5c3ddcb15d
Conflicts: src/compiletest/runtest.rs src/libcore/fmt/mod.rs src/libfmt_macros/lib.rs src/libregex/parse.rs src/librustc/middle/cfg/construct.rs src/librustc/middle/dataflow.rs src/librustc/middle/infer/higher_ranked/mod.rs src/librustc/middle/ty.rs src/librustc_back/archive.rs src/librustc_borrowck/borrowck/fragments.rs src/librustc_borrowck/borrowck/gather_loans/mod.rs src/librustc_resolve/lib.rs src/librustc_trans/back/link.rs src/librustc_trans/save/mod.rs src/librustc_trans/trans/base.rs src/librustc_trans/trans/callee.rs src/librustc_trans/trans/common.rs src/librustc_trans/trans/consts.rs src/librustc_trans/trans/controlflow.rs src/librustc_trans/trans/debuginfo.rs src/librustc_trans/trans/expr.rs src/librustc_trans/trans/monomorphize.rs src/librustc_typeck/astconv.rs src/librustc_typeck/check/method/mod.rs src/librustc_typeck/check/mod.rs src/librustc_typeck/check/regionck.rs src/librustc_typeck/collect.rs src/libsyntax/ext/format.rs src/libsyntax/ext/source_util.rs src/libsyntax/ext/tt/transcribe.rs src/libsyntax/parse/mod.rs src/libsyntax/parse/token.rs src/test/run-pass/issue-8898.rs
547 lines
19 KiB
Rust
547 lines
19 KiB
Rust
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Trait Resolution. See doc.rs.
|
|
|
|
pub use self::SelectionError::*;
|
|
pub use self::FulfillmentErrorCode::*;
|
|
pub use self::Vtable::*;
|
|
pub use self::ObligationCauseCode::*;
|
|
|
|
use middle::mem_categorization::Typer;
|
|
use middle::subst;
|
|
use middle::ty::{self, Ty};
|
|
use middle::infer::InferCtxt;
|
|
use std::slice::Iter;
|
|
use std::rc::Rc;
|
|
use syntax::ast;
|
|
use syntax::codemap::{Span, DUMMY_SP};
|
|
use util::ppaux::{Repr, UserString};
|
|
|
|
pub use self::error_reporting::report_fulfillment_errors;
|
|
pub use self::error_reporting::suggest_new_overflow_limit;
|
|
pub use self::coherence::orphan_check;
|
|
pub use self::coherence::OrphanCheckErr;
|
|
pub use self::fulfill::{FulfillmentContext, RegionObligation};
|
|
pub use self::project::MismatchedProjectionTypes;
|
|
pub use self::project::normalize;
|
|
pub use self::project::Normalized;
|
|
pub use self::object_safety::is_object_safe;
|
|
pub use self::object_safety::object_safety_violations;
|
|
pub use self::object_safety::ObjectSafetyViolation;
|
|
pub use self::object_safety::MethodViolationCode;
|
|
pub use self::select::SelectionContext;
|
|
pub use self::select::SelectionCache;
|
|
pub use self::select::{MethodMatchResult, MethodMatched, MethodAmbiguous, MethodDidNotMatch};
|
|
pub use self::select::{MethodMatchedData}; // intentionally don't export variants
|
|
pub use self::util::elaborate_predicates;
|
|
pub use self::util::get_vtable_index_of_object_method;
|
|
pub use self::util::trait_ref_for_builtin_bound;
|
|
pub use self::util::supertraits;
|
|
pub use self::util::Supertraits;
|
|
pub use self::util::transitive_bounds;
|
|
pub use self::util::upcast;
|
|
|
|
mod coherence;
|
|
mod error_reporting;
|
|
mod fulfill;
|
|
mod project;
|
|
mod object_safety;
|
|
mod select;
|
|
mod util;
|
|
|
|
/// An `Obligation` represents some trait reference (e.g. `int:Eq`) for
|
|
/// which the vtable must be found. The process of finding a vtable is
|
|
/// called "resolving" the `Obligation`. This process consists of
|
|
/// either identifying an `impl` (e.g., `impl Eq for int`) that
|
|
/// provides the required vtable, or else finding a bound that is in
|
|
/// scope. The eventual result is usually a `Selection` (defined below).
|
|
#[derive(Clone)]
|
|
pub struct Obligation<'tcx, T> {
|
|
pub cause: ObligationCause<'tcx>,
|
|
pub recursion_depth: uint,
|
|
pub predicate: T,
|
|
}
|
|
|
|
pub type PredicateObligation<'tcx> = Obligation<'tcx, ty::Predicate<'tcx>>;
|
|
pub type TraitObligation<'tcx> = Obligation<'tcx, ty::PolyTraitPredicate<'tcx>>;
|
|
|
|
/// Why did we incur this obligation? Used for error reporting.
|
|
#[derive(Clone)]
|
|
pub struct ObligationCause<'tcx> {
|
|
pub span: Span,
|
|
|
|
// The id of the fn body that triggered this obligation. This is
|
|
// used for region obligations to determine the precise
|
|
// environment in which the region obligation should be evaluated
|
|
// (in particular, closures can add new assumptions). See the
|
|
// field `region_obligations` of the `FulfillmentContext` for more
|
|
// information.
|
|
pub body_id: ast::NodeId,
|
|
|
|
pub code: ObligationCauseCode<'tcx>
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
pub enum ObligationCauseCode<'tcx> {
|
|
/// Not well classified or should be obvious from span.
|
|
MiscObligation,
|
|
|
|
/// In an impl of trait X for type Y, type Y must
|
|
/// also implement all supertraits of X.
|
|
ItemObligation(ast::DefId),
|
|
|
|
/// Obligation incurred due to an object cast.
|
|
ObjectCastObligation(/* Object type */ Ty<'tcx>),
|
|
|
|
/// Various cases where expressions must be sized/copy/etc:
|
|
AssignmentLhsSized, // L = X implies that L is Sized
|
|
StructInitializerSized, // S { ... } must be Sized
|
|
VariableType(ast::NodeId), // Type of each variable must be Sized
|
|
ReturnType, // Return type must be Sized
|
|
RepeatVec, // [T,..n] --> T must be Copy
|
|
|
|
// Captures of variable the given id by a closure (span is the
|
|
// span of the closure)
|
|
ClosureCapture(ast::NodeId, Span, ty::BuiltinBound),
|
|
|
|
// Types of fields (other than the last) in a struct must be sized.
|
|
FieldSized,
|
|
|
|
// Only Sized types can be made into objects
|
|
ObjectSized,
|
|
|
|
// static items must have `Sync` type
|
|
SharedStatic,
|
|
|
|
BuiltinDerivedObligation(DerivedObligationCause<'tcx>),
|
|
|
|
ImplDerivedObligation(DerivedObligationCause<'tcx>),
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
pub struct DerivedObligationCause<'tcx> {
|
|
/// The trait reference of the parent obligation that led to the
|
|
/// current obligation. Note that only trait obligations lead to
|
|
/// derived obligations, so we just store the trait reference here
|
|
/// directly.
|
|
parent_trait_ref: ty::PolyTraitRef<'tcx>,
|
|
|
|
/// The parent trait had this cause
|
|
parent_code: Rc<ObligationCauseCode<'tcx>>
|
|
}
|
|
|
|
pub type Obligations<'tcx, O> = subst::VecPerParamSpace<Obligation<'tcx, O>>;
|
|
pub type PredicateObligations<'tcx> = subst::VecPerParamSpace<PredicateObligation<'tcx>>;
|
|
pub type TraitObligations<'tcx> = subst::VecPerParamSpace<TraitObligation<'tcx>>;
|
|
|
|
pub type Selection<'tcx> = Vtable<'tcx, PredicateObligation<'tcx>>;
|
|
|
|
#[derive(Clone,Show)]
|
|
pub enum SelectionError<'tcx> {
|
|
Unimplemented,
|
|
Overflow,
|
|
OutputTypeParameterMismatch(ty::PolyTraitRef<'tcx>,
|
|
ty::PolyTraitRef<'tcx>,
|
|
ty::type_err<'tcx>),
|
|
}
|
|
|
|
pub struct FulfillmentError<'tcx> {
|
|
pub obligation: PredicateObligation<'tcx>,
|
|
pub code: FulfillmentErrorCode<'tcx>
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
pub enum FulfillmentErrorCode<'tcx> {
|
|
CodeSelectionError(SelectionError<'tcx>),
|
|
CodeProjectionError(MismatchedProjectionTypes<'tcx>),
|
|
CodeAmbiguity,
|
|
}
|
|
|
|
/// When performing resolution, it is typically the case that there
|
|
/// can be one of three outcomes:
|
|
///
|
|
/// - `Ok(Some(r))`: success occurred with result `r`
|
|
/// - `Ok(None)`: could not definitely determine anything, usually due
|
|
/// to inconclusive type inference.
|
|
/// - `Err(e)`: error `e` occurred
|
|
pub type SelectionResult<'tcx, T> = Result<Option<T>, SelectionError<'tcx>>;
|
|
|
|
/// Given the successful resolution of an obligation, the `Vtable`
|
|
/// indicates where the vtable comes from. Note that while we call this
|
|
/// a "vtable", it does not necessarily indicate dynamic dispatch at
|
|
/// runtime. `Vtable` instances just tell the compiler where to find
|
|
/// methods, but in generic code those methods are typically statically
|
|
/// dispatched -- only when an object is constructed is a `Vtable`
|
|
/// instance reified into an actual vtable.
|
|
///
|
|
/// For example, the vtable may be tied to a specific impl (case A),
|
|
/// or it may be relative to some bound that is in scope (case B).
|
|
///
|
|
///
|
|
/// ```
|
|
/// impl<T:Clone> Clone<T> for Option<T> { ... } // Impl_1
|
|
/// impl<T:Clone> Clone<T> for Box<T> { ... } // Impl_2
|
|
/// impl Clone for int { ... } // Impl_3
|
|
///
|
|
/// fn foo<T:Clone>(concrete: Option<Box<int>>,
|
|
/// param: T,
|
|
/// mixed: Option<T>) {
|
|
///
|
|
/// // Case A: Vtable points at a specific impl. Only possible when
|
|
/// // type is concretely known. If the impl itself has bounded
|
|
/// // type parameters, Vtable will carry resolutions for those as well:
|
|
/// concrete.clone(); // Vtable(Impl_1, [Vtable(Impl_2, [Vtable(Impl_3)])])
|
|
///
|
|
/// // Case B: Vtable must be provided by caller. This applies when
|
|
/// // type is a type parameter.
|
|
/// param.clone(); // VtableParam
|
|
///
|
|
/// // Case C: A mix of cases A and B.
|
|
/// mixed.clone(); // Vtable(Impl_1, [VtableParam])
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// ### The type parameter `N`
|
|
///
|
|
/// See explanation on `VtableImplData`.
|
|
#[derive(Show,Clone)]
|
|
pub enum Vtable<'tcx, N> {
|
|
/// Vtable identifying a particular impl.
|
|
VtableImpl(VtableImplData<'tcx, N>),
|
|
|
|
/// Successful resolution to an obligation provided by the caller
|
|
/// for some type parameter.
|
|
VtableParam,
|
|
|
|
/// Virtual calls through an object
|
|
VtableObject(VtableObjectData<'tcx>),
|
|
|
|
/// Successful resolution for a builtin trait.
|
|
VtableBuiltin(VtableBuiltinData<N>),
|
|
|
|
/// Vtable automatically generated for an unboxed closure. The def
|
|
/// ID is the ID of the closure expression. This is a `VtableImpl`
|
|
/// in spirit, but the impl is generated by the compiler and does
|
|
/// not appear in the source.
|
|
VtableUnboxedClosure(ast::DefId, subst::Substs<'tcx>),
|
|
|
|
/// Same as above, but for a fn pointer type with the given signature.
|
|
VtableFnPointer(ty::Ty<'tcx>),
|
|
}
|
|
|
|
/// Identifies a particular impl in the source, along with a set of
|
|
/// substitutions from the impl's type/lifetime parameters. The
|
|
/// `nested` vector corresponds to the nested obligations attached to
|
|
/// the impl's type parameters.
|
|
///
|
|
/// The type parameter `N` indicates the type used for "nested
|
|
/// obligations" that are required by the impl. During type check, this
|
|
/// is `Obligation`, as one might expect. During trans, however, this
|
|
/// is `()`, because trans only requires a shallow resolution of an
|
|
/// impl, and nested obligations are satisfied later.
|
|
#[derive(Clone)]
|
|
pub struct VtableImplData<'tcx, N> {
|
|
pub impl_def_id: ast::DefId,
|
|
pub substs: subst::Substs<'tcx>,
|
|
pub nested: subst::VecPerParamSpace<N>
|
|
}
|
|
|
|
#[derive(Show,Clone)]
|
|
pub struct VtableBuiltinData<N> {
|
|
pub nested: subst::VecPerParamSpace<N>
|
|
}
|
|
|
|
/// A vtable for some object-safe trait `Foo` automatically derived
|
|
/// for the object type `Foo`.
|
|
#[derive(PartialEq,Eq,Clone)]
|
|
pub struct VtableObjectData<'tcx> {
|
|
pub object_ty: Ty<'tcx>,
|
|
}
|
|
|
|
/// True if there exist types that satisfy both of the two given impls.
|
|
pub fn overlapping_impls(infcx: &InferCtxt,
|
|
impl1_def_id: ast::DefId,
|
|
impl2_def_id: ast::DefId)
|
|
-> bool
|
|
{
|
|
coherence::impl_can_satisfy(infcx, impl1_def_id, impl2_def_id) &&
|
|
coherence::impl_can_satisfy(infcx, impl2_def_id, impl1_def_id)
|
|
}
|
|
|
|
/// Creates predicate obligations from the generic bounds.
|
|
pub fn predicates_for_generics<'tcx>(tcx: &ty::ctxt<'tcx>,
|
|
cause: ObligationCause<'tcx>,
|
|
generic_bounds: &ty::GenericBounds<'tcx>)
|
|
-> PredicateObligations<'tcx>
|
|
{
|
|
util::predicates_for_generics(tcx, cause, 0, generic_bounds)
|
|
}
|
|
|
|
/// Determines whether the type `ty` is known to meet `bound` and
|
|
/// returns true if so. Returns false if `ty` either does not meet
|
|
/// `bound` or is not known to meet bound (note that this is
|
|
/// conservative towards *no impl*, which is the opposite of the
|
|
/// `evaluate` methods).
|
|
pub fn evaluate_builtin_bound<'a,'tcx>(infcx: &InferCtxt<'a,'tcx>,
|
|
typer: &ty::UnboxedClosureTyper<'tcx>,
|
|
ty: Ty<'tcx>,
|
|
bound: ty::BuiltinBound,
|
|
span: Span)
|
|
-> SelectionResult<'tcx, ()>
|
|
{
|
|
debug!("type_known_to_meet_builtin_bound(ty={}, bound={:?})",
|
|
ty.repr(infcx.tcx),
|
|
bound);
|
|
|
|
let mut fulfill_cx = FulfillmentContext::new();
|
|
|
|
// We can use a dummy node-id here because we won't pay any mind
|
|
// to region obligations that arise (there shouldn't really be any
|
|
// anyhow).
|
|
let cause = ObligationCause::misc(span, ast::DUMMY_NODE_ID);
|
|
|
|
fulfill_cx.register_builtin_bound(infcx, ty, bound, cause);
|
|
|
|
// Note: we only assume something is `Copy` if we can
|
|
// *definitively* show that it implements `Copy`. Otherwise,
|
|
// assume it is move; linear is always ok.
|
|
let result = match fulfill_cx.select_all_or_error(infcx, typer) {
|
|
Ok(()) => Ok(Some(())), // Success, we know it implements Copy.
|
|
Err(errors) => {
|
|
// Check if overflow occurred anywhere and propagate that.
|
|
if errors.iter().any(
|
|
|err| match err.code { CodeSelectionError(Overflow) => true, _ => false })
|
|
{
|
|
return Err(Overflow);
|
|
}
|
|
|
|
// Otherwise, if there were any hard errors, propagate an
|
|
// arbitrary one of those. If no hard errors at all,
|
|
// report ambiguity.
|
|
let sel_error =
|
|
errors.iter()
|
|
.filter_map(|err| {
|
|
match err.code {
|
|
CodeAmbiguity => None,
|
|
CodeSelectionError(ref e) => Some(e.clone()),
|
|
CodeProjectionError(_) => {
|
|
infcx.tcx.sess.span_bug(
|
|
span,
|
|
"projection error while selecting?")
|
|
}
|
|
}
|
|
})
|
|
.next();
|
|
match sel_error {
|
|
None => { Ok(None) }
|
|
Some(e) => { Err(e) }
|
|
}
|
|
}
|
|
};
|
|
|
|
debug!("type_known_to_meet_builtin_bound: ty={} bound={:?} result={:?}",
|
|
ty.repr(infcx.tcx),
|
|
bound,
|
|
result);
|
|
|
|
result
|
|
}
|
|
|
|
pub fn type_known_to_meet_builtin_bound<'a,'tcx>(infcx: &InferCtxt<'a,'tcx>,
|
|
typer: &ty::UnboxedClosureTyper<'tcx>,
|
|
ty: Ty<'tcx>,
|
|
bound: ty::BuiltinBound,
|
|
span: Span)
|
|
-> bool
|
|
{
|
|
match evaluate_builtin_bound(infcx, typer, ty, bound, span) {
|
|
Ok(Some(())) => {
|
|
// definitely impl'd
|
|
true
|
|
}
|
|
Ok(None) => {
|
|
// ambiguous: if coherence check was successful, shouldn't
|
|
// happen, but we might have reported an error and been
|
|
// soldering on, so just treat this like not implemented
|
|
false
|
|
}
|
|
Err(Overflow) => {
|
|
infcx.tcx.sess.span_err(
|
|
span,
|
|
format!("overflow evaluating whether `{}` is `{}`",
|
|
ty.user_string(infcx.tcx),
|
|
bound.user_string(infcx.tcx)).as_slice());
|
|
suggest_new_overflow_limit(infcx.tcx, span);
|
|
false
|
|
}
|
|
Err(_) => {
|
|
// other errors: not implemented.
|
|
false
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx,O> Obligation<'tcx,O> {
|
|
pub fn new(cause: ObligationCause<'tcx>,
|
|
trait_ref: O)
|
|
-> Obligation<'tcx, O>
|
|
{
|
|
Obligation { cause: cause,
|
|
recursion_depth: 0,
|
|
predicate: trait_ref }
|
|
}
|
|
|
|
fn with_depth(cause: ObligationCause<'tcx>,
|
|
recursion_depth: uint,
|
|
trait_ref: O)
|
|
-> Obligation<'tcx, O>
|
|
{
|
|
Obligation { cause: cause,
|
|
recursion_depth: recursion_depth,
|
|
predicate: trait_ref }
|
|
}
|
|
|
|
pub fn misc(span: Span, body_id: ast::NodeId, trait_ref: O) -> Obligation<'tcx, O> {
|
|
Obligation::new(ObligationCause::misc(span, body_id), trait_ref)
|
|
}
|
|
|
|
pub fn with<P>(&self, value: P) -> Obligation<'tcx,P> {
|
|
Obligation { cause: self.cause.clone(),
|
|
recursion_depth: self.recursion_depth,
|
|
predicate: value }
|
|
}
|
|
}
|
|
|
|
impl<'tcx> ObligationCause<'tcx> {
|
|
pub fn new(span: Span,
|
|
body_id: ast::NodeId,
|
|
code: ObligationCauseCode<'tcx>)
|
|
-> ObligationCause<'tcx> {
|
|
ObligationCause { span: span, body_id: body_id, code: code }
|
|
}
|
|
|
|
pub fn misc(span: Span, body_id: ast::NodeId) -> ObligationCause<'tcx> {
|
|
ObligationCause { span: span, body_id: body_id, code: MiscObligation }
|
|
}
|
|
|
|
pub fn dummy() -> ObligationCause<'tcx> {
|
|
ObligationCause { span: DUMMY_SP, body_id: 0, code: MiscObligation }
|
|
}
|
|
}
|
|
|
|
impl<'tcx, N> Vtable<'tcx, N> {
|
|
pub fn iter_nested(&self) -> Iter<N> {
|
|
match *self {
|
|
VtableImpl(ref i) => i.iter_nested(),
|
|
VtableFnPointer(..) => (&[]).iter(),
|
|
VtableUnboxedClosure(..) => (&[]).iter(),
|
|
VtableParam => (&[]).iter(),
|
|
VtableObject(_) => (&[]).iter(),
|
|
VtableBuiltin(ref i) => i.iter_nested(),
|
|
}
|
|
}
|
|
|
|
pub fn map_nested<M, F>(&self, op: F) -> Vtable<'tcx, M> where F: FnMut(&N) -> M {
|
|
match *self {
|
|
VtableImpl(ref i) => VtableImpl(i.map_nested(op)),
|
|
VtableFnPointer(ref sig) => VtableFnPointer((*sig).clone()),
|
|
VtableUnboxedClosure(d, ref s) => VtableUnboxedClosure(d, s.clone()),
|
|
VtableParam => VtableParam,
|
|
VtableObject(ref p) => VtableObject(p.clone()),
|
|
VtableBuiltin(ref b) => VtableBuiltin(b.map_nested(op)),
|
|
}
|
|
}
|
|
|
|
pub fn map_move_nested<M, F>(self, op: F) -> Vtable<'tcx, M> where
|
|
F: FnMut(N) -> M,
|
|
{
|
|
match self {
|
|
VtableImpl(i) => VtableImpl(i.map_move_nested(op)),
|
|
VtableFnPointer(sig) => VtableFnPointer(sig),
|
|
VtableUnboxedClosure(d, s) => VtableUnboxedClosure(d, s),
|
|
VtableParam => VtableParam,
|
|
VtableObject(p) => VtableObject(p),
|
|
VtableBuiltin(no) => VtableBuiltin(no.map_move_nested(op)),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx, N> VtableImplData<'tcx, N> {
|
|
pub fn iter_nested(&self) -> Iter<N> {
|
|
self.nested.iter()
|
|
}
|
|
|
|
pub fn map_nested<M, F>(&self, op: F) -> VtableImplData<'tcx, M> where
|
|
F: FnMut(&N) -> M,
|
|
{
|
|
VtableImplData {
|
|
impl_def_id: self.impl_def_id,
|
|
substs: self.substs.clone(),
|
|
nested: self.nested.map(op)
|
|
}
|
|
}
|
|
|
|
pub fn map_move_nested<M, F>(self, op: F) -> VtableImplData<'tcx, M> where
|
|
F: FnMut(N) -> M,
|
|
{
|
|
let VtableImplData { impl_def_id, substs, nested } = self;
|
|
VtableImplData {
|
|
impl_def_id: impl_def_id,
|
|
substs: substs,
|
|
nested: nested.map_move(op)
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<N> VtableBuiltinData<N> {
|
|
pub fn iter_nested(&self) -> Iter<N> {
|
|
self.nested.iter()
|
|
}
|
|
|
|
pub fn map_nested<M, F>(&self, op: F) -> VtableBuiltinData<M> where F: FnMut(&N) -> M {
|
|
VtableBuiltinData {
|
|
nested: self.nested.map(op)
|
|
}
|
|
}
|
|
|
|
pub fn map_move_nested<M, F>(self, op: F) -> VtableBuiltinData<M> where
|
|
F: FnMut(N) -> M,
|
|
{
|
|
VtableBuiltinData {
|
|
nested: self.nested.map_move(op)
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx> FulfillmentError<'tcx> {
|
|
fn new(obligation: PredicateObligation<'tcx>,
|
|
code: FulfillmentErrorCode<'tcx>)
|
|
-> FulfillmentError<'tcx>
|
|
{
|
|
FulfillmentError { obligation: obligation, code: code }
|
|
}
|
|
|
|
pub fn is_overflow(&self) -> bool {
|
|
match self.code {
|
|
CodeAmbiguity => false,
|
|
CodeSelectionError(Overflow) => true,
|
|
CodeSelectionError(_) => false,
|
|
CodeProjectionError(_) => false,
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx> TraitObligation<'tcx> {
|
|
fn self_ty(&self) -> Ty<'tcx> {
|
|
self.predicate.0.self_ty()
|
|
}
|
|
}
|