u { return None; }
let mut i = str::len(buf) - 1u;
let mut power = 1u64, n = 0u64;
loop {
match char::to_digit(buf[i] as char, radix as uint) {
Some(d) => n += d as u64 * power,
None => return None
}
power *= radix;
if i == 0u { return Some(n); }
i -= 1u;
};
}
/**
* Convert to a string in a given base
*
* # Failure
*
* Fails if `radix` < 2 or `radix` > 16
*/
pub pure fn to_str(num: T, radix: uint) -> ~str {
do to_str_bytes(false, num, radix) |slice| {
do vec::as_imm_buf(slice) |p, len| {
unsafe { str::raw::from_buf_len(p, len) }
}
}
}
/// Low-level helper routine for string conversion.
pub pure fn to_str_bytes<U>(neg: bool, num: T, radix: uint,
f: fn(v: &[u8]) -> U) -> U {
#[inline(always)]
pure fn digit(n: T) -> u8 {
if n <= 9u as T {
n as u8 + '0' as u8
} else if n <= 15u as T {
(n - 10 as T) as u8 + 'a' as u8
} else {
fail;
}
}
assert (1u < radix && radix <= 16u);
// Enough room to hold any number in any radix.
// Worst case: 64-bit number, binary-radix, with
// a leading negative sign = 65 bytes.
let buf : [mut u8 * 65] = [mut 0u8, ..65];
let len = buf.len();
let mut i = len;
let mut n = num;
let radix = radix as T;
loop {
i -= 1u;
assert 0u < i && i < len;
buf[i] = digit(n % radix);
n /= radix;
if n == 0 as T { break; }
}
assert 0u < i && i < len;
if neg {
i -= 1u;
buf[i] = '-' as u8;
}
f(vec::view(buf, i, len))
}
/// Convert to a string
pub pure fn str(i: T) -> ~str { return to_str(i, 10u); }
#[test]
pub fn test_to_str() {
assert to_str(0 as T, 10u) == ~"0";
assert to_str(1 as T, 10u) == ~"1";
assert to_str(2 as T, 10u) == ~"2";
assert to_str(11 as T, 10u) == ~"11";
assert to_str(11 as T, 16u) == ~"b";
assert to_str(255 as T, 16u) == ~"ff";
assert to_str(0xff as T, 10u) == ~"255";
}
#[test]
pub fn test_from_str() {
assert from_str(~"0") == Some(0u as T);
assert from_str(~"3") == Some(3u as T);
assert from_str(~"10") == Some(10u as T);
assert from_str(~"123456789") == Some(123456789u as T);
assert from_str(~"00100") == Some(100u as T);
assert from_str(~"").is_none();
assert from_str(~" ").is_none();
assert from_str(~"x").is_none();
}
#[test]
pub fn test_parse_bytes() {
use str::to_bytes;
assert parse_bytes(to_bytes(~"123"), 10u) == Some(123u as T);
assert parse_bytes(to_bytes(~"1001"), 2u) == Some(9u as T);
assert parse_bytes(to_bytes(~"123"), 8u) == Some(83u as T);
assert parse_bytes(to_bytes(~"123"), 16u) == Some(291u as T);
assert parse_bytes(to_bytes(~"ffff"), 16u) == Some(65535u as T);
assert parse_bytes(to_bytes(~"z"), 36u) == Some(35u as T);
assert parse_bytes(to_bytes(~"Z"), 10u).is_none();
assert parse_bytes(to_bytes(~"_"), 2u).is_none();
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
pub fn to_str_radix1() {
uint::to_str(100u, 1u);
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
pub fn to_str_radix17() {
uint::to_str(100u, 17u);
}
#[test]
pub fn test_times() {
use iter::Times;
let ten = 10 as T;
let mut accum = 0;
for ten.times { accum += 1; }
assert (accum == 10);
}