rust/src/librustc_driver/driver.rs
Manish Goregaokar 74546e8ab7 Rollup merge of #32494 - pnkfelix:gate-parser-recovery-via-debugflag, r=nrc
Gate parser recovery via debugflag

Gate parser recovery via debugflag

Put in `-Z continue_parse_after_error`

This works by adding a method, `fn abort_if_no_parse_recovery`, to the
diagnostic handler in `syntax::errors`, and calling it after each
error is emitted in the parser.

(We might consider adding a debugflag to do such aborts in other
places where we are currently attempting recovery, such as resolve,
but I think the parser is the really important case to handle in the
face of #31994 and the parser bugs of varying degrees that were
injected by parse error recovery.)

r? @nikomatsakis
2016-03-31 05:04:59 +05:30

1230 lines
47 KiB
Rust

// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use rustc::dep_graph::DepGraph;
use rustc::front;
use rustc::front::map as hir_map;
use rustc_mir as mir;
use rustc::mir::mir_map::MirMap;
use rustc::session::{Session, CompileResult, compile_result_from_err_count};
use rustc::session::config::{self, Input, OutputFilenames, OutputType};
use rustc::session::search_paths::PathKind;
use rustc::lint;
use rustc::middle::{self, dependency_format, stability, reachable};
use rustc::middle::privacy::AccessLevels;
use rustc::ty::{self, TyCtxt};
use rustc::util::common::time;
use rustc::util::nodemap::NodeSet;
use rustc_back::sha2::{Sha256, Digest};
use rustc_borrowck as borrowck;
use rustc_resolve as resolve;
use rustc_metadata::macro_import;
use rustc_metadata::creader::LocalCrateReader;
use rustc_metadata::cstore::CStore;
use rustc_trans::back::link;
use rustc_trans::back::write;
use rustc_trans as trans;
use rustc_typeck as typeck;
use rustc_privacy;
use rustc_plugin::registry::Registry;
use rustc_plugin as plugin;
use rustc_front::hir;
use rustc_front::lowering::{lower_crate, LoweringContext};
use rustc_passes::{no_asm, loops, consts, const_fn, rvalues, static_recursion};
use rustc_const_eval::check_match;
use super::Compilation;
use serialize::json;
use std::collections::HashMap;
use std::env;
use std::ffi::{OsString, OsStr};
use std::fs;
use std::io::{self, Write};
use std::path::{Path, PathBuf};
use syntax::ast::{self, NodeIdAssigner};
use syntax::attr::{self, AttrMetaMethods};
use syntax::diagnostics;
use syntax::fold::Folder;
use syntax::parse::{self, PResult, token};
use syntax::util::node_count::NodeCounter;
use syntax::visit;
use syntax;
use syntax_ext;
pub fn compile_input(sess: &Session,
cstore: &CStore,
cfg: ast::CrateConfig,
input: &Input,
outdir: &Option<PathBuf>,
output: &Option<PathBuf>,
addl_plugins: Option<Vec<String>>,
control: &CompileController) -> CompileResult {
macro_rules! controller_entry_point {
($point: ident, $tsess: expr, $make_state: expr, $phase_result: expr) => {{
let state = $make_state;
let phase_result: &CompileResult = &$phase_result;
if phase_result.is_ok() || control.$point.run_callback_on_error {
(control.$point.callback)(state);
}
if control.$point.stop == Compilation::Stop {
return compile_result_from_err_count($tsess.err_count());
}
}}
}
// We need nested scopes here, because the intermediate results can keep
// large chunks of memory alive and we want to free them as soon as
// possible to keep the peak memory usage low
let (outputs, trans) = {
let (outputs, expanded_crate, id) = {
let krate = match phase_1_parse_input(sess, cfg, input) {
Ok(krate) => krate,
Err(mut parse_error) => {
parse_error.emit();
return Err(1);
}
};
controller_entry_point!(after_parse,
sess,
CompileState::state_after_parse(input, sess, outdir, &krate),
Ok(()));
let outputs = build_output_filenames(input, outdir, output, &krate.attrs, sess);
let id = link::find_crate_name(Some(sess), &krate.attrs, input);
let expanded_crate = phase_2_configure_and_expand(sess,
&cstore,
krate,
&id[..],
addl_plugins)?;
(outputs, expanded_crate, id)
};
controller_entry_point!(after_expand,
sess,
CompileState::state_after_expand(input,
sess,
outdir,
&expanded_crate,
&id[..]),
Ok(()));
let expanded_crate = assign_node_ids(sess, expanded_crate);
// Lower ast -> hir.
let lcx = LoweringContext::new(sess, Some(&expanded_crate));
let dep_graph = DepGraph::new(sess.opts.build_dep_graph);
let mut hir_forest = time(sess.time_passes(),
"lowering ast -> hir",
|| hir_map::Forest::new(lower_crate(&lcx, &expanded_crate),
dep_graph));
// Discard MTWT tables that aren't required past lowering to HIR.
if !sess.opts.debugging_opts.keep_mtwt_tables &&
!sess.opts.debugging_opts.save_analysis {
syntax::ext::mtwt::clear_tables();
}
let arenas = ty::CtxtArenas::new();
let hir_map = make_map(sess, &mut hir_forest);
write_out_deps(sess, &outputs, &id);
{
let _ignore = hir_map.dep_graph.in_ignore();
controller_entry_point!(after_write_deps,
sess,
CompileState::state_after_write_deps(input,
sess,
outdir,
&hir_map,
&expanded_crate,
&hir_map.krate(),
&id[..],
&lcx),
Ok(()));
}
time(sess.time_passes(), "attribute checking", || {
front::check_attr::check_crate(sess, &expanded_crate);
});
time(sess.time_passes(),
"early lint checks",
|| lint::check_ast_crate(sess, &expanded_crate));
let opt_crate = if sess.opts.debugging_opts.keep_ast ||
sess.opts.debugging_opts.save_analysis {
Some(&expanded_crate)
} else {
drop(expanded_crate);
None
};
phase_3_run_analysis_passes(sess,
&cstore,
hir_map,
&arenas,
&id,
control.make_glob_map,
|tcx, mir_map, analysis, result| {
{
// Eventually, we will want to track plugins.
let _ignore = tcx.dep_graph.in_ignore();
let state = CompileState::state_after_analysis(input,
&tcx.sess,
outdir,
opt_crate,
tcx.map.krate(),
&analysis,
mir_map.as_ref(),
tcx,
&lcx,
&id);
(control.after_analysis.callback)(state);
if control.after_analysis.stop == Compilation::Stop {
return Err(0usize);
}
}
result?;
if log_enabled!(::log::INFO) {
println!("Pre-trans");
tcx.print_debug_stats();
}
let trans = phase_4_translate_to_llvm(tcx,
mir_map.unwrap(),
analysis);
if log_enabled!(::log::INFO) {
println!("Post-trans");
tcx.print_debug_stats();
}
// Discard interned strings as they are no longer required.
token::get_ident_interner().clear();
Ok((outputs, trans))
})??
};
let phase5_result = phase_5_run_llvm_passes(sess, &trans, &outputs);
controller_entry_point!(after_llvm,
sess,
CompileState::state_after_llvm(input, sess, outdir, &trans),
phase5_result);
phase5_result?;
phase_6_link_output(sess, &trans, &outputs);
Ok(())
}
/// The name used for source code that doesn't originate in a file
/// (e.g. source from stdin or a string)
pub fn anon_src() -> String {
"<anon>".to_string()
}
pub fn source_name(input: &Input) -> String {
match *input {
// FIXME (#9639): This needs to handle non-utf8 paths
Input::File(ref ifile) => ifile.to_str().unwrap().to_string(),
Input::Str { ref name, .. } => name.clone(),
}
}
/// CompileController is used to customise compilation, it allows compilation to
/// be stopped and/or to call arbitrary code at various points in compilation.
/// It also allows for various flags to be set to influence what information gets
/// collected during compilation.
///
/// This is a somewhat higher level controller than a Session - the Session
/// controls what happens in each phase, whereas the CompileController controls
/// whether a phase is run at all and whether other code (from outside the
/// the compiler) is run between phases.
///
/// Note that if compilation is set to stop and a callback is provided for a
/// given entry point, the callback is called before compilation is stopped.
///
/// Expect more entry points to be added in the future.
pub struct CompileController<'a> {
pub after_parse: PhaseController<'a>,
pub after_expand: PhaseController<'a>,
pub after_write_deps: PhaseController<'a>,
pub after_analysis: PhaseController<'a>,
pub after_llvm: PhaseController<'a>,
pub make_glob_map: resolve::MakeGlobMap,
}
impl<'a> CompileController<'a> {
pub fn basic() -> CompileController<'a> {
CompileController {
after_parse: PhaseController::basic(),
after_expand: PhaseController::basic(),
after_write_deps: PhaseController::basic(),
after_analysis: PhaseController::basic(),
after_llvm: PhaseController::basic(),
make_glob_map: resolve::MakeGlobMap::No,
}
}
}
pub struct PhaseController<'a> {
pub stop: Compilation,
// If true then the compiler will try to run the callback even if the phase
// ends with an error. Note that this is not always possible.
pub run_callback_on_error: bool,
pub callback: Box<Fn(CompileState) -> () + 'a>,
}
impl<'a> PhaseController<'a> {
pub fn basic() -> PhaseController<'a> {
PhaseController {
stop: Compilation::Continue,
run_callback_on_error: false,
callback: box |_| {},
}
}
}
/// State that is passed to a callback. What state is available depends on when
/// during compilation the callback is made. See the various constructor methods
/// (`state_*`) in the impl to see which data is provided for any given entry point.
pub struct CompileState<'a, 'ast: 'a, 'tcx: 'a> {
pub input: &'a Input,
pub session: &'a Session,
pub cfg: Option<&'a ast::CrateConfig>,
pub krate: Option<&'a ast::Crate>,
pub crate_name: Option<&'a str>,
pub output_filenames: Option<&'a OutputFilenames>,
pub out_dir: Option<&'a Path>,
pub expanded_crate: Option<&'a ast::Crate>,
pub hir_crate: Option<&'a hir::Crate>,
pub ast_map: Option<&'a hir_map::Map<'ast>>,
pub mir_map: Option<&'a MirMap<'tcx>>,
pub analysis: Option<&'a ty::CrateAnalysis<'a>>,
pub tcx: Option<&'a TyCtxt<'tcx>>,
pub lcx: Option<&'a LoweringContext<'a>>,
pub trans: Option<&'a trans::CrateTranslation>,
}
impl<'a, 'ast, 'tcx> CompileState<'a, 'ast, 'tcx> {
fn empty(input: &'a Input,
session: &'a Session,
out_dir: &'a Option<PathBuf>)
-> CompileState<'a, 'ast, 'tcx> {
CompileState {
input: input,
session: session,
out_dir: out_dir.as_ref().map(|s| &**s),
cfg: None,
krate: None,
crate_name: None,
output_filenames: None,
expanded_crate: None,
hir_crate: None,
ast_map: None,
analysis: None,
mir_map: None,
tcx: None,
lcx: None,
trans: None,
}
}
fn state_after_parse(input: &'a Input,
session: &'a Session,
out_dir: &'a Option<PathBuf>,
krate: &'a ast::Crate)
-> CompileState<'a, 'ast, 'tcx> {
CompileState { krate: Some(krate), ..CompileState::empty(input, session, out_dir) }
}
fn state_after_expand(input: &'a Input,
session: &'a Session,
out_dir: &'a Option<PathBuf>,
expanded_crate: &'a ast::Crate,
crate_name: &'a str)
-> CompileState<'a, 'ast, 'tcx> {
CompileState {
crate_name: Some(crate_name),
expanded_crate: Some(expanded_crate),
..CompileState::empty(input, session, out_dir)
}
}
fn state_after_write_deps(input: &'a Input,
session: &'a Session,
out_dir: &'a Option<PathBuf>,
hir_map: &'a hir_map::Map<'ast>,
krate: &'a ast::Crate,
hir_crate: &'a hir::Crate,
crate_name: &'a str,
lcx: &'a LoweringContext<'a>)
-> CompileState<'a, 'ast, 'tcx> {
CompileState {
crate_name: Some(crate_name),
ast_map: Some(hir_map),
krate: Some(krate),
hir_crate: Some(hir_crate),
lcx: Some(lcx),
..CompileState::empty(input, session, out_dir)
}
}
fn state_after_analysis(input: &'a Input,
session: &'a Session,
out_dir: &'a Option<PathBuf>,
krate: Option<&'a ast::Crate>,
hir_crate: &'a hir::Crate,
analysis: &'a ty::CrateAnalysis,
mir_map: Option<&'a MirMap<'tcx>>,
tcx: &'a TyCtxt<'tcx>,
lcx: &'a LoweringContext<'a>,
crate_name: &'a str)
-> CompileState<'a, 'ast, 'tcx> {
CompileState {
analysis: Some(analysis),
mir_map: mir_map,
tcx: Some(tcx),
krate: krate,
hir_crate: Some(hir_crate),
lcx: Some(lcx),
crate_name: Some(crate_name),
..CompileState::empty(input, session, out_dir)
}
}
fn state_after_llvm(input: &'a Input,
session: &'a Session,
out_dir: &'a Option<PathBuf>,
trans: &'a trans::CrateTranslation)
-> CompileState<'a, 'ast, 'tcx> {
CompileState { trans: Some(trans), ..CompileState::empty(input, session, out_dir) }
}
}
pub fn phase_1_parse_input<'a>(sess: &'a Session,
cfg: ast::CrateConfig,
input: &Input)
-> PResult<'a, ast::Crate> {
// These may be left in an incoherent state after a previous compile.
// `clear_tables` and `get_ident_interner().clear()` can be used to free
// memory, but they do not restore the initial state.
syntax::ext::mtwt::reset_tables();
token::reset_ident_interner();
let continue_after_error = sess.opts.continue_parse_after_error;
sess.diagnostic().set_continue_after_error(continue_after_error);
let krate = time(sess.time_passes(), "parsing", || {
match *input {
Input::File(ref file) => {
parse::parse_crate_from_file(file, cfg.clone(), &sess.parse_sess)
}
Input::Str { ref input, ref name } => {
parse::parse_crate_from_source_str(name.clone(),
input.clone(),
cfg.clone(),
&sess.parse_sess)
}
}
})?;
sess.diagnostic().set_continue_after_error(true);
if sess.opts.debugging_opts.ast_json_noexpand {
println!("{}", json::as_json(&krate));
}
if sess.opts.debugging_opts.input_stats {
println!("Lines of code: {}", sess.codemap().count_lines());
println!("Pre-expansion node count: {}", count_nodes(&krate));
}
if let Some(ref s) = sess.opts.debugging_opts.show_span {
syntax::show_span::run(sess.diagnostic(), s, &krate);
}
Ok(krate)
}
fn count_nodes(krate: &ast::Crate) -> usize {
let mut counter = NodeCounter::new();
visit::walk_crate(&mut counter, krate);
counter.count
}
// For continuing compilation after a parsed crate has been
// modified
/// Run the "early phases" of the compiler: initial `cfg` processing,
/// loading compiler plugins (including those from `addl_plugins`),
/// syntax expansion, secondary `cfg` expansion, synthesis of a test
/// harness if one is to be provided and injection of a dependency on the
/// standard library and prelude.
///
/// Returns `None` if we're aborting after handling -W help.
pub fn phase_2_configure_and_expand(sess: &Session,
cstore: &CStore,
mut krate: ast::Crate,
crate_name: &str,
addl_plugins: Option<Vec<String>>)
-> Result<ast::Crate, usize> {
let time_passes = sess.time_passes();
// strip before anything else because crate metadata may use #[cfg_attr]
// and so macros can depend on configuration variables, such as
//
// #[macro_use] #[cfg(foo)]
// mod bar { macro_rules! baz!(() => {{}}) }
//
// baz! should not use this definition unless foo is enabled.
let mut feature_gated_cfgs = vec![];
krate = time(time_passes, "configuration 1", || {
sess.track_errors(|| {
syntax::config::strip_unconfigured_items(sess.diagnostic(),
krate,
&mut feature_gated_cfgs)
})
})?;
*sess.crate_types.borrow_mut() = collect_crate_types(sess, &krate.attrs);
sess.crate_disambiguator.set(token::intern(&compute_crate_disambiguator(sess)));
time(time_passes, "recursion limit", || {
middle::recursion_limit::update_recursion_limit(sess, &krate);
});
time(time_passes, "gated macro checking", || {
sess.track_errors(|| {
let features =
syntax::feature_gate::check_crate_macros(sess.codemap(),
&sess.parse_sess.span_diagnostic,
&krate);
// these need to be set "early" so that expansion sees `quote` if enabled.
*sess.features.borrow_mut() = features;
})
})?;
krate = time(time_passes, "crate injection", || {
syntax::std_inject::maybe_inject_crates_ref(krate, sess.opts.alt_std_name.clone())
});
let macros = time(time_passes,
"macro loading",
|| macro_import::read_macro_defs(sess, &cstore, &krate, crate_name));
let mut addl_plugins = Some(addl_plugins);
let registrars = time(time_passes, "plugin loading", || {
plugin::load::load_plugins(sess,
&cstore,
&krate,
crate_name,
addl_plugins.take().unwrap())
});
let mut registry = Registry::new(sess, &krate);
time(time_passes, "plugin registration", || {
if sess.features.borrow().rustc_diagnostic_macros {
registry.register_macro("__diagnostic_used",
diagnostics::plugin::expand_diagnostic_used);
registry.register_macro("__register_diagnostic",
diagnostics::plugin::expand_register_diagnostic);
registry.register_macro("__build_diagnostic_array",
diagnostics::plugin::expand_build_diagnostic_array);
}
for registrar in registrars {
registry.args_hidden = Some(registrar.args);
(registrar.fun)(&mut registry);
}
});
let Registry { syntax_exts, early_lint_passes, late_lint_passes, lint_groups,
llvm_passes, attributes, mir_passes, .. } = registry;
sess.track_errors(|| {
let mut ls = sess.lint_store.borrow_mut();
for pass in early_lint_passes {
ls.register_early_pass(Some(sess), true, pass);
}
for pass in late_lint_passes {
ls.register_late_pass(Some(sess), true, pass);
}
for (name, to) in lint_groups {
ls.register_group(Some(sess), true, name, to);
}
*sess.plugin_llvm_passes.borrow_mut() = llvm_passes;
sess.mir_passes.borrow_mut().extend(mir_passes);
*sess.plugin_attributes.borrow_mut() = attributes.clone();
})?;
// Lint plugins are registered; now we can process command line flags.
if sess.opts.describe_lints {
super::describe_lints(&sess.lint_store.borrow(), true);
return Err(0);
}
sess.track_errors(|| sess.lint_store.borrow_mut().process_command_line(sess))?;
krate = time(time_passes, "expansion", || {
// Windows dlls do not have rpaths, so they don't know how to find their
// dependencies. It's up to us to tell the system where to find all the
// dependent dlls. Note that this uses cfg!(windows) as opposed to
// targ_cfg because syntax extensions are always loaded for the host
// compiler, not for the target.
let mut _old_path = OsString::new();
if cfg!(windows) {
_old_path = env::var_os("PATH").unwrap_or(_old_path);
let mut new_path = sess.host_filesearch(PathKind::All)
.get_dylib_search_paths();
new_path.extend(env::split_paths(&_old_path));
env::set_var("PATH", &env::join_paths(new_path).unwrap());
}
let features = sess.features.borrow();
let cfg = syntax::ext::expand::ExpansionConfig {
crate_name: crate_name.to_string(),
features: Some(&features),
recursion_limit: sess.recursion_limit.get(),
trace_mac: sess.opts.debugging_opts.trace_macros,
};
let mut ecx = syntax::ext::base::ExtCtxt::new(&sess.parse_sess,
krate.config.clone(),
cfg,
&mut feature_gated_cfgs);
syntax_ext::register_builtins(&mut ecx.syntax_env);
let (ret, macro_names) = syntax::ext::expand::expand_crate(ecx,
macros,
syntax_exts,
krate);
if cfg!(windows) {
env::set_var("PATH", &_old_path);
}
*sess.available_macros.borrow_mut() = macro_names;
ret
});
// Needs to go *after* expansion to be able to check the results
// of macro expansion. This runs before #[cfg] to try to catch as
// much as possible (e.g. help the programmer avoid platform
// specific differences)
time(time_passes, "complete gated feature checking 1", || {
sess.track_errors(|| {
let features = syntax::feature_gate::check_crate(sess.codemap(),
&sess.parse_sess.span_diagnostic,
&krate,
&attributes,
sess.opts.unstable_features);
*sess.features.borrow_mut() = features;
})
})?;
// JBC: make CFG processing part of expansion to avoid this problem:
// strip again, in case expansion added anything with a #[cfg].
krate = sess.track_errors(|| {
let krate = time(time_passes, "configuration 2", || {
syntax::config::strip_unconfigured_items(sess.diagnostic(),
krate,
&mut feature_gated_cfgs)
});
time(time_passes, "gated configuration checking", || {
let features = sess.features.borrow();
feature_gated_cfgs.sort();
feature_gated_cfgs.dedup();
for cfg in &feature_gated_cfgs {
cfg.check_and_emit(sess.diagnostic(), &features, sess.codemap());
}
});
krate
})?;
krate = time(time_passes, "maybe building test harness", || {
syntax::test::modify_for_testing(&sess.parse_sess, &sess.opts.cfg, krate, sess.diagnostic())
});
krate = time(time_passes,
"prelude injection",
|| syntax::std_inject::maybe_inject_prelude(&sess.parse_sess, krate));
time(time_passes,
"checking that all macro invocations are gone",
|| syntax::ext::expand::check_for_macros(&sess.parse_sess, &krate));
time(time_passes,
"checking for inline asm in case the target doesn't support it",
|| no_asm::check_crate(sess, &krate));
// One final feature gating of the true AST that gets compiled
// later, to make sure we've got everything (e.g. configuration
// can insert new attributes via `cfg_attr`)
time(time_passes, "complete gated feature checking 2", || {
sess.track_errors(|| {
let features = syntax::feature_gate::check_crate(sess.codemap(),
&sess.parse_sess.span_diagnostic,
&krate,
&attributes,
sess.opts.unstable_features);
*sess.features.borrow_mut() = features;
})
})?;
time(time_passes,
"const fn bodies and arguments",
|| const_fn::check_crate(sess, &krate))?;
if sess.opts.debugging_opts.input_stats {
println!("Post-expansion node count: {}", count_nodes(&krate));
}
Ok(krate)
}
pub fn assign_node_ids(sess: &Session, krate: ast::Crate) -> ast::Crate {
struct NodeIdAssigner<'a> {
sess: &'a Session,
}
impl<'a> Folder for NodeIdAssigner<'a> {
fn new_id(&mut self, old_id: ast::NodeId) -> ast::NodeId {
assert_eq!(old_id, ast::DUMMY_NODE_ID);
self.sess.next_node_id()
}
}
let krate = time(sess.time_passes(),
"assigning node ids",
|| NodeIdAssigner { sess: sess }.fold_crate(krate));
if sess.opts.debugging_opts.ast_json {
println!("{}", json::as_json(&krate));
}
krate
}
pub fn make_map<'ast>(sess: &Session,
forest: &'ast mut hir_map::Forest)
-> hir_map::Map<'ast> {
// Construct the HIR map
time(sess.time_passes(),
"indexing hir",
move || hir_map::map_crate(forest))
}
/// Run the resolution, typechecking, region checking and other
/// miscellaneous analysis passes on the crate. Return various
/// structures carrying the results of the analysis.
pub fn phase_3_run_analysis_passes<'tcx, F, R>(sess: &'tcx Session,
cstore: &CStore,
hir_map: hir_map::Map<'tcx>,
arenas: &'tcx ty::CtxtArenas<'tcx>,
name: &str,
make_glob_map: resolve::MakeGlobMap,
f: F)
-> Result<R, usize>
where F: FnOnce(&TyCtxt<'tcx>, Option<MirMap<'tcx>>, ty::CrateAnalysis, CompileResult) -> R
{
macro_rules! try_with_f {
($e: expr, ($t: expr, $m: expr, $a: expr)) => {
match $e {
Ok(x) => x,
Err(x) => {
f($t, $m, $a, Err(x));
return Err(x);
}
}
}
}
let time_passes = sess.time_passes();
time(time_passes,
"external crate/lib resolution",
|| LocalCrateReader::new(sess, cstore, &hir_map, name).read_crates());
let lang_items = time(time_passes, "language item collection", || {
sess.track_errors(|| {
middle::lang_items::collect_language_items(&sess, &hir_map)
})
})?;
let resolve::CrateMap {
def_map,
freevars,
export_map,
trait_map,
glob_map,
} = time(time_passes,
"resolution",
|| resolve::resolve_crate(sess, &hir_map, make_glob_map));
let mut analysis = ty::CrateAnalysis {
export_map: export_map,
access_levels: AccessLevels::default(),
reachable: NodeSet(),
name: name,
glob_map: glob_map,
};
let named_region_map = time(time_passes,
"lifetime resolution",
|| middle::resolve_lifetime::krate(sess,
&hir_map,
&def_map.borrow()))?;
time(time_passes,
"looking for entry point",
|| middle::entry::find_entry_point(sess, &hir_map));
sess.plugin_registrar_fn.set(time(time_passes, "looking for plugin registrar", || {
plugin::build::find_plugin_registrar(sess.diagnostic(), &hir_map)
}));
let region_map = time(time_passes,
"region resolution",
|| middle::region::resolve_crate(sess, &hir_map));
time(time_passes,
"loop checking",
|| loops::check_crate(sess, &hir_map));
time(time_passes,
"static item recursion checking",
|| static_recursion::check_crate(sess, &def_map.borrow(), &hir_map))?;
let index = stability::Index::new(&hir_map);
TyCtxt::create_and_enter(sess,
arenas,
def_map,
named_region_map,
hir_map,
freevars,
region_map,
lang_items,
index,
name,
|tcx| {
// passes are timed inside typeck
try_with_f!(typeck::check_crate(tcx, trait_map), (tcx, None, analysis));
time(time_passes,
"const checking",
|| consts::check_crate(tcx));
analysis.access_levels =
time(time_passes, "privacy checking", || {
rustc_privacy::check_crate(tcx, &analysis.export_map)
});
// Do not move this check past lint
time(time_passes, "stability index", || {
tcx.stability.borrow_mut().build(tcx, &analysis.access_levels)
});
time(time_passes,
"intrinsic checking",
|| middle::intrinsicck::check_crate(tcx));
time(time_passes,
"effect checking",
|| middle::effect::check_crate(tcx));
time(time_passes,
"match checking",
|| check_match::check_crate(tcx));
// this must run before MIR dump, because
// "not all control paths return a value" is reported here.
//
// maybe move the check to a MIR pass?
time(time_passes,
"liveness checking",
|| middle::liveness::check_crate(tcx));
time(time_passes,
"rvalue checking",
|| rvalues::check_crate(tcx));
let mut mir_map =
time(time_passes,
"MIR dump",
|| mir::mir_map::build_mir_for_crate(tcx));
time(time_passes, "MIR passes", || {
let mut passes = sess.mir_passes.borrow_mut();
// Push all the built-in passes.
passes.push_pass(box mir::transform::remove_dead_blocks::RemoveDeadBlocks);
passes.push_pass(box mir::transform::type_check::TypeckMir);
passes.push_pass(box mir::transform::simplify_cfg::SimplifyCfg);
// Late passes
passes.push_pass(box mir::transform::no_landing_pads::NoLandingPads);
passes.push_pass(box mir::transform::remove_dead_blocks::RemoveDeadBlocks);
passes.push_pass(box mir::transform::erase_regions::EraseRegions);
// And run everything.
passes.run_passes(tcx, &mut mir_map);
});
time(time_passes,
"borrow checking",
|| borrowck::check_crate(tcx, &mir_map));
// Avoid overwhelming user with errors if type checking failed.
// I'm not sure how helpful this is, to be honest, but it avoids
// a
// lot of annoying errors in the compile-fail tests (basically,
// lint warnings and so on -- kindck used to do this abort, but
// kindck is gone now). -nmatsakis
if sess.err_count() > 0 {
return Ok(f(tcx, Some(mir_map), analysis, Err(sess.err_count())));
}
analysis.reachable =
time(time_passes,
"reachability checking",
|| reachable::find_reachable(tcx, &analysis.access_levels));
time(time_passes, "death checking", || {
middle::dead::check_crate(tcx, &analysis.access_levels);
});
let ref lib_features_used =
time(time_passes,
"stability checking",
|| stability::check_unstable_api_usage(tcx));
time(time_passes, "unused lib feature checking", || {
stability::check_unused_or_stable_features(&tcx.sess,
lib_features_used)
});
time(time_passes,
"lint checking",
|| lint::check_crate(tcx, &analysis.access_levels));
// The above three passes generate errors w/o aborting
if sess.err_count() > 0 {
return Ok(f(tcx, Some(mir_map), analysis, Err(sess.err_count())));
}
Ok(f(tcx, Some(mir_map), analysis, Ok(())))
})
}
/// Run the translation phase to LLVM, after which the AST and analysis can
pub fn phase_4_translate_to_llvm<'tcx>(tcx: &TyCtxt<'tcx>,
mir_map: MirMap<'tcx>,
analysis: ty::CrateAnalysis)
-> trans::CrateTranslation {
let time_passes = tcx.sess.time_passes();
time(time_passes,
"resolving dependency formats",
|| dependency_format::calculate(&tcx.sess));
// Option dance to work around the lack of stack once closures.
time(time_passes,
"translation",
move || trans::trans_crate(tcx, &mir_map, analysis))
}
/// Run LLVM itself, producing a bitcode file, assembly file or object file
/// as a side effect.
pub fn phase_5_run_llvm_passes(sess: &Session,
trans: &trans::CrateTranslation,
outputs: &OutputFilenames) -> CompileResult {
if sess.opts.cg.no_integrated_as {
let mut map = HashMap::new();
map.insert(OutputType::Assembly, None);
time(sess.time_passes(),
"LLVM passes",
|| write::run_passes(sess, trans, &map, outputs));
write::run_assembler(sess, outputs);
// Remove assembly source, unless --save-temps was specified
if !sess.opts.cg.save_temps {
fs::remove_file(&outputs.temp_path(OutputType::Assembly)).unwrap();
}
} else {
time(sess.time_passes(),
"LLVM passes",
|| write::run_passes(sess, trans, &sess.opts.output_types, outputs));
}
if sess.err_count() > 0 {
Err(sess.err_count())
} else {
Ok(())
}
}
/// Run the linker on any artifacts that resulted from the LLVM run.
/// This should produce either a finished executable or library.
pub fn phase_6_link_output(sess: &Session,
trans: &trans::CrateTranslation,
outputs: &OutputFilenames) {
time(sess.time_passes(),
"linking",
|| link::link_binary(sess, trans, outputs, &trans.link.crate_name));
}
fn escape_dep_filename(filename: &str) -> String {
// Apparently clang and gcc *only* escape spaces:
// http://llvm.org/klaus/clang/commit/9d50634cfc268ecc9a7250226dd5ca0e945240d4
filename.replace(" ", "\\ ")
}
fn write_out_deps(sess: &Session, outputs: &OutputFilenames, id: &str) {
let mut out_filenames = Vec::new();
for output_type in sess.opts.output_types.keys() {
let file = outputs.path(*output_type);
match *output_type {
OutputType::Exe => {
for output in sess.crate_types.borrow().iter() {
let p = link::filename_for_input(sess, *output, id, outputs);
out_filenames.push(p);
}
}
_ => {
out_filenames.push(file);
}
}
}
// Write out dependency rules to the dep-info file if requested
if !sess.opts.output_types.contains_key(&OutputType::DepInfo) {
return;
}
let deps_filename = outputs.path(OutputType::DepInfo);
let result =
(|| -> io::Result<()> {
// Build a list of files used to compile the output and
// write Makefile-compatible dependency rules
let files: Vec<String> = sess.codemap()
.files
.borrow()
.iter()
.filter(|fmap| fmap.is_real_file())
.filter(|fmap| !fmap.is_imported())
.map(|fmap| escape_dep_filename(&fmap.name))
.collect();
let mut file = fs::File::create(&deps_filename)?;
for path in &out_filenames {
write!(file, "{}: {}\n\n", path.display(), files.join(" "))?;
}
// Emit a fake target for each input file to the compilation. This
// prevents `make` from spitting out an error if a file is later
// deleted. For more info see #28735
for path in files {
writeln!(file, "{}:", path)?;
}
Ok(())
})();
match result {
Ok(()) => {}
Err(e) => {
sess.fatal(&format!("error writing dependencies to `{}`: {}",
deps_filename.display(),
e));
}
}
}
pub fn collect_crate_types(session: &Session, attrs: &[ast::Attribute]) -> Vec<config::CrateType> {
// Unconditionally collect crate types from attributes to make them used
let attr_types: Vec<config::CrateType> =
attrs.iter()
.filter_map(|a| {
if a.check_name("crate_type") {
match a.value_str() {
Some(ref n) if *n == "rlib" => {
Some(config::CrateTypeRlib)
}
Some(ref n) if *n == "dylib" => {
Some(config::CrateTypeDylib)
}
Some(ref n) if *n == "lib" => {
Some(config::default_lib_output())
}
Some(ref n) if *n == "staticlib" => {
Some(config::CrateTypeStaticlib)
}
Some(ref n) if *n == "bin" => Some(config::CrateTypeExecutable),
Some(_) => {
session.add_lint(lint::builtin::UNKNOWN_CRATE_TYPES,
ast::CRATE_NODE_ID,
a.span,
"invalid `crate_type` value".to_string());
None
}
_ => {
session.struct_span_err(a.span, "`crate_type` requires a value")
.note("for example: `#![crate_type=\"lib\"]`")
.emit();
None
}
}
} else {
None
}
})
.collect();
// If we're generating a test executable, then ignore all other output
// styles at all other locations
if session.opts.test {
return vec![config::CrateTypeExecutable];
}
// Only check command line flags if present. If no types are specified by
// command line, then reuse the empty `base` Vec to hold the types that
// will be found in crate attributes.
let mut base = session.opts.crate_types.clone();
if base.is_empty() {
base.extend(attr_types);
if base.is_empty() {
base.push(link::default_output_for_target(session));
}
base.sort();
base.dedup();
}
base.into_iter()
.filter(|crate_type| {
let res = !link::invalid_output_for_target(session, *crate_type);
if !res {
session.warn(&format!("dropping unsupported crate type `{}` for target `{}`",
*crate_type,
session.opts.target_triple));
}
res
})
.collect()
}
pub fn compute_crate_disambiguator(session: &Session) -> String {
let mut hasher = Sha256::new();
let mut metadata = session.opts.cg.metadata.clone();
// We don't want the crate_disambiguator to dependent on the order
// -C metadata arguments, so sort them:
metadata.sort();
// Every distinct -C metadata value is only incorporated once:
metadata.dedup();
hasher.input_str("metadata");
for s in &metadata {
// Also incorporate the length of a metadata string, so that we generate
// different values for `-Cmetadata=ab -Cmetadata=c` and
// `-Cmetadata=a -Cmetadata=bc`
hasher.input_str(&format!("{}", s.len())[..]);
hasher.input_str(&s[..]);
}
let mut hash = hasher.result_str();
// If this is an executable, add a special suffix, so that we don't get
// symbol conflicts when linking against a library of the same name.
if session.crate_types.borrow().contains(&config::CrateTypeExecutable) {
hash.push_str("-exe");
}
hash
}
pub fn build_output_filenames(input: &Input,
odir: &Option<PathBuf>,
ofile: &Option<PathBuf>,
attrs: &[ast::Attribute],
sess: &Session)
-> OutputFilenames {
match *ofile {
None => {
// "-" as input file will cause the parser to read from stdin so we
// have to make up a name
// We want to toss everything after the final '.'
let dirpath = match *odir {
Some(ref d) => d.clone(),
None => PathBuf::new(),
};
// If a crate name is present, we use it as the link name
let stem = sess.opts
.crate_name
.clone()
.or_else(|| attr::find_crate_name(attrs).map(|n| n.to_string()))
.unwrap_or(input.filestem());
OutputFilenames {
out_directory: dirpath,
out_filestem: stem,
single_output_file: None,
extra: sess.opts.cg.extra_filename.clone(),
outputs: sess.opts.output_types.clone(),
}
}
Some(ref out_file) => {
let unnamed_output_types = sess.opts
.output_types
.values()
.filter(|a| a.is_none())
.count();
let ofile = if unnamed_output_types > 1 {
sess.warn("ignoring specified output filename because multiple outputs were \
requested");
None
} else {
Some(out_file.clone())
};
if *odir != None {
sess.warn("ignoring --out-dir flag due to -o flag.");
}
let cur_dir = Path::new("");
OutputFilenames {
out_directory: out_file.parent().unwrap_or(cur_dir).to_path_buf(),
out_filestem: out_file.file_stem()
.unwrap_or(OsStr::new(""))
.to_str()
.unwrap()
.to_string(),
single_output_file: ofile,
extra: sess.opts.cg.extra_filename.clone(),
outputs: sess.opts.output_types.clone(),
}
}
}
}