3188 lines
121 KiB
Rust
3188 lines
121 KiB
Rust
// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
|
||
// file at the top-level directory of this distribution and at
|
||
// http://rust-lang.org/COPYRIGHT.
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
||
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
||
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
||
// option. This file may not be copied, modified, or distributed
|
||
// except according to those terms.
|
||
//! Translate the completed AST to the LLVM IR.
|
||
//!
|
||
//! Some functions here, such as trans_block and trans_expr, return a value --
|
||
//! the result of the translation to LLVM -- while others, such as trans_fn,
|
||
//! trans_impl, and trans_item, are called only for the side effect of adding a
|
||
//! particular definition to the LLVM IR output we're producing.
|
||
//!
|
||
//! Hopefully useful general knowledge about trans:
|
||
//!
|
||
//! * There's no way to find out the Ty type of a ValueRef. Doing so
|
||
//! would be "trying to get the eggs out of an omelette" (credit:
|
||
//! pcwalton). You can, instead, find out its TypeRef by calling val_ty,
|
||
//! but one TypeRef corresponds to many `Ty`s; for instance, tup(int, int,
|
||
//! int) and rec(x=int, y=int, z=int) will have the same TypeRef.
|
||
|
||
#![allow(non_camel_case_types)]
|
||
|
||
pub use self::ValueOrigin::*;
|
||
|
||
use super::CrateTranslation;
|
||
use super::ModuleTranslation;
|
||
|
||
use back::link::mangle_exported_name;
|
||
use back::{link, abi};
|
||
use lint;
|
||
use llvm::{BasicBlockRef, Linkage, ValueRef, Vector, get_param};
|
||
use llvm;
|
||
use middle::cfg;
|
||
use middle::cstore::CrateStore;
|
||
use middle::def_id::DefId;
|
||
use middle::infer;
|
||
use middle::lang_items::{LangItem, ExchangeMallocFnLangItem, StartFnLangItem};
|
||
use middle::weak_lang_items;
|
||
use middle::pat_util::simple_name;
|
||
use middle::subst::Substs;
|
||
use middle::ty::{self, Ty, HasTypeFlags};
|
||
use rustc::front::map as hir_map;
|
||
use rustc_mir::mir_map::MirMap;
|
||
use session::config::{self, NoDebugInfo, FullDebugInfo};
|
||
use session::Session;
|
||
use trans::_match;
|
||
use trans::adt;
|
||
use trans::attributes;
|
||
use trans::build::*;
|
||
use trans::builder::{Builder, noname};
|
||
use trans::callee;
|
||
use trans::cleanup::{self, CleanupMethods, DropHint};
|
||
use trans::closure;
|
||
use trans::common::{Block, C_bool, C_bytes_in_context, C_i32, C_int, C_uint, C_integral};
|
||
use trans::common::{C_null, C_struct_in_context, C_u64, C_u8, C_undef};
|
||
use trans::common::{CrateContext, DropFlagHintsMap, Field, FunctionContext};
|
||
use trans::common::{Result, NodeIdAndSpan, VariantInfo};
|
||
use trans::common::{node_id_type, return_type_is_void};
|
||
use trans::common::{type_is_immediate, type_is_zero_size, val_ty};
|
||
use trans::common;
|
||
use trans::consts;
|
||
use trans::context::SharedCrateContext;
|
||
use trans::controlflow;
|
||
use trans::datum;
|
||
use trans::debuginfo::{self, DebugLoc, ToDebugLoc};
|
||
use trans::declare;
|
||
use trans::expr;
|
||
use trans::foreign;
|
||
use trans::glue;
|
||
use trans::intrinsic;
|
||
use trans::machine;
|
||
use trans::machine::{llsize_of, llsize_of_real};
|
||
use trans::meth;
|
||
use trans::mir;
|
||
use trans::monomorphize;
|
||
use trans::tvec;
|
||
use trans::type_::Type;
|
||
use trans::type_of;
|
||
use trans::type_of::*;
|
||
use trans::value::Value;
|
||
use util::common::indenter;
|
||
use util::sha2::Sha256;
|
||
use util::nodemap::{NodeMap, NodeSet};
|
||
|
||
use arena::TypedArena;
|
||
use libc::c_uint;
|
||
use std::ffi::{CStr, CString};
|
||
use std::cell::{Cell, RefCell};
|
||
use std::collections::{HashMap, HashSet};
|
||
use std::str;
|
||
use std::{i8, i16, i32, i64};
|
||
use syntax::abi::{Rust, RustCall, RustIntrinsic, PlatformIntrinsic, Abi};
|
||
use syntax::codemap::Span;
|
||
use syntax::parse::token::InternedString;
|
||
use syntax::attr::AttrMetaMethods;
|
||
use syntax::attr;
|
||
use rustc_front;
|
||
use rustc_front::intravisit::{self, Visitor};
|
||
use rustc_front::hir;
|
||
use syntax::ast;
|
||
|
||
thread_local! {
|
||
static TASK_LOCAL_INSN_KEY: RefCell<Option<Vec<&'static str>>> = {
|
||
RefCell::new(None)
|
||
}
|
||
}
|
||
|
||
pub fn with_insn_ctxt<F>(blk: F)
|
||
where F: FnOnce(&[&'static str])
|
||
{
|
||
TASK_LOCAL_INSN_KEY.with(move |slot| {
|
||
slot.borrow().as_ref().map(move |s| blk(s));
|
||
})
|
||
}
|
||
|
||
pub fn init_insn_ctxt() {
|
||
TASK_LOCAL_INSN_KEY.with(|slot| {
|
||
*slot.borrow_mut() = Some(Vec::new());
|
||
});
|
||
}
|
||
|
||
pub struct _InsnCtxt {
|
||
_cannot_construct_outside_of_this_module: (),
|
||
}
|
||
|
||
impl Drop for _InsnCtxt {
|
||
fn drop(&mut self) {
|
||
TASK_LOCAL_INSN_KEY.with(|slot| {
|
||
match slot.borrow_mut().as_mut() {
|
||
Some(ctx) => {
|
||
ctx.pop();
|
||
}
|
||
None => {}
|
||
}
|
||
})
|
||
}
|
||
}
|
||
|
||
pub fn push_ctxt(s: &'static str) -> _InsnCtxt {
|
||
debug!("new InsnCtxt: {}", s);
|
||
TASK_LOCAL_INSN_KEY.with(|slot| {
|
||
match slot.borrow_mut().as_mut() {
|
||
Some(ctx) => ctx.push(s),
|
||
None => {}
|
||
}
|
||
});
|
||
_InsnCtxt {
|
||
_cannot_construct_outside_of_this_module: (),
|
||
}
|
||
}
|
||
|
||
pub struct StatRecorder<'a, 'tcx: 'a> {
|
||
ccx: &'a CrateContext<'a, 'tcx>,
|
||
name: Option<String>,
|
||
istart: usize,
|
||
}
|
||
|
||
impl<'a, 'tcx> StatRecorder<'a, 'tcx> {
|
||
pub fn new(ccx: &'a CrateContext<'a, 'tcx>, name: String) -> StatRecorder<'a, 'tcx> {
|
||
let istart = ccx.stats().n_llvm_insns.get();
|
||
StatRecorder {
|
||
ccx: ccx,
|
||
name: Some(name),
|
||
istart: istart,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<'a, 'tcx> Drop for StatRecorder<'a, 'tcx> {
|
||
fn drop(&mut self) {
|
||
if self.ccx.sess().trans_stats() {
|
||
let iend = self.ccx.stats().n_llvm_insns.get();
|
||
self.ccx
|
||
.stats()
|
||
.fn_stats
|
||
.borrow_mut()
|
||
.push((self.name.take().unwrap(), iend - self.istart));
|
||
self.ccx.stats().n_fns.set(self.ccx.stats().n_fns.get() + 1);
|
||
// Reset LLVM insn count to avoid compound costs.
|
||
self.ccx.stats().n_llvm_insns.set(self.istart);
|
||
}
|
||
}
|
||
}
|
||
|
||
fn get_extern_rust_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
||
fn_ty: Ty<'tcx>,
|
||
name: &str,
|
||
did: DefId)
|
||
-> ValueRef {
|
||
match ccx.externs().borrow().get(name) {
|
||
Some(n) => return *n,
|
||
None => (),
|
||
}
|
||
|
||
let f = declare::declare_rust_fn(ccx, name, fn_ty);
|
||
|
||
let attrs = ccx.sess().cstore.item_attrs(did);
|
||
attributes::from_fn_attrs(ccx, &attrs[..], f);
|
||
|
||
ccx.externs().borrow_mut().insert(name.to_string(), f);
|
||
f
|
||
}
|
||
|
||
pub fn self_type_for_closure<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
||
closure_id: DefId,
|
||
fn_ty: Ty<'tcx>)
|
||
-> Ty<'tcx> {
|
||
let closure_kind = ccx.tcx().closure_kind(closure_id);
|
||
match closure_kind {
|
||
ty::FnClosureKind => {
|
||
ccx.tcx().mk_imm_ref(ccx.tcx().mk_region(ty::ReStatic), fn_ty)
|
||
}
|
||
ty::FnMutClosureKind => {
|
||
ccx.tcx().mk_mut_ref(ccx.tcx().mk_region(ty::ReStatic), fn_ty)
|
||
}
|
||
ty::FnOnceClosureKind => fn_ty,
|
||
}
|
||
}
|
||
|
||
pub fn kind_for_closure(ccx: &CrateContext, closure_id: DefId) -> ty::ClosureKind {
|
||
*ccx.tcx().tables.borrow().closure_kinds.get(&closure_id).unwrap()
|
||
}
|
||
|
||
pub fn get_extern_const<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
||
did: DefId,
|
||
t: Ty<'tcx>)
|
||
-> ValueRef {
|
||
let name = ccx.sess().cstore.item_symbol(did);
|
||
let ty = type_of(ccx, t);
|
||
match ccx.externs().borrow_mut().get(&name) {
|
||
Some(n) => return *n,
|
||
None => (),
|
||
}
|
||
// FIXME(nagisa): perhaps the map of externs could be offloaded to llvm somehow?
|
||
// FIXME(nagisa): investigate whether it can be changed into define_global
|
||
let c = declare::declare_global(ccx, &name[..], ty);
|
||
// Thread-local statics in some other crate need to *always* be linked
|
||
// against in a thread-local fashion, so we need to be sure to apply the
|
||
// thread-local attribute locally if it was present remotely. If we
|
||
// don't do this then linker errors can be generated where the linker
|
||
// complains that one object files has a thread local version of the
|
||
// symbol and another one doesn't.
|
||
for attr in ccx.tcx().get_attrs(did).iter() {
|
||
if attr.check_name("thread_local") {
|
||
llvm::set_thread_local(c, true);
|
||
}
|
||
}
|
||
if ccx.use_dll_storage_attrs() {
|
||
llvm::SetDLLStorageClass(c, llvm::DLLImportStorageClass);
|
||
}
|
||
ccx.externs().borrow_mut().insert(name.to_string(), c);
|
||
return c;
|
||
}
|
||
|
||
fn require_alloc_fn<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, info_ty: Ty<'tcx>, it: LangItem) -> DefId {
|
||
match bcx.tcx().lang_items.require(it) {
|
||
Ok(id) => id,
|
||
Err(s) => {
|
||
bcx.sess().fatal(&format!("allocation of `{}` {}", info_ty, s));
|
||
}
|
||
}
|
||
}
|
||
|
||
// The following malloc_raw_dyn* functions allocate a box to contain
|
||
// a given type, but with a potentially dynamic size.
|
||
|
||
pub fn malloc_raw_dyn<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
||
llty_ptr: Type,
|
||
info_ty: Ty<'tcx>,
|
||
size: ValueRef,
|
||
align: ValueRef,
|
||
debug_loc: DebugLoc)
|
||
-> Result<'blk, 'tcx> {
|
||
let _icx = push_ctxt("malloc_raw_exchange");
|
||
|
||
// Allocate space:
|
||
let r = callee::trans_lang_call(bcx,
|
||
require_alloc_fn(bcx, info_ty, ExchangeMallocFnLangItem),
|
||
&[size, align],
|
||
None,
|
||
debug_loc);
|
||
|
||
Result::new(r.bcx, PointerCast(r.bcx, r.val, llty_ptr))
|
||
}
|
||
|
||
|
||
pub fn bin_op_to_icmp_predicate(ccx: &CrateContext,
|
||
op: hir::BinOp_,
|
||
signed: bool)
|
||
-> llvm::IntPredicate {
|
||
match op {
|
||
hir::BiEq => llvm::IntEQ,
|
||
hir::BiNe => llvm::IntNE,
|
||
hir::BiLt => if signed { llvm::IntSLT } else { llvm::IntULT },
|
||
hir::BiLe => if signed { llvm::IntSLE } else { llvm::IntULE },
|
||
hir::BiGt => if signed { llvm::IntSGT } else { llvm::IntUGT },
|
||
hir::BiGe => if signed { llvm::IntSGE } else { llvm::IntUGE },
|
||
op => {
|
||
ccx.sess()
|
||
.bug(&format!("comparison_op_to_icmp_predicate: expected comparison operator, \
|
||
found {:?}",
|
||
op));
|
||
}
|
||
}
|
||
}
|
||
|
||
pub fn bin_op_to_fcmp_predicate(ccx: &CrateContext, op: hir::BinOp_) -> llvm::RealPredicate {
|
||
match op {
|
||
hir::BiEq => llvm::RealOEQ,
|
||
hir::BiNe => llvm::RealUNE,
|
||
hir::BiLt => llvm::RealOLT,
|
||
hir::BiLe => llvm::RealOLE,
|
||
hir::BiGt => llvm::RealOGT,
|
||
hir::BiGe => llvm::RealOGE,
|
||
op => {
|
||
ccx.sess()
|
||
.bug(&format!("comparison_op_to_fcmp_predicate: expected comparison operator, \
|
||
found {:?}",
|
||
op));
|
||
}
|
||
}
|
||
}
|
||
|
||
pub fn compare_fat_ptrs<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
||
lhs_addr: ValueRef,
|
||
lhs_extra: ValueRef,
|
||
rhs_addr: ValueRef,
|
||
rhs_extra: ValueRef,
|
||
_t: Ty<'tcx>,
|
||
op: hir::BinOp_,
|
||
debug_loc: DebugLoc)
|
||
-> ValueRef {
|
||
match op {
|
||
hir::BiEq => {
|
||
let addr_eq = ICmp(bcx, llvm::IntEQ, lhs_addr, rhs_addr, debug_loc);
|
||
let extra_eq = ICmp(bcx, llvm::IntEQ, lhs_extra, rhs_extra, debug_loc);
|
||
And(bcx, addr_eq, extra_eq, debug_loc)
|
||
}
|
||
hir::BiNe => {
|
||
let addr_eq = ICmp(bcx, llvm::IntNE, lhs_addr, rhs_addr, debug_loc);
|
||
let extra_eq = ICmp(bcx, llvm::IntNE, lhs_extra, rhs_extra, debug_loc);
|
||
Or(bcx, addr_eq, extra_eq, debug_loc)
|
||
}
|
||
hir::BiLe | hir::BiLt | hir::BiGe | hir::BiGt => {
|
||
// a OP b ~ a.0 STRICT(OP) b.0 | (a.0 == b.0 && a.1 OP a.1)
|
||
let (op, strict_op) = match op {
|
||
hir::BiLt => (llvm::IntULT, llvm::IntULT),
|
||
hir::BiLe => (llvm::IntULE, llvm::IntULT),
|
||
hir::BiGt => (llvm::IntUGT, llvm::IntUGT),
|
||
hir::BiGe => (llvm::IntUGE, llvm::IntUGT),
|
||
_ => unreachable!(),
|
||
};
|
||
|
||
let addr_eq = ICmp(bcx, llvm::IntEQ, lhs_addr, rhs_addr, debug_loc);
|
||
let extra_op = ICmp(bcx, op, lhs_extra, rhs_extra, debug_loc);
|
||
let addr_eq_extra_op = And(bcx, addr_eq, extra_op, debug_loc);
|
||
|
||
let addr_strict = ICmp(bcx, strict_op, lhs_addr, rhs_addr, debug_loc);
|
||
Or(bcx, addr_strict, addr_eq_extra_op, debug_loc)
|
||
}
|
||
_ => {
|
||
bcx.tcx().sess.bug("unexpected fat ptr binop");
|
||
}
|
||
}
|
||
}
|
||
|
||
pub fn compare_scalar_types<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
||
lhs: ValueRef,
|
||
rhs: ValueRef,
|
||
t: Ty<'tcx>,
|
||
op: hir::BinOp_,
|
||
debug_loc: DebugLoc)
|
||
-> ValueRef {
|
||
match t.sty {
|
||
ty::TyTuple(ref tys) if tys.is_empty() => {
|
||
// We don't need to do actual comparisons for nil.
|
||
// () == () holds but () < () does not.
|
||
match op {
|
||
hir::BiEq | hir::BiLe | hir::BiGe => return C_bool(bcx.ccx(), true),
|
||
hir::BiNe | hir::BiLt | hir::BiGt => return C_bool(bcx.ccx(), false),
|
||
// refinements would be nice
|
||
_ => bcx.sess().bug("compare_scalar_types: must be a comparison operator"),
|
||
}
|
||
}
|
||
ty::TyBareFn(..) | ty::TyBool | ty::TyUint(_) | ty::TyChar => {
|
||
ICmp(bcx,
|
||
bin_op_to_icmp_predicate(bcx.ccx(), op, false),
|
||
lhs,
|
||
rhs,
|
||
debug_loc)
|
||
}
|
||
ty::TyRawPtr(mt) if common::type_is_sized(bcx.tcx(), mt.ty) => {
|
||
ICmp(bcx,
|
||
bin_op_to_icmp_predicate(bcx.ccx(), op, false),
|
||
lhs,
|
||
rhs,
|
||
debug_loc)
|
||
}
|
||
ty::TyRawPtr(_) => {
|
||
let lhs_addr = Load(bcx, GEPi(bcx, lhs, &[0, abi::FAT_PTR_ADDR]));
|
||
let lhs_extra = Load(bcx, GEPi(bcx, lhs, &[0, abi::FAT_PTR_EXTRA]));
|
||
|
||
let rhs_addr = Load(bcx, GEPi(bcx, rhs, &[0, abi::FAT_PTR_ADDR]));
|
||
let rhs_extra = Load(bcx, GEPi(bcx, rhs, &[0, abi::FAT_PTR_EXTRA]));
|
||
compare_fat_ptrs(bcx,
|
||
lhs_addr,
|
||
lhs_extra,
|
||
rhs_addr,
|
||
rhs_extra,
|
||
t,
|
||
op,
|
||
debug_loc)
|
||
}
|
||
ty::TyInt(_) => {
|
||
ICmp(bcx,
|
||
bin_op_to_icmp_predicate(bcx.ccx(), op, true),
|
||
lhs,
|
||
rhs,
|
||
debug_loc)
|
||
}
|
||
ty::TyFloat(_) => {
|
||
FCmp(bcx,
|
||
bin_op_to_fcmp_predicate(bcx.ccx(), op),
|
||
lhs,
|
||
rhs,
|
||
debug_loc)
|
||
}
|
||
// Should never get here, because t is scalar.
|
||
_ => bcx.sess().bug("non-scalar type passed to compare_scalar_types"),
|
||
}
|
||
}
|
||
|
||
pub fn compare_simd_types<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
||
lhs: ValueRef,
|
||
rhs: ValueRef,
|
||
t: Ty<'tcx>,
|
||
ret_ty: Type,
|
||
op: hir::BinOp_,
|
||
debug_loc: DebugLoc)
|
||
-> ValueRef {
|
||
let signed = match t.sty {
|
||
ty::TyFloat(_) => {
|
||
let cmp = bin_op_to_fcmp_predicate(bcx.ccx(), op);
|
||
return SExt(bcx, FCmp(bcx, cmp, lhs, rhs, debug_loc), ret_ty);
|
||
},
|
||
ty::TyUint(_) => false,
|
||
ty::TyInt(_) => true,
|
||
_ => bcx.sess().bug("compare_simd_types: invalid SIMD type"),
|
||
};
|
||
|
||
let cmp = bin_op_to_icmp_predicate(bcx.ccx(), op, signed);
|
||
// LLVM outputs an `< size x i1 >`, so we need to perform a sign extension
|
||
// to get the correctly sized type. This will compile to a single instruction
|
||
// once the IR is converted to assembly if the SIMD instruction is supported
|
||
// by the target architecture.
|
||
SExt(bcx, ICmp(bcx, cmp, lhs, rhs, debug_loc), ret_ty)
|
||
}
|
||
|
||
// Iterates through the elements of a structural type.
|
||
pub fn iter_structural_ty<'blk, 'tcx, F>(cx: Block<'blk, 'tcx>,
|
||
av: ValueRef,
|
||
t: Ty<'tcx>,
|
||
mut f: F)
|
||
-> Block<'blk, 'tcx>
|
||
where F: FnMut(Block<'blk, 'tcx>, ValueRef, Ty<'tcx>) -> Block<'blk, 'tcx>
|
||
{
|
||
let _icx = push_ctxt("iter_structural_ty");
|
||
|
||
fn iter_variant<'blk, 'tcx, F>(cx: Block<'blk, 'tcx>,
|
||
repr: &adt::Repr<'tcx>,
|
||
av: adt::MaybeSizedValue,
|
||
variant: ty::VariantDef<'tcx>,
|
||
substs: &Substs<'tcx>,
|
||
f: &mut F)
|
||
-> Block<'blk, 'tcx>
|
||
where F: FnMut(Block<'blk, 'tcx>, ValueRef, Ty<'tcx>) -> Block<'blk, 'tcx>
|
||
{
|
||
let _icx = push_ctxt("iter_variant");
|
||
let tcx = cx.tcx();
|
||
let mut cx = cx;
|
||
|
||
for (i, field) in variant.fields.iter().enumerate() {
|
||
let arg = monomorphize::field_ty(tcx, substs, field);
|
||
cx = f(cx,
|
||
adt::trans_field_ptr(cx, repr, av, variant.disr_val, i),
|
||
arg);
|
||
}
|
||
return cx;
|
||
}
|
||
|
||
let value = if common::type_is_sized(cx.tcx(), t) {
|
||
adt::MaybeSizedValue::sized(av)
|
||
} else {
|
||
let data = Load(cx, expr::get_dataptr(cx, av));
|
||
let info = Load(cx, expr::get_meta(cx, av));
|
||
adt::MaybeSizedValue::unsized_(data, info)
|
||
};
|
||
|
||
let mut cx = cx;
|
||
match t.sty {
|
||
ty::TyStruct(..) => {
|
||
let repr = adt::represent_type(cx.ccx(), t);
|
||
let VariantInfo { fields, discr } = VariantInfo::from_ty(cx.tcx(), t, None);
|
||
for (i, &Field(_, field_ty)) in fields.iter().enumerate() {
|
||
let llfld_a = adt::trans_field_ptr(cx, &*repr, value, discr, i);
|
||
|
||
let val = if common::type_is_sized(cx.tcx(), field_ty) {
|
||
llfld_a
|
||
} else {
|
||
let scratch = datum::rvalue_scratch_datum(cx, field_ty, "__fat_ptr_iter");
|
||
Store(cx, llfld_a, expr::get_dataptr(cx, scratch.val));
|
||
Store(cx, value.meta, expr::get_meta(cx, scratch.val));
|
||
scratch.val
|
||
};
|
||
cx = f(cx, val, field_ty);
|
||
}
|
||
}
|
||
ty::TyClosure(_, ref substs) => {
|
||
let repr = adt::represent_type(cx.ccx(), t);
|
||
for (i, upvar_ty) in substs.upvar_tys.iter().enumerate() {
|
||
let llupvar = adt::trans_field_ptr(cx, &*repr, value, 0, i);
|
||
cx = f(cx, llupvar, upvar_ty);
|
||
}
|
||
}
|
||
ty::TyArray(_, n) => {
|
||
let (base, len) = tvec::get_fixed_base_and_len(cx, value.value, n);
|
||
let unit_ty = t.sequence_element_type(cx.tcx());
|
||
cx = tvec::iter_vec_raw(cx, base, unit_ty, len, f);
|
||
}
|
||
ty::TySlice(_) | ty::TyStr => {
|
||
let unit_ty = t.sequence_element_type(cx.tcx());
|
||
cx = tvec::iter_vec_raw(cx, value.value, unit_ty, value.meta, f);
|
||
}
|
||
ty::TyTuple(ref args) => {
|
||
let repr = adt::represent_type(cx.ccx(), t);
|
||
for (i, arg) in args.iter().enumerate() {
|
||
let llfld_a = adt::trans_field_ptr(cx, &*repr, value, 0, i);
|
||
cx = f(cx, llfld_a, *arg);
|
||
}
|
||
}
|
||
ty::TyEnum(en, substs) => {
|
||
let fcx = cx.fcx;
|
||
let ccx = fcx.ccx;
|
||
|
||
let repr = adt::represent_type(ccx, t);
|
||
let n_variants = en.variants.len();
|
||
|
||
// NB: we must hit the discriminant first so that structural
|
||
// comparison know not to proceed when the discriminants differ.
|
||
|
||
match adt::trans_switch(cx, &*repr, av) {
|
||
(_match::Single, None) => {
|
||
if n_variants != 0 {
|
||
assert!(n_variants == 1);
|
||
cx = iter_variant(cx, &*repr, adt::MaybeSizedValue::sized(av),
|
||
&en.variants[0], substs, &mut f);
|
||
}
|
||
}
|
||
(_match::Switch, Some(lldiscrim_a)) => {
|
||
cx = f(cx, lldiscrim_a, cx.tcx().types.isize);
|
||
|
||
// Create a fall-through basic block for the "else" case of
|
||
// the switch instruction we're about to generate. Note that
|
||
// we do **not** use an Unreachable instruction here, even
|
||
// though most of the time this basic block will never be hit.
|
||
//
|
||
// When an enum is dropped it's contents are currently
|
||
// overwritten to DTOR_DONE, which means the discriminant
|
||
// could have changed value to something not within the actual
|
||
// range of the discriminant. Currently this function is only
|
||
// used for drop glue so in this case we just return quickly
|
||
// from the outer function, and any other use case will only
|
||
// call this for an already-valid enum in which case the `ret
|
||
// void` will never be hit.
|
||
let ret_void_cx = fcx.new_temp_block("enum-iter-ret-void");
|
||
RetVoid(ret_void_cx, DebugLoc::None);
|
||
let llswitch = Switch(cx, lldiscrim_a, ret_void_cx.llbb, n_variants);
|
||
let next_cx = fcx.new_temp_block("enum-iter-next");
|
||
|
||
for variant in &en.variants {
|
||
let variant_cx = fcx.new_temp_block(&format!("enum-iter-variant-{}",
|
||
&variant.disr_val
|
||
.to_string()));
|
||
let case_val = adt::trans_case(cx, &*repr, variant.disr_val);
|
||
AddCase(llswitch, case_val, variant_cx.llbb);
|
||
let variant_cx = iter_variant(variant_cx,
|
||
&*repr,
|
||
value,
|
||
variant,
|
||
substs,
|
||
&mut f);
|
||
Br(variant_cx, next_cx.llbb, DebugLoc::None);
|
||
}
|
||
cx = next_cx;
|
||
}
|
||
_ => ccx.sess().unimpl("value from adt::trans_switch in iter_structural_ty"),
|
||
}
|
||
}
|
||
_ => {
|
||
cx.sess().unimpl(&format!("type in iter_structural_ty: {}", t))
|
||
}
|
||
}
|
||
return cx;
|
||
}
|
||
|
||
|
||
/// Retrieve the information we are losing (making dynamic) in an unsizing
|
||
/// adjustment.
|
||
///
|
||
/// The `old_info` argument is a bit funny. It is intended for use
|
||
/// in an upcast, where the new vtable for an object will be drived
|
||
/// from the old one.
|
||
pub fn unsized_info<'ccx, 'tcx>(ccx: &CrateContext<'ccx, 'tcx>,
|
||
source: Ty<'tcx>,
|
||
target: Ty<'tcx>,
|
||
old_info: Option<ValueRef>,
|
||
param_substs: &'tcx Substs<'tcx>)
|
||
-> ValueRef {
|
||
let (source, target) = ccx.tcx().struct_lockstep_tails(source, target);
|
||
match (&source.sty, &target.sty) {
|
||
(&ty::TyArray(_, len), &ty::TySlice(_)) => C_uint(ccx, len),
|
||
(&ty::TyTrait(_), &ty::TyTrait(_)) => {
|
||
// For now, upcasts are limited to changes in marker
|
||
// traits, and hence never actually require an actual
|
||
// change to the vtable.
|
||
old_info.expect("unsized_info: missing old info for trait upcast")
|
||
}
|
||
(_, &ty::TyTrait(box ty::TraitTy { ref principal, .. })) => {
|
||
// Note that we preserve binding levels here:
|
||
let substs = principal.0.substs.with_self_ty(source).erase_regions();
|
||
let substs = ccx.tcx().mk_substs(substs);
|
||
let trait_ref = ty::Binder(ty::TraitRef {
|
||
def_id: principal.def_id(),
|
||
substs: substs,
|
||
});
|
||
consts::ptrcast(meth::get_vtable(ccx, trait_ref, param_substs),
|
||
Type::vtable_ptr(ccx))
|
||
}
|
||
_ => ccx.sess().bug(&format!("unsized_info: invalid unsizing {:?} -> {:?}",
|
||
source,
|
||
target)),
|
||
}
|
||
}
|
||
|
||
/// Coerce `src` to `dst_ty`. `src_ty` must be a thin pointer.
|
||
pub fn unsize_thin_ptr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
||
src: ValueRef,
|
||
src_ty: Ty<'tcx>,
|
||
dst_ty: Ty<'tcx>)
|
||
-> (ValueRef, ValueRef) {
|
||
debug!("unsize_thin_ptr: {:?} => {:?}", src_ty, dst_ty);
|
||
match (&src_ty.sty, &dst_ty.sty) {
|
||
(&ty::TyBox(a), &ty::TyBox(b)) |
|
||
(&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
|
||
&ty::TyRef(_, ty::TypeAndMut { ty: b, .. })) |
|
||
(&ty::TyRef(_, ty::TypeAndMut { ty: a, .. }),
|
||
&ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) |
|
||
(&ty::TyRawPtr(ty::TypeAndMut { ty: a, .. }),
|
||
&ty::TyRawPtr(ty::TypeAndMut { ty: b, .. })) => {
|
||
assert!(common::type_is_sized(bcx.tcx(), a));
|
||
let ptr_ty = type_of::in_memory_type_of(bcx.ccx(), b).ptr_to();
|
||
(PointerCast(bcx, src, ptr_ty),
|
||
unsized_info(bcx.ccx(), a, b, None, bcx.fcx.param_substs))
|
||
}
|
||
_ => bcx.sess().bug("unsize_thin_ptr: called on bad types"),
|
||
}
|
||
}
|
||
|
||
/// Coerce `src`, which is a reference to a value of type `src_ty`,
|
||
/// to a value of type `dst_ty` and store the result in `dst`
|
||
pub fn coerce_unsized_into<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
||
src: ValueRef,
|
||
src_ty: Ty<'tcx>,
|
||
dst: ValueRef,
|
||
dst_ty: Ty<'tcx>) {
|
||
match (&src_ty.sty, &dst_ty.sty) {
|
||
(&ty::TyBox(..), &ty::TyBox(..)) |
|
||
(&ty::TyRef(..), &ty::TyRef(..)) |
|
||
(&ty::TyRef(..), &ty::TyRawPtr(..)) |
|
||
(&ty::TyRawPtr(..), &ty::TyRawPtr(..)) => {
|
||
let (base, info) = if common::type_is_fat_ptr(bcx.tcx(), src_ty) {
|
||
// fat-ptr to fat-ptr unsize preserves the vtable
|
||
load_fat_ptr(bcx, src, src_ty)
|
||
} else {
|
||
let base = load_ty(bcx, src, src_ty);
|
||
unsize_thin_ptr(bcx, base, src_ty, dst_ty)
|
||
};
|
||
store_fat_ptr(bcx, base, info, dst, dst_ty);
|
||
}
|
||
|
||
// This can be extended to enums and tuples in the future.
|
||
// (&ty::TyEnum(def_id_a, _), &ty::TyEnum(def_id_b, _)) |
|
||
(&ty::TyStruct(def_a, _), &ty::TyStruct(def_b, _)) => {
|
||
assert_eq!(def_a, def_b);
|
||
|
||
let src_repr = adt::represent_type(bcx.ccx(), src_ty);
|
||
let src_fields = match &*src_repr {
|
||
&adt::Repr::Univariant(ref s, _) => &s.fields,
|
||
_ => bcx.sess().bug("struct has non-univariant repr"),
|
||
};
|
||
let dst_repr = adt::represent_type(bcx.ccx(), dst_ty);
|
||
let dst_fields = match &*dst_repr {
|
||
&adt::Repr::Univariant(ref s, _) => &s.fields,
|
||
_ => bcx.sess().bug("struct has non-univariant repr"),
|
||
};
|
||
|
||
let src = adt::MaybeSizedValue::sized(src);
|
||
let dst = adt::MaybeSizedValue::sized(dst);
|
||
|
||
let iter = src_fields.iter().zip(dst_fields).enumerate();
|
||
for (i, (src_fty, dst_fty)) in iter {
|
||
if type_is_zero_size(bcx.ccx(), dst_fty) {
|
||
continue;
|
||
}
|
||
|
||
let src_f = adt::trans_field_ptr(bcx, &src_repr, src, 0, i);
|
||
let dst_f = adt::trans_field_ptr(bcx, &dst_repr, dst, 0, i);
|
||
if src_fty == dst_fty {
|
||
memcpy_ty(bcx, dst_f, src_f, src_fty);
|
||
} else {
|
||
coerce_unsized_into(bcx, src_f, src_fty, dst_f, dst_fty);
|
||
}
|
||
}
|
||
}
|
||
_ => bcx.sess().bug(&format!("coerce_unsized_into: invalid coercion {:?} -> {:?}",
|
||
src_ty,
|
||
dst_ty)),
|
||
}
|
||
}
|
||
|
||
pub fn cast_shift_expr_rhs(cx: Block, op: hir::BinOp_, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
|
||
cast_shift_rhs(op, lhs, rhs, |a, b| Trunc(cx, a, b), |a, b| ZExt(cx, a, b))
|
||
}
|
||
|
||
pub fn cast_shift_const_rhs(op: hir::BinOp_, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
|
||
cast_shift_rhs(op,
|
||
lhs,
|
||
rhs,
|
||
|a, b| unsafe { llvm::LLVMConstTrunc(a, b.to_ref()) },
|
||
|a, b| unsafe { llvm::LLVMConstZExt(a, b.to_ref()) })
|
||
}
|
||
|
||
fn cast_shift_rhs<F, G>(op: hir::BinOp_,
|
||
lhs: ValueRef,
|
||
rhs: ValueRef,
|
||
trunc: F,
|
||
zext: G)
|
||
-> ValueRef
|
||
where F: FnOnce(ValueRef, Type) -> ValueRef,
|
||
G: FnOnce(ValueRef, Type) -> ValueRef
|
||
{
|
||
// Shifts may have any size int on the rhs
|
||
if rustc_front::util::is_shift_binop(op) {
|
||
let mut rhs_llty = val_ty(rhs);
|
||
let mut lhs_llty = val_ty(lhs);
|
||
if rhs_llty.kind() == Vector {
|
||
rhs_llty = rhs_llty.element_type()
|
||
}
|
||
if lhs_llty.kind() == Vector {
|
||
lhs_llty = lhs_llty.element_type()
|
||
}
|
||
let rhs_sz = rhs_llty.int_width();
|
||
let lhs_sz = lhs_llty.int_width();
|
||
if lhs_sz < rhs_sz {
|
||
trunc(rhs, lhs_llty)
|
||
} else if lhs_sz > rhs_sz {
|
||
// FIXME (#1877: If shifting by negative
|
||
// values becomes not undefined then this is wrong.
|
||
zext(rhs, lhs_llty)
|
||
} else {
|
||
rhs
|
||
}
|
||
} else {
|
||
rhs
|
||
}
|
||
}
|
||
|
||
pub fn llty_and_min_for_signed_ty<'blk, 'tcx>(cx: Block<'blk, 'tcx>,
|
||
val_t: Ty<'tcx>)
|
||
-> (Type, u64) {
|
||
match val_t.sty {
|
||
ty::TyInt(t) => {
|
||
let llty = Type::int_from_ty(cx.ccx(), t);
|
||
let min = match t {
|
||
ast::TyIs if llty == Type::i32(cx.ccx()) => i32::MIN as u64,
|
||
ast::TyIs => i64::MIN as u64,
|
||
ast::TyI8 => i8::MIN as u64,
|
||
ast::TyI16 => i16::MIN as u64,
|
||
ast::TyI32 => i32::MIN as u64,
|
||
ast::TyI64 => i64::MIN as u64,
|
||
};
|
||
(llty, min)
|
||
}
|
||
_ => unreachable!(),
|
||
}
|
||
}
|
||
|
||
pub fn fail_if_zero_or_overflows<'blk, 'tcx>(cx: Block<'blk, 'tcx>,
|
||
call_info: NodeIdAndSpan,
|
||
divrem: hir::BinOp,
|
||
lhs: ValueRef,
|
||
rhs: ValueRef,
|
||
rhs_t: Ty<'tcx>)
|
||
-> Block<'blk, 'tcx> {
|
||
let (zero_text, overflow_text) = if divrem.node == hir::BiDiv {
|
||
("attempted to divide by zero",
|
||
"attempted to divide with overflow")
|
||
} else {
|
||
("attempted remainder with a divisor of zero",
|
||
"attempted remainder with overflow")
|
||
};
|
||
let debug_loc = call_info.debug_loc();
|
||
|
||
let (is_zero, is_signed) = match rhs_t.sty {
|
||
ty::TyInt(t) => {
|
||
let zero = C_integral(Type::int_from_ty(cx.ccx(), t), 0, false);
|
||
(ICmp(cx, llvm::IntEQ, rhs, zero, debug_loc), true)
|
||
}
|
||
ty::TyUint(t) => {
|
||
let zero = C_integral(Type::uint_from_ty(cx.ccx(), t), 0, false);
|
||
(ICmp(cx, llvm::IntEQ, rhs, zero, debug_loc), false)
|
||
}
|
||
ty::TyStruct(def, _) if def.is_simd() => {
|
||
let mut res = C_bool(cx.ccx(), false);
|
||
for i in 0..rhs_t.simd_size(cx.tcx()) {
|
||
res = Or(cx,
|
||
res,
|
||
IsNull(cx, ExtractElement(cx, rhs, C_int(cx.ccx(), i as i64))),
|
||
debug_loc);
|
||
}
|
||
(res, false)
|
||
}
|
||
_ => {
|
||
cx.sess().bug(&format!("fail-if-zero on unexpected type: {}", rhs_t));
|
||
}
|
||
};
|
||
let bcx = with_cond(cx, is_zero, |bcx| {
|
||
controlflow::trans_fail(bcx, call_info, InternedString::new(zero_text))
|
||
});
|
||
|
||
// To quote LLVM's documentation for the sdiv instruction:
|
||
//
|
||
// Division by zero leads to undefined behavior. Overflow also leads
|
||
// to undefined behavior; this is a rare case, but can occur, for
|
||
// example, by doing a 32-bit division of -2147483648 by -1.
|
||
//
|
||
// In order to avoid undefined behavior, we perform runtime checks for
|
||
// signed division/remainder which would trigger overflow. For unsigned
|
||
// integers, no action beyond checking for zero need be taken.
|
||
if is_signed {
|
||
let (llty, min) = llty_and_min_for_signed_ty(cx, rhs_t);
|
||
let minus_one = ICmp(bcx,
|
||
llvm::IntEQ,
|
||
rhs,
|
||
C_integral(llty, !0, false),
|
||
debug_loc);
|
||
with_cond(bcx, minus_one, |bcx| {
|
||
let is_min = ICmp(bcx,
|
||
llvm::IntEQ,
|
||
lhs,
|
||
C_integral(llty, min, true),
|
||
debug_loc);
|
||
with_cond(bcx, is_min, |bcx| {
|
||
controlflow::trans_fail(bcx, call_info, InternedString::new(overflow_text))
|
||
})
|
||
})
|
||
} else {
|
||
bcx
|
||
}
|
||
}
|
||
|
||
pub fn trans_external_path<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
||
did: DefId,
|
||
t: Ty<'tcx>)
|
||
-> ValueRef {
|
||
let name = ccx.sess().cstore.item_symbol(did);
|
||
match t.sty {
|
||
ty::TyBareFn(_, ref fn_ty) => {
|
||
match ccx.sess().target.target.adjust_abi(fn_ty.abi) {
|
||
Rust | RustCall => {
|
||
get_extern_rust_fn(ccx, t, &name[..], did)
|
||
}
|
||
RustIntrinsic | PlatformIntrinsic => {
|
||
ccx.sess().bug("unexpected intrinsic in trans_external_path")
|
||
}
|
||
_ => {
|
||
let attrs = ccx.sess().cstore.item_attrs(did);
|
||
foreign::register_foreign_item_fn(ccx, fn_ty.abi, t, &name, &attrs)
|
||
}
|
||
}
|
||
}
|
||
_ => {
|
||
get_extern_const(ccx, did, t)
|
||
}
|
||
}
|
||
}
|
||
|
||
pub fn invoke<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
||
llfn: ValueRef,
|
||
llargs: &[ValueRef],
|
||
fn_ty: Ty<'tcx>,
|
||
debug_loc: DebugLoc)
|
||
-> (ValueRef, Block<'blk, 'tcx>) {
|
||
let _icx = push_ctxt("invoke_");
|
||
if bcx.unreachable.get() {
|
||
return (C_null(Type::i8(bcx.ccx())), bcx);
|
||
}
|
||
|
||
let attributes = attributes::from_fn_type(bcx.ccx(), fn_ty);
|
||
|
||
match bcx.opt_node_id {
|
||
None => {
|
||
debug!("invoke at ???");
|
||
}
|
||
Some(id) => {
|
||
debug!("invoke at {}", bcx.tcx().map.node_to_string(id));
|
||
}
|
||
}
|
||
|
||
if need_invoke(bcx) {
|
||
debug!("invoking {} at {:?}", bcx.val_to_string(llfn), bcx.llbb);
|
||
for &llarg in llargs {
|
||
debug!("arg: {}", bcx.val_to_string(llarg));
|
||
}
|
||
let normal_bcx = bcx.fcx.new_temp_block("normal-return");
|
||
let landing_pad = bcx.fcx.get_landing_pad();
|
||
|
||
let llresult = Invoke(bcx,
|
||
llfn,
|
||
&llargs[..],
|
||
normal_bcx.llbb,
|
||
landing_pad,
|
||
Some(attributes),
|
||
debug_loc);
|
||
return (llresult, normal_bcx);
|
||
} else {
|
||
debug!("calling {} at {:?}", bcx.val_to_string(llfn), bcx.llbb);
|
||
for &llarg in llargs {
|
||
debug!("arg: {}", bcx.val_to_string(llarg));
|
||
}
|
||
|
||
let llresult = Call(bcx, llfn, &llargs[..], Some(attributes), debug_loc);
|
||
return (llresult, bcx);
|
||
}
|
||
}
|
||
|
||
/// Returns whether this session's target will use SEH-based unwinding.
|
||
///
|
||
/// This is only true for MSVC targets, and even then the 64-bit MSVC target
|
||
/// currently uses SEH-ish unwinding with DWARF info tables to the side (same as
|
||
/// 64-bit MinGW) instead of "full SEH".
|
||
pub fn wants_msvc_seh(sess: &Session) -> bool {
|
||
sess.target.target.options.is_like_msvc && sess.target.target.arch == "x86"
|
||
}
|
||
|
||
pub fn need_invoke(bcx: Block) -> bool {
|
||
// FIXME(#25869) currently SEH-based unwinding is pretty buggy in LLVM and
|
||
// is being overhauled as this is being written. Until that
|
||
// time such that upstream LLVM's implementation is more solid
|
||
// and we start binding it we need to skip invokes for any
|
||
// target which wants SEH-based unwinding.
|
||
if bcx.sess().no_landing_pads() || wants_msvc_seh(bcx.sess()) {
|
||
return false;
|
||
}
|
||
|
||
// Avoid using invoke if we are already inside a landing pad.
|
||
if bcx.is_lpad {
|
||
return false;
|
||
}
|
||
|
||
bcx.fcx.needs_invoke()
|
||
}
|
||
|
||
pub fn load_if_immediate<'blk, 'tcx>(cx: Block<'blk, 'tcx>, v: ValueRef, t: Ty<'tcx>) -> ValueRef {
|
||
let _icx = push_ctxt("load_if_immediate");
|
||
if type_is_immediate(cx.ccx(), t) {
|
||
return load_ty(cx, v, t);
|
||
}
|
||
return v;
|
||
}
|
||
|
||
/// Helper for loading values from memory. Does the necessary conversion if the in-memory type
|
||
/// differs from the type used for SSA values. Also handles various special cases where the type
|
||
/// gives us better information about what we are loading.
|
||
pub fn load_ty<'blk, 'tcx>(cx: Block<'blk, 'tcx>, ptr: ValueRef, t: Ty<'tcx>) -> ValueRef {
|
||
if cx.unreachable.get() || type_is_zero_size(cx.ccx(), t) {
|
||
return C_undef(type_of::type_of(cx.ccx(), t));
|
||
}
|
||
|
||
let ptr = to_arg_ty_ptr(cx, ptr, t);
|
||
let align = type_of::align_of(cx.ccx(), t);
|
||
|
||
if type_is_immediate(cx.ccx(), t) && type_of::type_of(cx.ccx(), t).is_aggregate() {
|
||
let load = Load(cx, ptr);
|
||
unsafe {
|
||
llvm::LLVMSetAlignment(load, align);
|
||
}
|
||
return load;
|
||
}
|
||
|
||
unsafe {
|
||
let global = llvm::LLVMIsAGlobalVariable(ptr);
|
||
if !global.is_null() && llvm::LLVMIsGlobalConstant(global) == llvm::True {
|
||
let val = llvm::LLVMGetInitializer(global);
|
||
if !val.is_null() {
|
||
return to_arg_ty(cx, val, t);
|
||
}
|
||
}
|
||
}
|
||
|
||
let val = if t.is_bool() {
|
||
LoadRangeAssert(cx, ptr, 0, 2, llvm::False)
|
||
} else if t.is_char() {
|
||
// a char is a Unicode codepoint, and so takes values from 0
|
||
// to 0x10FFFF inclusive only.
|
||
LoadRangeAssert(cx, ptr, 0, 0x10FFFF + 1, llvm::False)
|
||
} else if (t.is_region_ptr() || t.is_unique()) && !common::type_is_fat_ptr(cx.tcx(), t) {
|
||
LoadNonNull(cx, ptr)
|
||
} else {
|
||
Load(cx, ptr)
|
||
};
|
||
|
||
unsafe {
|
||
llvm::LLVMSetAlignment(val, align);
|
||
}
|
||
|
||
to_arg_ty(cx, val, t)
|
||
}
|
||
|
||
/// Helper for storing values in memory. Does the necessary conversion if the in-memory type
|
||
/// differs from the type used for SSA values.
|
||
pub fn store_ty<'blk, 'tcx>(cx: Block<'blk, 'tcx>, v: ValueRef, dst: ValueRef, t: Ty<'tcx>) {
|
||
if cx.unreachable.get() {
|
||
return;
|
||
}
|
||
|
||
debug!("store_ty: {} : {:?} <- {}",
|
||
cx.val_to_string(dst),
|
||
t,
|
||
cx.val_to_string(v));
|
||
|
||
if common::type_is_fat_ptr(cx.tcx(), t) {
|
||
Store(cx,
|
||
ExtractValue(cx, v, abi::FAT_PTR_ADDR),
|
||
expr::get_dataptr(cx, dst));
|
||
Store(cx,
|
||
ExtractValue(cx, v, abi::FAT_PTR_EXTRA),
|
||
expr::get_meta(cx, dst));
|
||
} else {
|
||
let store = Store(cx, from_arg_ty(cx, v, t), to_arg_ty_ptr(cx, dst, t));
|
||
unsafe {
|
||
llvm::LLVMSetAlignment(store, type_of::align_of(cx.ccx(), t));
|
||
}
|
||
}
|
||
}
|
||
|
||
pub fn store_fat_ptr<'blk, 'tcx>(cx: Block<'blk, 'tcx>,
|
||
data: ValueRef,
|
||
extra: ValueRef,
|
||
dst: ValueRef,
|
||
_ty: Ty<'tcx>) {
|
||
// FIXME: emit metadata
|
||
Store(cx, data, expr::get_dataptr(cx, dst));
|
||
Store(cx, extra, expr::get_meta(cx, dst));
|
||
}
|
||
|
||
pub fn load_fat_ptr<'blk, 'tcx>(cx: Block<'blk, 'tcx>,
|
||
src: ValueRef,
|
||
_ty: Ty<'tcx>)
|
||
-> (ValueRef, ValueRef) {
|
||
// FIXME: emit metadata
|
||
(Load(cx, expr::get_dataptr(cx, src)),
|
||
Load(cx, expr::get_meta(cx, src)))
|
||
}
|
||
|
||
pub fn from_arg_ty(bcx: Block, val: ValueRef, ty: Ty) -> ValueRef {
|
||
if ty.is_bool() {
|
||
ZExt(bcx, val, Type::i8(bcx.ccx()))
|
||
} else {
|
||
val
|
||
}
|
||
}
|
||
|
||
pub fn to_arg_ty(bcx: Block, val: ValueRef, ty: Ty) -> ValueRef {
|
||
if ty.is_bool() {
|
||
Trunc(bcx, val, Type::i1(bcx.ccx()))
|
||
} else {
|
||
val
|
||
}
|
||
}
|
||
|
||
pub fn to_arg_ty_ptr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, ptr: ValueRef, ty: Ty<'tcx>) -> ValueRef {
|
||
if type_is_immediate(bcx.ccx(), ty) && type_of::type_of(bcx.ccx(), ty).is_aggregate() {
|
||
// We want to pass small aggregates as immediate values, but using an aggregate LLVM type
|
||
// for this leads to bad optimizations, so its arg type is an appropriately sized integer
|
||
// and we have to convert it
|
||
BitCast(bcx, ptr, type_of::arg_type_of(bcx.ccx(), ty).ptr_to())
|
||
} else {
|
||
ptr
|
||
}
|
||
}
|
||
|
||
pub fn init_local<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, local: &hir::Local) -> Block<'blk, 'tcx> {
|
||
debug!("init_local(bcx={}, local.id={})", bcx.to_str(), local.id);
|
||
let _indenter = indenter();
|
||
let _icx = push_ctxt("init_local");
|
||
_match::store_local(bcx, local)
|
||
}
|
||
|
||
pub fn raw_block<'blk, 'tcx>(fcx: &'blk FunctionContext<'blk, 'tcx>,
|
||
is_lpad: bool,
|
||
llbb: BasicBlockRef)
|
||
-> Block<'blk, 'tcx> {
|
||
common::BlockS::new(llbb, is_lpad, None, fcx)
|
||
}
|
||
|
||
pub fn with_cond<'blk, 'tcx, F>(bcx: Block<'blk, 'tcx>, val: ValueRef, f: F) -> Block<'blk, 'tcx>
|
||
where F: FnOnce(Block<'blk, 'tcx>) -> Block<'blk, 'tcx>
|
||
{
|
||
let _icx = push_ctxt("with_cond");
|
||
|
||
if bcx.unreachable.get() || common::const_to_opt_uint(val) == Some(0) {
|
||
return bcx;
|
||
}
|
||
|
||
let fcx = bcx.fcx;
|
||
let next_cx = fcx.new_temp_block("next");
|
||
let cond_cx = fcx.new_temp_block("cond");
|
||
CondBr(bcx, val, cond_cx.llbb, next_cx.llbb, DebugLoc::None);
|
||
let after_cx = f(cond_cx);
|
||
if !after_cx.terminated.get() {
|
||
Br(after_cx, next_cx.llbb, DebugLoc::None);
|
||
}
|
||
next_cx
|
||
}
|
||
|
||
pub fn call_lifetime_start(cx: Block, ptr: ValueRef) {
|
||
if cx.sess().opts.optimize == config::No {
|
||
return;
|
||
}
|
||
|
||
let _icx = push_ctxt("lifetime_start");
|
||
let ccx = cx.ccx();
|
||
|
||
let size = machine::llsize_of_alloc(ccx, val_ty(ptr).element_type());
|
||
if size == 0 {
|
||
return;
|
||
}
|
||
|
||
let ptr = PointerCast(cx, ptr, Type::i8p(ccx));
|
||
let lifetime_start = ccx.get_intrinsic(&"llvm.lifetime.start");
|
||
Call(cx,
|
||
lifetime_start,
|
||
&[C_u64(ccx, size), ptr],
|
||
None,
|
||
DebugLoc::None);
|
||
}
|
||
|
||
pub fn call_lifetime_end(cx: Block, ptr: ValueRef) {
|
||
if cx.sess().opts.optimize == config::No {
|
||
return;
|
||
}
|
||
|
||
let _icx = push_ctxt("lifetime_end");
|
||
let ccx = cx.ccx();
|
||
|
||
let size = machine::llsize_of_alloc(ccx, val_ty(ptr).element_type());
|
||
if size == 0 {
|
||
return;
|
||
}
|
||
|
||
let ptr = PointerCast(cx, ptr, Type::i8p(ccx));
|
||
let lifetime_end = ccx.get_intrinsic(&"llvm.lifetime.end");
|
||
Call(cx,
|
||
lifetime_end,
|
||
&[C_u64(ccx, size), ptr],
|
||
None,
|
||
DebugLoc::None);
|
||
}
|
||
|
||
// Generates code for resumption of unwind at the end of a landing pad.
|
||
pub fn trans_unwind_resume(bcx: Block, lpval: ValueRef) {
|
||
if !bcx.sess().target.target.options.custom_unwind_resume {
|
||
Resume(bcx, lpval);
|
||
} else {
|
||
let exc_ptr = ExtractValue(bcx, lpval, 0);
|
||
let llunwresume = bcx.fcx.eh_unwind_resume();
|
||
Call(bcx, llunwresume, &[exc_ptr], None, DebugLoc::None);
|
||
Unreachable(bcx);
|
||
}
|
||
}
|
||
|
||
|
||
pub fn call_memcpy(cx: Block, dst: ValueRef, src: ValueRef, n_bytes: ValueRef, align: u32) {
|
||
let _icx = push_ctxt("call_memcpy");
|
||
let ccx = cx.ccx();
|
||
let ptr_width = &ccx.sess().target.target.target_pointer_width[..];
|
||
let key = format!("llvm.memcpy.p0i8.p0i8.i{}", ptr_width);
|
||
let memcpy = ccx.get_intrinsic(&key);
|
||
let src_ptr = PointerCast(cx, src, Type::i8p(ccx));
|
||
let dst_ptr = PointerCast(cx, dst, Type::i8p(ccx));
|
||
let size = IntCast(cx, n_bytes, ccx.int_type());
|
||
let align = C_i32(ccx, align as i32);
|
||
let volatile = C_bool(ccx, false);
|
||
Call(cx,
|
||
memcpy,
|
||
&[dst_ptr, src_ptr, size, align, volatile],
|
||
None,
|
||
DebugLoc::None);
|
||
}
|
||
|
||
pub fn memcpy_ty<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, dst: ValueRef, src: ValueRef, t: Ty<'tcx>) {
|
||
let _icx = push_ctxt("memcpy_ty");
|
||
let ccx = bcx.ccx();
|
||
|
||
if type_is_zero_size(ccx, t) {
|
||
return;
|
||
}
|
||
|
||
if t.is_structural() {
|
||
let llty = type_of::type_of(ccx, t);
|
||
let llsz = llsize_of(ccx, llty);
|
||
let llalign = type_of::align_of(ccx, t);
|
||
call_memcpy(bcx, dst, src, llsz, llalign as u32);
|
||
} else if common::type_is_fat_ptr(bcx.tcx(), t) {
|
||
let (data, extra) = load_fat_ptr(bcx, src, t);
|
||
store_fat_ptr(bcx, data, extra, dst, t);
|
||
} else {
|
||
store_ty(bcx, load_ty(bcx, src, t), dst, t);
|
||
}
|
||
}
|
||
|
||
pub fn drop_done_fill_mem<'blk, 'tcx>(cx: Block<'blk, 'tcx>, llptr: ValueRef, t: Ty<'tcx>) {
|
||
if cx.unreachable.get() {
|
||
return;
|
||
}
|
||
let _icx = push_ctxt("drop_done_fill_mem");
|
||
let bcx = cx;
|
||
memfill(&B(bcx), llptr, t, adt::DTOR_DONE);
|
||
}
|
||
|
||
pub fn init_zero_mem<'blk, 'tcx>(cx: Block<'blk, 'tcx>, llptr: ValueRef, t: Ty<'tcx>) {
|
||
if cx.unreachable.get() {
|
||
return;
|
||
}
|
||
let _icx = push_ctxt("init_zero_mem");
|
||
let bcx = cx;
|
||
memfill(&B(bcx), llptr, t, 0);
|
||
}
|
||
|
||
// Always use this function instead of storing a constant byte to the memory
|
||
// in question. e.g. if you store a zero constant, LLVM will drown in vreg
|
||
// allocation for large data structures, and the generated code will be
|
||
// awful. (A telltale sign of this is large quantities of
|
||
// `mov [byte ptr foo],0` in the generated code.)
|
||
fn memfill<'a, 'tcx>(b: &Builder<'a, 'tcx>, llptr: ValueRef, ty: Ty<'tcx>, byte: u8) {
|
||
let _icx = push_ctxt("memfill");
|
||
let ccx = b.ccx;
|
||
|
||
let llty = type_of::type_of(ccx, ty);
|
||
let ptr_width = &ccx.sess().target.target.target_pointer_width[..];
|
||
let intrinsic_key = format!("llvm.memset.p0i8.i{}", ptr_width);
|
||
|
||
let llintrinsicfn = ccx.get_intrinsic(&intrinsic_key);
|
||
let llptr = b.pointercast(llptr, Type::i8(ccx).ptr_to());
|
||
let llzeroval = C_u8(ccx, byte);
|
||
let size = machine::llsize_of(ccx, llty);
|
||
let align = C_i32(ccx, type_of::align_of(ccx, ty) as i32);
|
||
let volatile = C_bool(ccx, false);
|
||
b.call(llintrinsicfn,
|
||
&[llptr, llzeroval, size, align, volatile],
|
||
None);
|
||
}
|
||
|
||
pub fn alloc_ty<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, t: Ty<'tcx>, name: &str) -> ValueRef {
|
||
let _icx = push_ctxt("alloc_ty");
|
||
let ccx = bcx.ccx();
|
||
let ty = type_of::type_of(ccx, t);
|
||
assert!(!t.has_param_types());
|
||
alloca(bcx, ty, name)
|
||
}
|
||
|
||
pub fn alloca(cx: Block, ty: Type, name: &str) -> ValueRef {
|
||
let _icx = push_ctxt("alloca");
|
||
if cx.unreachable.get() {
|
||
unsafe {
|
||
return llvm::LLVMGetUndef(ty.ptr_to().to_ref());
|
||
}
|
||
}
|
||
debuginfo::clear_source_location(cx.fcx);
|
||
Alloca(cx, ty, name)
|
||
}
|
||
|
||
pub fn set_value_name(val: ValueRef, name: &str) {
|
||
unsafe {
|
||
let name = CString::new(name).unwrap();
|
||
llvm::LLVMSetValueName(val, name.as_ptr());
|
||
}
|
||
}
|
||
|
||
// Creates the alloca slot which holds the pointer to the slot for the final return value
|
||
pub fn make_return_slot_pointer<'a, 'tcx>(fcx: &FunctionContext<'a, 'tcx>,
|
||
output_type: Ty<'tcx>)
|
||
-> ValueRef {
|
||
let lloutputtype = type_of::type_of(fcx.ccx, output_type);
|
||
|
||
// We create an alloca to hold a pointer of type `output_type`
|
||
// which will hold the pointer to the right alloca which has the
|
||
// final ret value
|
||
if fcx.needs_ret_allocas {
|
||
// Let's create the stack slot
|
||
let slot = AllocaFcx(fcx, lloutputtype.ptr_to(), "llretslotptr");
|
||
|
||
// and if we're using an out pointer, then store that in our newly made slot
|
||
if type_of::return_uses_outptr(fcx.ccx, output_type) {
|
||
let outptr = get_param(fcx.llfn, 0);
|
||
|
||
let b = fcx.ccx.builder();
|
||
b.position_before(fcx.alloca_insert_pt.get().unwrap());
|
||
b.store(outptr, slot);
|
||
}
|
||
|
||
slot
|
||
|
||
// But if there are no nested returns, we skip the indirection and have a single
|
||
// retslot
|
||
} else {
|
||
if type_of::return_uses_outptr(fcx.ccx, output_type) {
|
||
get_param(fcx.llfn, 0)
|
||
} else {
|
||
AllocaFcx(fcx, lloutputtype, "sret_slot")
|
||
}
|
||
}
|
||
}
|
||
|
||
struct FindNestedReturn {
|
||
found: bool,
|
||
}
|
||
|
||
impl FindNestedReturn {
|
||
fn new() -> FindNestedReturn {
|
||
FindNestedReturn {
|
||
found: false,
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<'v> Visitor<'v> for FindNestedReturn {
|
||
fn visit_expr(&mut self, e: &hir::Expr) {
|
||
match e.node {
|
||
hir::ExprRet(..) => {
|
||
self.found = true;
|
||
}
|
||
_ => intravisit::walk_expr(self, e),
|
||
}
|
||
}
|
||
}
|
||
|
||
fn build_cfg(tcx: &ty::ctxt, id: ast::NodeId) -> (ast::NodeId, Option<cfg::CFG>) {
|
||
let blk = match tcx.map.find(id) {
|
||
Some(hir_map::NodeItem(i)) => {
|
||
match i.node {
|
||
hir::ItemFn(_, _, _, _, _, ref blk) => {
|
||
blk
|
||
}
|
||
_ => tcx.sess.bug("unexpected item variant in has_nested_returns"),
|
||
}
|
||
}
|
||
Some(hir_map::NodeTraitItem(trait_item)) => {
|
||
match trait_item.node {
|
||
hir::MethodTraitItem(_, Some(ref body)) => body,
|
||
_ => {
|
||
tcx.sess.bug("unexpected variant: trait item other than a provided method in \
|
||
has_nested_returns")
|
||
}
|
||
}
|
||
}
|
||
Some(hir_map::NodeImplItem(impl_item)) => {
|
||
match impl_item.node {
|
||
hir::ImplItemKind::Method(_, ref body) => body,
|
||
_ => {
|
||
tcx.sess.bug("unexpected variant: non-method impl item in has_nested_returns")
|
||
}
|
||
}
|
||
}
|
||
Some(hir_map::NodeExpr(e)) => {
|
||
match e.node {
|
||
hir::ExprClosure(_, _, ref blk) => blk,
|
||
_ => tcx.sess.bug("unexpected expr variant in has_nested_returns"),
|
||
}
|
||
}
|
||
Some(hir_map::NodeVariant(..)) |
|
||
Some(hir_map::NodeStructCtor(..)) => return (ast::DUMMY_NODE_ID, None),
|
||
|
||
// glue, shims, etc
|
||
None if id == ast::DUMMY_NODE_ID => return (ast::DUMMY_NODE_ID, None),
|
||
|
||
_ => tcx.sess.bug(&format!("unexpected variant in has_nested_returns: {}",
|
||
tcx.map.path_to_string(id))),
|
||
};
|
||
|
||
(blk.id, Some(cfg::CFG::new(tcx, blk)))
|
||
}
|
||
|
||
// Checks for the presence of "nested returns" in a function.
|
||
// Nested returns are when the inner expression of a return expression
|
||
// (the 'expr' in 'return expr') contains a return expression. Only cases
|
||
// where the outer return is actually reachable are considered. Implicit
|
||
// returns from the end of blocks are considered as well.
|
||
//
|
||
// This check is needed to handle the case where the inner expression is
|
||
// part of a larger expression that may have already partially-filled the
|
||
// return slot alloca. This can cause errors related to clean-up due to
|
||
// the clobbering of the existing value in the return slot.
|
||
fn has_nested_returns(tcx: &ty::ctxt, cfg: &cfg::CFG, blk_id: ast::NodeId) -> bool {
|
||
for index in cfg.graph.depth_traverse(cfg.entry) {
|
||
let n = cfg.graph.node_data(index);
|
||
match tcx.map.find(n.id()) {
|
||
Some(hir_map::NodeExpr(ex)) => {
|
||
if let hir::ExprRet(Some(ref ret_expr)) = ex.node {
|
||
let mut visitor = FindNestedReturn::new();
|
||
intravisit::walk_expr(&mut visitor, &**ret_expr);
|
||
if visitor.found {
|
||
return true;
|
||
}
|
||
}
|
||
}
|
||
Some(hir_map::NodeBlock(blk)) if blk.id == blk_id => {
|
||
let mut visitor = FindNestedReturn::new();
|
||
walk_list!(&mut visitor, visit_expr, &blk.expr);
|
||
if visitor.found {
|
||
return true;
|
||
}
|
||
}
|
||
_ => {}
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
// NB: must keep 4 fns in sync:
|
||
//
|
||
// - type_of_fn
|
||
// - create_datums_for_fn_args.
|
||
// - new_fn_ctxt
|
||
// - trans_args
|
||
//
|
||
// Be warned! You must call `init_function` before doing anything with the
|
||
// returned function context.
|
||
pub fn new_fn_ctxt<'a, 'tcx>(ccx: &'a CrateContext<'a, 'tcx>,
|
||
llfndecl: ValueRef,
|
||
id: ast::NodeId,
|
||
has_env: bool,
|
||
output_type: ty::FnOutput<'tcx>,
|
||
param_substs: &'tcx Substs<'tcx>,
|
||
sp: Option<Span>,
|
||
block_arena: &'a TypedArena<common::BlockS<'a, 'tcx>>)
|
||
-> FunctionContext<'a, 'tcx> {
|
||
common::validate_substs(param_substs);
|
||
|
||
debug!("new_fn_ctxt(path={}, id={}, param_substs={:?})",
|
||
if id == !0 {
|
||
"".to_string()
|
||
} else {
|
||
ccx.tcx().map.path_to_string(id).to_string()
|
||
},
|
||
id,
|
||
param_substs);
|
||
|
||
let uses_outptr = match output_type {
|
||
ty::FnConverging(output_type) => {
|
||
let substd_output_type = monomorphize::apply_param_substs(ccx.tcx(),
|
||
param_substs,
|
||
&output_type);
|
||
type_of::return_uses_outptr(ccx, substd_output_type)
|
||
}
|
||
ty::FnDiverging => false,
|
||
};
|
||
let debug_context = debuginfo::create_function_debug_context(ccx, id, param_substs, llfndecl);
|
||
let (blk_id, cfg) = build_cfg(ccx.tcx(), id);
|
||
let nested_returns = if let Some(ref cfg) = cfg {
|
||
has_nested_returns(ccx.tcx(), cfg, blk_id)
|
||
} else {
|
||
false
|
||
};
|
||
|
||
let mir = ccx.mir_map().get(&id);
|
||
|
||
let mut fcx = FunctionContext {
|
||
mir: mir,
|
||
llfn: llfndecl,
|
||
llenv: None,
|
||
llretslotptr: Cell::new(None),
|
||
param_env: ccx.tcx().empty_parameter_environment(),
|
||
alloca_insert_pt: Cell::new(None),
|
||
llreturn: Cell::new(None),
|
||
needs_ret_allocas: nested_returns,
|
||
personality: Cell::new(None),
|
||
caller_expects_out_pointer: uses_outptr,
|
||
lllocals: RefCell::new(NodeMap()),
|
||
llupvars: RefCell::new(NodeMap()),
|
||
lldropflag_hints: RefCell::new(DropFlagHintsMap::new()),
|
||
id: id,
|
||
param_substs: param_substs,
|
||
span: sp,
|
||
block_arena: block_arena,
|
||
ccx: ccx,
|
||
debug_context: debug_context,
|
||
scopes: RefCell::new(Vec::new()),
|
||
cfg: cfg,
|
||
};
|
||
|
||
if has_env {
|
||
fcx.llenv = Some(get_param(fcx.llfn, fcx.env_arg_pos() as c_uint))
|
||
}
|
||
|
||
fcx
|
||
}
|
||
|
||
/// Performs setup on a newly created function, creating the entry scope block
|
||
/// and allocating space for the return pointer.
|
||
pub fn init_function<'a, 'tcx>(fcx: &'a FunctionContext<'a, 'tcx>,
|
||
skip_retptr: bool,
|
||
output: ty::FnOutput<'tcx>)
|
||
-> Block<'a, 'tcx> {
|
||
let entry_bcx = fcx.new_temp_block("entry-block");
|
||
|
||
// Use a dummy instruction as the insertion point for all allocas.
|
||
// This is later removed in FunctionContext::cleanup.
|
||
fcx.alloca_insert_pt.set(Some(unsafe {
|
||
Load(entry_bcx, C_null(Type::i8p(fcx.ccx)));
|
||
llvm::LLVMGetFirstInstruction(entry_bcx.llbb)
|
||
}));
|
||
|
||
if let ty::FnConverging(output_type) = output {
|
||
// This shouldn't need to recompute the return type,
|
||
// as new_fn_ctxt did it already.
|
||
let substd_output_type = fcx.monomorphize(&output_type);
|
||
if !return_type_is_void(fcx.ccx, substd_output_type) {
|
||
// If the function returns nil/bot, there is no real return
|
||
// value, so do not set `llretslotptr`.
|
||
if !skip_retptr || fcx.caller_expects_out_pointer {
|
||
// Otherwise, we normally allocate the llretslotptr, unless we
|
||
// have been instructed to skip it for immediate return
|
||
// values.
|
||
fcx.llretslotptr.set(Some(make_return_slot_pointer(fcx, substd_output_type)));
|
||
}
|
||
}
|
||
}
|
||
|
||
// Create the drop-flag hints for every unfragmented path in the function.
|
||
let tcx = fcx.ccx.tcx();
|
||
let fn_did = tcx.map.local_def_id(fcx.id);
|
||
let mut hints = fcx.lldropflag_hints.borrow_mut();
|
||
let fragment_infos = tcx.fragment_infos.borrow();
|
||
|
||
// Intern table for drop-flag hint datums.
|
||
let mut seen = HashMap::new();
|
||
|
||
if let Some(fragment_infos) = fragment_infos.get(&fn_did) {
|
||
for &info in fragment_infos {
|
||
|
||
let make_datum = |id| {
|
||
let init_val = C_u8(fcx.ccx, adt::DTOR_NEEDED_HINT);
|
||
let llname = &format!("dropflag_hint_{}", id);
|
||
debug!("adding hint {}", llname);
|
||
let ty = tcx.types.u8;
|
||
let ptr = alloc_ty(entry_bcx, ty, llname);
|
||
Store(entry_bcx, init_val, ptr);
|
||
let flag = datum::Lvalue::new_dropflag_hint("base::init_function");
|
||
datum::Datum::new(ptr, ty, flag)
|
||
};
|
||
|
||
let (var, datum) = match info {
|
||
ty::FragmentInfo::Moved { var, .. } |
|
||
ty::FragmentInfo::Assigned { var, .. } => {
|
||
let datum = seen.get(&var).cloned().unwrap_or_else(|| {
|
||
let datum = make_datum(var);
|
||
seen.insert(var, datum.clone());
|
||
datum
|
||
});
|
||
(var, datum)
|
||
}
|
||
};
|
||
match info {
|
||
ty::FragmentInfo::Moved { move_expr: expr_id, .. } => {
|
||
debug!("FragmentInfo::Moved insert drop hint for {}", expr_id);
|
||
hints.insert(expr_id, DropHint::new(var, datum));
|
||
}
|
||
ty::FragmentInfo::Assigned { assignee_id: expr_id, .. } => {
|
||
debug!("FragmentInfo::Assigned insert drop hint for {}", expr_id);
|
||
hints.insert(expr_id, DropHint::new(var, datum));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
entry_bcx
|
||
}
|
||
|
||
// NB: must keep 4 fns in sync:
|
||
//
|
||
// - type_of_fn
|
||
// - create_datums_for_fn_args.
|
||
// - new_fn_ctxt
|
||
// - trans_args
|
||
|
||
pub fn arg_kind<'a, 'tcx>(cx: &FunctionContext<'a, 'tcx>, t: Ty<'tcx>) -> datum::Rvalue {
|
||
use trans::datum::{ByRef, ByValue};
|
||
|
||
datum::Rvalue {
|
||
mode: if arg_is_indirect(cx.ccx, t) { ByRef } else { ByValue }
|
||
}
|
||
}
|
||
|
||
// create_datums_for_fn_args: creates lvalue datums for each of the
|
||
// incoming function arguments.
|
||
pub fn create_datums_for_fn_args<'a, 'tcx>(mut bcx: Block<'a, 'tcx>,
|
||
args: &[hir::Arg],
|
||
arg_tys: &[Ty<'tcx>],
|
||
has_tupled_arg: bool,
|
||
arg_scope: cleanup::CustomScopeIndex)
|
||
-> Block<'a, 'tcx> {
|
||
let _icx = push_ctxt("create_datums_for_fn_args");
|
||
let fcx = bcx.fcx;
|
||
let arg_scope_id = cleanup::CustomScope(arg_scope);
|
||
|
||
// Return an array wrapping the ValueRefs that we get from `get_param` for
|
||
// each argument into datums.
|
||
//
|
||
// For certain mode/type combinations, the raw llarg values are passed
|
||
// by value. However, within the fn body itself, we want to always
|
||
// have all locals and arguments be by-ref so that we can cancel the
|
||
// cleanup and for better interaction with LLVM's debug info. So, if
|
||
// the argument would be passed by value, we store it into an alloca.
|
||
// This alloca should be optimized away by LLVM's mem-to-reg pass in
|
||
// the event it's not truly needed.
|
||
let mut idx = fcx.arg_offset() as c_uint;
|
||
for (i, &arg_ty) in arg_tys.iter().enumerate() {
|
||
let arg_datum = if !has_tupled_arg || i < arg_tys.len() - 1 {
|
||
if type_of::arg_is_indirect(bcx.ccx(), arg_ty) &&
|
||
bcx.sess().opts.debuginfo != FullDebugInfo {
|
||
// Don't copy an indirect argument to an alloca, the caller
|
||
// already put it in a temporary alloca and gave it up, unless
|
||
// we emit extra-debug-info, which requires local allocas :(.
|
||
let llarg = get_param(fcx.llfn, idx);
|
||
idx += 1;
|
||
bcx.fcx.schedule_lifetime_end(arg_scope_id, llarg);
|
||
bcx.fcx.schedule_drop_mem(arg_scope_id, llarg, arg_ty, None);
|
||
|
||
datum::Datum::new(llarg,
|
||
arg_ty,
|
||
datum::Lvalue::new("create_datum_for_fn_args"))
|
||
} else if common::type_is_fat_ptr(bcx.tcx(), arg_ty) {
|
||
let data = get_param(fcx.llfn, idx);
|
||
let extra = get_param(fcx.llfn, idx + 1);
|
||
idx += 2;
|
||
unpack_datum!(bcx, datum::lvalue_scratch_datum(bcx, arg_ty, "",
|
||
arg_scope_id, (data, extra),
|
||
|(data, extra), bcx, dst| {
|
||
Store(bcx, data, expr::get_dataptr(bcx, dst));
|
||
Store(bcx, extra, expr::get_meta(bcx, dst));
|
||
bcx
|
||
}))
|
||
} else {
|
||
let llarg = get_param(fcx.llfn, idx);
|
||
idx += 1;
|
||
let tmp = datum::Datum::new(llarg, arg_ty, arg_kind(fcx, arg_ty));
|
||
unpack_datum!(bcx,
|
||
datum::lvalue_scratch_datum(bcx,
|
||
arg_ty,
|
||
"",
|
||
arg_scope_id,
|
||
tmp,
|
||
|tmp, bcx, dst| tmp.store_to(bcx, dst)))
|
||
}
|
||
} else {
|
||
// FIXME(pcwalton): Reduce the amount of code bloat this is responsible for.
|
||
match arg_ty.sty {
|
||
ty::TyTuple(ref tupled_arg_tys) => {
|
||
unpack_datum!(bcx,
|
||
datum::lvalue_scratch_datum(bcx,
|
||
arg_ty,
|
||
"tupled_args",
|
||
arg_scope_id,
|
||
(),
|
||
|(),
|
||
mut bcx,
|
||
llval| {
|
||
for (j, &tupled_arg_ty) in
|
||
tupled_arg_tys.iter().enumerate() {
|
||
let lldest = StructGEP(bcx, llval, j);
|
||
if common::type_is_fat_ptr(bcx.tcx(), tupled_arg_ty) {
|
||
let data = get_param(bcx.fcx.llfn, idx);
|
||
let extra = get_param(bcx.fcx.llfn, idx + 1);
|
||
Store(bcx, data, expr::get_dataptr(bcx, lldest));
|
||
Store(bcx, extra, expr::get_meta(bcx, lldest));
|
||
idx += 2;
|
||
} else {
|
||
let datum = datum::Datum::new(
|
||
get_param(bcx.fcx.llfn, idx),
|
||
tupled_arg_ty,
|
||
arg_kind(bcx.fcx, tupled_arg_ty));
|
||
idx += 1;
|
||
bcx = datum.store_to(bcx, lldest);
|
||
};
|
||
}
|
||
bcx
|
||
}))
|
||
}
|
||
_ => {
|
||
bcx.tcx()
|
||
.sess
|
||
.bug("last argument of a function with `rust-call` ABI isn't a tuple?!")
|
||
}
|
||
}
|
||
};
|
||
|
||
let pat = &*args[i].pat;
|
||
bcx = if let Some(name) = simple_name(pat) {
|
||
// Generate nicer LLVM for the common case of fn a pattern
|
||
// like `x: T`
|
||
set_value_name(arg_datum.val, &bcx.name(name));
|
||
bcx.fcx.lllocals.borrow_mut().insert(pat.id, arg_datum);
|
||
bcx
|
||
} else {
|
||
// General path. Copy out the values that are used in the
|
||
// pattern.
|
||
_match::bind_irrefutable_pat(bcx, pat, arg_datum.match_input(), arg_scope_id)
|
||
};
|
||
debuginfo::create_argument_metadata(bcx, &args[i]);
|
||
}
|
||
|
||
bcx
|
||
}
|
||
|
||
// Ties up the llstaticallocas -> llloadenv -> lltop edges,
|
||
// and builds the return block.
|
||
pub fn finish_fn<'blk, 'tcx>(fcx: &'blk FunctionContext<'blk, 'tcx>,
|
||
last_bcx: Block<'blk, 'tcx>,
|
||
retty: ty::FnOutput<'tcx>,
|
||
ret_debug_loc: DebugLoc) {
|
||
let _icx = push_ctxt("finish_fn");
|
||
|
||
let ret_cx = match fcx.llreturn.get() {
|
||
Some(llreturn) => {
|
||
if !last_bcx.terminated.get() {
|
||
Br(last_bcx, llreturn, DebugLoc::None);
|
||
}
|
||
raw_block(fcx, false, llreturn)
|
||
}
|
||
None => last_bcx,
|
||
};
|
||
|
||
// This shouldn't need to recompute the return type,
|
||
// as new_fn_ctxt did it already.
|
||
let substd_retty = fcx.monomorphize(&retty);
|
||
build_return_block(fcx, ret_cx, substd_retty, ret_debug_loc);
|
||
|
||
debuginfo::clear_source_location(fcx);
|
||
fcx.cleanup();
|
||
}
|
||
|
||
// Builds the return block for a function.
|
||
pub fn build_return_block<'blk, 'tcx>(fcx: &FunctionContext<'blk, 'tcx>,
|
||
ret_cx: Block<'blk, 'tcx>,
|
||
retty: ty::FnOutput<'tcx>,
|
||
ret_debug_location: DebugLoc) {
|
||
if fcx.llretslotptr.get().is_none() ||
|
||
(!fcx.needs_ret_allocas && fcx.caller_expects_out_pointer) {
|
||
return RetVoid(ret_cx, ret_debug_location);
|
||
}
|
||
|
||
let retslot = if fcx.needs_ret_allocas {
|
||
Load(ret_cx, fcx.llretslotptr.get().unwrap())
|
||
} else {
|
||
fcx.llretslotptr.get().unwrap()
|
||
};
|
||
let retptr = Value(retslot);
|
||
match retptr.get_dominating_store(ret_cx) {
|
||
// If there's only a single store to the ret slot, we can directly return
|
||
// the value that was stored and omit the store and the alloca
|
||
Some(s) => {
|
||
let retval = s.get_operand(0).unwrap().get();
|
||
s.erase_from_parent();
|
||
|
||
if retptr.has_no_uses() {
|
||
retptr.erase_from_parent();
|
||
}
|
||
|
||
let retval = if retty == ty::FnConverging(fcx.ccx.tcx().types.bool) {
|
||
Trunc(ret_cx, retval, Type::i1(fcx.ccx))
|
||
} else {
|
||
retval
|
||
};
|
||
|
||
if fcx.caller_expects_out_pointer {
|
||
if let ty::FnConverging(retty) = retty {
|
||
store_ty(ret_cx, retval, get_param(fcx.llfn, 0), retty);
|
||
}
|
||
RetVoid(ret_cx, ret_debug_location)
|
||
} else {
|
||
Ret(ret_cx, retval, ret_debug_location)
|
||
}
|
||
}
|
||
// Otherwise, copy the return value to the ret slot
|
||
None => match retty {
|
||
ty::FnConverging(retty) => {
|
||
if fcx.caller_expects_out_pointer {
|
||
memcpy_ty(ret_cx, get_param(fcx.llfn, 0), retslot, retty);
|
||
RetVoid(ret_cx, ret_debug_location)
|
||
} else {
|
||
Ret(ret_cx, load_ty(ret_cx, retslot, retty), ret_debug_location)
|
||
}
|
||
}
|
||
ty::FnDiverging => {
|
||
if fcx.caller_expects_out_pointer {
|
||
RetVoid(ret_cx, ret_debug_location)
|
||
} else {
|
||
Ret(ret_cx, C_undef(Type::nil(fcx.ccx)), ret_debug_location)
|
||
}
|
||
}
|
||
},
|
||
}
|
||
}
|
||
|
||
/// Builds an LLVM function out of a source function.
|
||
///
|
||
/// If the function closes over its environment a closure will be returned.
|
||
pub fn trans_closure<'a, 'b, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
||
decl: &hir::FnDecl,
|
||
body: &hir::Block,
|
||
llfndecl: ValueRef,
|
||
param_substs: &'tcx Substs<'tcx>,
|
||
fn_ast_id: ast::NodeId,
|
||
attributes: &[ast::Attribute],
|
||
output_type: ty::FnOutput<'tcx>,
|
||
abi: Abi,
|
||
closure_env: closure::ClosureEnv<'b>) {
|
||
ccx.stats().n_closures.set(ccx.stats().n_closures.get() + 1);
|
||
|
||
let _icx = push_ctxt("trans_closure");
|
||
attributes::emit_uwtable(llfndecl, true);
|
||
|
||
debug!("trans_closure(..., param_substs={:?})", param_substs);
|
||
|
||
let has_env = match closure_env {
|
||
closure::ClosureEnv::Closure(..) => true,
|
||
closure::ClosureEnv::NotClosure => false,
|
||
};
|
||
|
||
let (arena, fcx): (TypedArena<_>, FunctionContext);
|
||
arena = TypedArena::new();
|
||
fcx = new_fn_ctxt(ccx,
|
||
llfndecl,
|
||
fn_ast_id,
|
||
has_env,
|
||
output_type,
|
||
param_substs,
|
||
Some(body.span),
|
||
&arena);
|
||
let mut bcx = init_function(&fcx, false, output_type);
|
||
|
||
if attributes.iter().any(|item| item.check_name("rustc_mir")) {
|
||
mir::trans_mir(bcx);
|
||
fcx.cleanup();
|
||
return;
|
||
}
|
||
|
||
// cleanup scope for the incoming arguments
|
||
let fn_cleanup_debug_loc = debuginfo::get_cleanup_debug_loc_for_ast_node(ccx,
|
||
fn_ast_id,
|
||
body.span,
|
||
true);
|
||
let arg_scope = fcx.push_custom_cleanup_scope_with_debug_loc(fn_cleanup_debug_loc);
|
||
|
||
let block_ty = node_id_type(bcx, body.id);
|
||
|
||
// Set up arguments to the function.
|
||
let monomorphized_arg_types = decl.inputs
|
||
.iter()
|
||
.map(|arg| node_id_type(bcx, arg.id))
|
||
.collect::<Vec<_>>();
|
||
for monomorphized_arg_type in &monomorphized_arg_types {
|
||
debug!("trans_closure: monomorphized_arg_type: {:?}",
|
||
monomorphized_arg_type);
|
||
}
|
||
debug!("trans_closure: function lltype: {}",
|
||
bcx.fcx.ccx.tn().val_to_string(bcx.fcx.llfn));
|
||
|
||
let has_tupled_arg = match closure_env {
|
||
closure::ClosureEnv::NotClosure => abi == RustCall,
|
||
_ => false,
|
||
};
|
||
|
||
bcx = create_datums_for_fn_args(bcx,
|
||
&decl.inputs,
|
||
&monomorphized_arg_types,
|
||
has_tupled_arg,
|
||
arg_scope);
|
||
|
||
bcx = closure_env.load(bcx, cleanup::CustomScope(arg_scope));
|
||
|
||
// Up until here, IR instructions for this function have explicitly not been annotated with
|
||
// source code location, so we don't step into call setup code. From here on, source location
|
||
// emitting should be enabled.
|
||
debuginfo::start_emitting_source_locations(&fcx);
|
||
|
||
let dest = match fcx.llretslotptr.get() {
|
||
Some(_) => expr::SaveIn(fcx.get_ret_slot(bcx, ty::FnConverging(block_ty), "iret_slot")),
|
||
None => {
|
||
assert!(type_is_zero_size(bcx.ccx(), block_ty));
|
||
expr::Ignore
|
||
}
|
||
};
|
||
|
||
// This call to trans_block is the place where we bridge between
|
||
// translation calls that don't have a return value (trans_crate,
|
||
// trans_mod, trans_item, et cetera) and those that do
|
||
// (trans_block, trans_expr, et cetera).
|
||
bcx = controlflow::trans_block(bcx, body, dest);
|
||
|
||
match dest {
|
||
expr::SaveIn(slot) if fcx.needs_ret_allocas => {
|
||
Store(bcx, slot, fcx.llretslotptr.get().unwrap());
|
||
}
|
||
_ => {}
|
||
}
|
||
|
||
match fcx.llreturn.get() {
|
||
Some(_) => {
|
||
Br(bcx, fcx.return_exit_block(), DebugLoc::None);
|
||
fcx.pop_custom_cleanup_scope(arg_scope);
|
||
}
|
||
None => {
|
||
// Microoptimization writ large: avoid creating a separate
|
||
// llreturn basic block
|
||
bcx = fcx.pop_and_trans_custom_cleanup_scope(bcx, arg_scope);
|
||
}
|
||
};
|
||
|
||
// Put return block after all other blocks.
|
||
// This somewhat improves single-stepping experience in debugger.
|
||
unsafe {
|
||
let llreturn = fcx.llreturn.get();
|
||
if let Some(llreturn) = llreturn {
|
||
llvm::LLVMMoveBasicBlockAfter(llreturn, bcx.llbb);
|
||
}
|
||
}
|
||
|
||
let ret_debug_loc = DebugLoc::At(fn_cleanup_debug_loc.id, fn_cleanup_debug_loc.span);
|
||
|
||
// Insert the mandatory first few basic blocks before lltop.
|
||
finish_fn(&fcx, bcx, output_type, ret_debug_loc);
|
||
}
|
||
|
||
/// Creates an LLVM function corresponding to a source language function.
|
||
pub fn trans_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
||
decl: &hir::FnDecl,
|
||
body: &hir::Block,
|
||
llfndecl: ValueRef,
|
||
param_substs: &'tcx Substs<'tcx>,
|
||
id: ast::NodeId,
|
||
attrs: &[ast::Attribute]) {
|
||
let _s = StatRecorder::new(ccx, ccx.tcx().map.path_to_string(id).to_string());
|
||
debug!("trans_fn(param_substs={:?})", param_substs);
|
||
let _icx = push_ctxt("trans_fn");
|
||
let fn_ty = ccx.tcx().node_id_to_type(id);
|
||
let fn_ty = monomorphize::apply_param_substs(ccx.tcx(), param_substs, &fn_ty);
|
||
let sig = fn_ty.fn_sig();
|
||
let sig = ccx.tcx().erase_late_bound_regions(&sig);
|
||
let sig = infer::normalize_associated_type(ccx.tcx(), &sig);
|
||
let output_type = sig.output;
|
||
let abi = fn_ty.fn_abi();
|
||
trans_closure(ccx,
|
||
decl,
|
||
body,
|
||
llfndecl,
|
||
param_substs,
|
||
id,
|
||
attrs,
|
||
output_type,
|
||
abi,
|
||
closure::ClosureEnv::NotClosure);
|
||
}
|
||
|
||
pub fn trans_enum_variant<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
||
ctor_id: ast::NodeId,
|
||
disr: ty::Disr,
|
||
param_substs: &'tcx Substs<'tcx>,
|
||
llfndecl: ValueRef) {
|
||
let _icx = push_ctxt("trans_enum_variant");
|
||
|
||
trans_enum_variant_or_tuple_like_struct(ccx, ctor_id, disr, param_substs, llfndecl);
|
||
}
|
||
|
||
pub fn trans_named_tuple_constructor<'blk, 'tcx>(mut bcx: Block<'blk, 'tcx>,
|
||
ctor_ty: Ty<'tcx>,
|
||
disr: ty::Disr,
|
||
args: callee::CallArgs,
|
||
dest: expr::Dest,
|
||
debug_loc: DebugLoc)
|
||
-> Result<'blk, 'tcx> {
|
||
|
||
let ccx = bcx.fcx.ccx;
|
||
|
||
let sig = ccx.tcx().erase_late_bound_regions(&ctor_ty.fn_sig());
|
||
let sig = infer::normalize_associated_type(ccx.tcx(), &sig);
|
||
let result_ty = sig.output.unwrap();
|
||
|
||
// Get location to store the result. If the user does not care about
|
||
// the result, just make a stack slot
|
||
let llresult = match dest {
|
||
expr::SaveIn(d) => d,
|
||
expr::Ignore => {
|
||
if !type_is_zero_size(ccx, result_ty) {
|
||
let llresult = alloc_ty(bcx, result_ty, "constructor_result");
|
||
call_lifetime_start(bcx, llresult);
|
||
llresult
|
||
} else {
|
||
C_undef(type_of::type_of(ccx, result_ty).ptr_to())
|
||
}
|
||
}
|
||
};
|
||
|
||
if !type_is_zero_size(ccx, result_ty) {
|
||
match args {
|
||
callee::ArgExprs(exprs) => {
|
||
let fields = exprs.iter().map(|x| &**x).enumerate().collect::<Vec<_>>();
|
||
bcx = expr::trans_adt(bcx,
|
||
result_ty,
|
||
disr,
|
||
&fields[..],
|
||
None,
|
||
expr::SaveIn(llresult),
|
||
debug_loc);
|
||
}
|
||
_ => ccx.sess().bug("expected expr as arguments for variant/struct tuple constructor"),
|
||
}
|
||
} else {
|
||
// Just eval all the expressions (if any). Since expressions in Rust can have arbitrary
|
||
// contents, there could be side-effects we need from them.
|
||
match args {
|
||
callee::ArgExprs(exprs) => {
|
||
for expr in exprs {
|
||
bcx = expr::trans_into(bcx, expr, expr::Ignore);
|
||
}
|
||
}
|
||
_ => (),
|
||
}
|
||
}
|
||
|
||
// If the caller doesn't care about the result
|
||
// drop the temporary we made
|
||
let bcx = match dest {
|
||
expr::SaveIn(_) => bcx,
|
||
expr::Ignore => {
|
||
let bcx = glue::drop_ty(bcx, llresult, result_ty, debug_loc);
|
||
if !type_is_zero_size(ccx, result_ty) {
|
||
call_lifetime_end(bcx, llresult);
|
||
}
|
||
bcx
|
||
}
|
||
};
|
||
|
||
Result::new(bcx, llresult)
|
||
}
|
||
|
||
pub fn trans_tuple_struct<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
||
ctor_id: ast::NodeId,
|
||
param_substs: &'tcx Substs<'tcx>,
|
||
llfndecl: ValueRef) {
|
||
let _icx = push_ctxt("trans_tuple_struct");
|
||
|
||
trans_enum_variant_or_tuple_like_struct(ccx, ctor_id, 0, param_substs, llfndecl);
|
||
}
|
||
|
||
fn trans_enum_variant_or_tuple_like_struct<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
||
ctor_id: ast::NodeId,
|
||
disr: ty::Disr,
|
||
param_substs: &'tcx Substs<'tcx>,
|
||
llfndecl: ValueRef) {
|
||
let ctor_ty = ccx.tcx().node_id_to_type(ctor_id);
|
||
let ctor_ty = monomorphize::apply_param_substs(ccx.tcx(), param_substs, &ctor_ty);
|
||
|
||
let sig = ccx.tcx().erase_late_bound_regions(&ctor_ty.fn_sig());
|
||
let sig = infer::normalize_associated_type(ccx.tcx(), &sig);
|
||
let arg_tys = sig.inputs;
|
||
let result_ty = sig.output;
|
||
|
||
let (arena, fcx): (TypedArena<_>, FunctionContext);
|
||
arena = TypedArena::new();
|
||
fcx = new_fn_ctxt(ccx,
|
||
llfndecl,
|
||
ctor_id,
|
||
false,
|
||
result_ty,
|
||
param_substs,
|
||
None,
|
||
&arena);
|
||
let bcx = init_function(&fcx, false, result_ty);
|
||
|
||
assert!(!fcx.needs_ret_allocas);
|
||
|
||
if !type_is_zero_size(fcx.ccx, result_ty.unwrap()) {
|
||
let dest = fcx.get_ret_slot(bcx, result_ty, "eret_slot");
|
||
let dest_val = adt::MaybeSizedValue::sized(dest); // Can return unsized value
|
||
let repr = adt::represent_type(ccx, result_ty.unwrap());
|
||
let mut llarg_idx = fcx.arg_offset() as c_uint;
|
||
for (i, arg_ty) in arg_tys.into_iter().enumerate() {
|
||
let lldestptr = adt::trans_field_ptr(bcx, &*repr, dest_val, disr, i);
|
||
if common::type_is_fat_ptr(bcx.tcx(), arg_ty) {
|
||
Store(bcx,
|
||
get_param(fcx.llfn, llarg_idx),
|
||
expr::get_dataptr(bcx, lldestptr));
|
||
Store(bcx,
|
||
get_param(fcx.llfn, llarg_idx + 1),
|
||
expr::get_meta(bcx, lldestptr));
|
||
llarg_idx += 2;
|
||
} else {
|
||
let arg = get_param(fcx.llfn, llarg_idx);
|
||
llarg_idx += 1;
|
||
|
||
if arg_is_indirect(ccx, arg_ty) {
|
||
memcpy_ty(bcx, lldestptr, arg, arg_ty);
|
||
} else {
|
||
store_ty(bcx, arg, lldestptr, arg_ty);
|
||
}
|
||
}
|
||
}
|
||
adt::trans_set_discr(bcx, &*repr, dest, disr);
|
||
}
|
||
|
||
finish_fn(&fcx, bcx, result_ty, DebugLoc::None);
|
||
}
|
||
|
||
fn enum_variant_size_lint(ccx: &CrateContext, enum_def: &hir::EnumDef, sp: Span, id: ast::NodeId) {
|
||
let mut sizes = Vec::new(); // does no allocation if no pushes, thankfully
|
||
|
||
let print_info = ccx.sess().print_enum_sizes();
|
||
|
||
let levels = ccx.tcx().node_lint_levels.borrow();
|
||
let lint_id = lint::LintId::of(lint::builtin::VARIANT_SIZE_DIFFERENCES);
|
||
let lvlsrc = levels.get(&(id, lint_id));
|
||
let is_allow = lvlsrc.map_or(true, |&(lvl, _)| lvl == lint::Allow);
|
||
|
||
if is_allow && !print_info {
|
||
// we're not interested in anything here
|
||
return;
|
||
}
|
||
|
||
let ty = ccx.tcx().node_id_to_type(id);
|
||
let avar = adt::represent_type(ccx, ty);
|
||
match *avar {
|
||
adt::General(_, ref variants, _) => {
|
||
for var in variants {
|
||
let mut size = 0;
|
||
for field in var.fields.iter().skip(1) {
|
||
// skip the discriminant
|
||
size += llsize_of_real(ccx, sizing_type_of(ccx, *field));
|
||
}
|
||
sizes.push(size);
|
||
}
|
||
},
|
||
_ => { /* its size is either constant or unimportant */ }
|
||
}
|
||
|
||
let (largest, slargest, largest_index) = sizes.iter().enumerate().fold((0, 0, 0),
|
||
|(l, s, li), (idx, &size)|
|
||
if size > l {
|
||
(size, l, idx)
|
||
} else if size > s {
|
||
(l, size, li)
|
||
} else {
|
||
(l, s, li)
|
||
}
|
||
);
|
||
|
||
if print_info {
|
||
let llty = type_of::sizing_type_of(ccx, ty);
|
||
|
||
let sess = &ccx.tcx().sess;
|
||
sess.span_note(sp, &*format!("total size: {} bytes", llsize_of_real(ccx, llty)));
|
||
match *avar {
|
||
adt::General(..) => {
|
||
for (i, var) in enum_def.variants.iter().enumerate() {
|
||
ccx.tcx()
|
||
.sess
|
||
.span_note(var.span, &*format!("variant data: {} bytes", sizes[i]));
|
||
}
|
||
}
|
||
_ => {}
|
||
}
|
||
}
|
||
|
||
// we only warn if the largest variant is at least thrice as large as
|
||
// the second-largest.
|
||
if !is_allow && largest > slargest * 3 && slargest > 0 {
|
||
// Use lint::raw_emit_lint rather than sess.add_lint because the lint-printing
|
||
// pass for the latter already ran.
|
||
lint::raw_emit_lint(&ccx.tcx().sess,
|
||
lint::builtin::VARIANT_SIZE_DIFFERENCES,
|
||
*lvlsrc.unwrap(),
|
||
Some(sp),
|
||
&format!("enum variant is more than three times larger ({} bytes) \
|
||
than the next largest (ignoring padding)",
|
||
largest));
|
||
|
||
ccx.sess().span_note(enum_def.variants[largest_index].span,
|
||
"this variant is the largest");
|
||
}
|
||
}
|
||
|
||
pub fn llvm_linkage_by_name(name: &str) -> Option<Linkage> {
|
||
// Use the names from src/llvm/docs/LangRef.rst here. Most types are only
|
||
// applicable to variable declarations and may not really make sense for
|
||
// Rust code in the first place but whitelist them anyway and trust that
|
||
// the user knows what s/he's doing. Who knows, unanticipated use cases
|
||
// may pop up in the future.
|
||
//
|
||
// ghost, dllimport, dllexport and linkonce_odr_autohide are not supported
|
||
// and don't have to be, LLVM treats them as no-ops.
|
||
match name {
|
||
"appending" => Some(llvm::AppendingLinkage),
|
||
"available_externally" => Some(llvm::AvailableExternallyLinkage),
|
||
"common" => Some(llvm::CommonLinkage),
|
||
"extern_weak" => Some(llvm::ExternalWeakLinkage),
|
||
"external" => Some(llvm::ExternalLinkage),
|
||
"internal" => Some(llvm::InternalLinkage),
|
||
"linkonce" => Some(llvm::LinkOnceAnyLinkage),
|
||
"linkonce_odr" => Some(llvm::LinkOnceODRLinkage),
|
||
"private" => Some(llvm::PrivateLinkage),
|
||
"weak" => Some(llvm::WeakAnyLinkage),
|
||
"weak_odr" => Some(llvm::WeakODRLinkage),
|
||
_ => None,
|
||
}
|
||
}
|
||
|
||
|
||
/// Enum describing the origin of an LLVM `Value`, for linkage purposes.
|
||
#[derive(Copy, Clone)]
|
||
pub enum ValueOrigin {
|
||
/// The LLVM `Value` is in this context because the corresponding item was
|
||
/// assigned to the current compilation unit.
|
||
OriginalTranslation,
|
||
/// The `Value`'s corresponding item was assigned to some other compilation
|
||
/// unit, but the `Value` was translated in this context anyway because the
|
||
/// item is marked `#[inline]`.
|
||
InlinedCopy,
|
||
}
|
||
|
||
/// Set the appropriate linkage for an LLVM `ValueRef` (function or global).
|
||
/// If the `llval` is the direct translation of a specific Rust item, `id`
|
||
/// should be set to the `NodeId` of that item. (This mapping should be
|
||
/// 1-to-1, so monomorphizations and drop/visit glue should have `id` set to
|
||
/// `None`.) `llval_origin` indicates whether `llval` is the translation of an
|
||
/// item assigned to `ccx`'s compilation unit or an inlined copy of an item
|
||
/// assigned to a different compilation unit.
|
||
pub fn update_linkage(ccx: &CrateContext,
|
||
llval: ValueRef,
|
||
id: Option<ast::NodeId>,
|
||
llval_origin: ValueOrigin) {
|
||
match llval_origin {
|
||
InlinedCopy => {
|
||
// `llval` is a translation of an item defined in a separate
|
||
// compilation unit. This only makes sense if there are at least
|
||
// two compilation units.
|
||
assert!(ccx.sess().opts.cg.codegen_units > 1);
|
||
// `llval` is a copy of something defined elsewhere, so use
|
||
// `AvailableExternallyLinkage` to avoid duplicating code in the
|
||
// output.
|
||
llvm::SetLinkage(llval, llvm::AvailableExternallyLinkage);
|
||
return;
|
||
},
|
||
OriginalTranslation => {},
|
||
}
|
||
|
||
if let Some(id) = id {
|
||
let item = ccx.tcx().map.get(id);
|
||
if let hir_map::NodeItem(i) = item {
|
||
if let Some(name) = attr::first_attr_value_str_by_name(&i.attrs, "linkage") {
|
||
if let Some(linkage) = llvm_linkage_by_name(&name) {
|
||
llvm::SetLinkage(llval, linkage);
|
||
} else {
|
||
ccx.sess().span_fatal(i.span, "invalid linkage specified");
|
||
}
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
|
||
match id {
|
||
Some(id) if ccx.reachable().contains(&id) => {
|
||
llvm::SetLinkage(llval, llvm::ExternalLinkage);
|
||
},
|
||
_ => {
|
||
// `id` does not refer to an item in `ccx.reachable`.
|
||
if ccx.sess().opts.cg.codegen_units > 1 {
|
||
llvm::SetLinkage(llval, llvm::ExternalLinkage);
|
||
} else {
|
||
llvm::SetLinkage(llval, llvm::InternalLinkage);
|
||
}
|
||
},
|
||
}
|
||
}
|
||
|
||
fn set_global_section(ccx: &CrateContext, llval: ValueRef, i: &hir::Item) {
|
||
match attr::first_attr_value_str_by_name(&i.attrs, "link_section") {
|
||
Some(sect) => {
|
||
if contains_null(§) {
|
||
ccx.sess().fatal(&format!("Illegal null byte in link_section value: `{}`", §));
|
||
}
|
||
unsafe {
|
||
let buf = CString::new(sect.as_bytes()).unwrap();
|
||
llvm::LLVMSetSection(llval, buf.as_ptr());
|
||
}
|
||
},
|
||
None => ()
|
||
}
|
||
}
|
||
|
||
pub fn trans_item(ccx: &CrateContext, item: &hir::Item) {
|
||
let _icx = push_ctxt("trans_item");
|
||
|
||
let from_external = ccx.external_srcs().borrow().contains_key(&item.id);
|
||
|
||
match item.node {
|
||
hir::ItemFn(ref decl, _, _, abi, ref generics, ref body) => {
|
||
if !generics.is_type_parameterized() {
|
||
let trans_everywhere = attr::requests_inline(&item.attrs);
|
||
// Ignore `trans_everywhere` for cross-crate inlined items
|
||
// (`from_external`). `trans_item` will be called once for each
|
||
// compilation unit that references the item, so it will still get
|
||
// translated everywhere it's needed.
|
||
for (ref ccx, is_origin) in ccx.maybe_iter(!from_external && trans_everywhere) {
|
||
let llfn = get_item_val(ccx, item.id);
|
||
let empty_substs = ccx.tcx().mk_substs(Substs::trans_empty());
|
||
if abi != Rust {
|
||
foreign::trans_rust_fn_with_foreign_abi(ccx,
|
||
&**decl,
|
||
&**body,
|
||
&item.attrs,
|
||
llfn,
|
||
empty_substs,
|
||
item.id,
|
||
None);
|
||
} else {
|
||
trans_fn(ccx,
|
||
&**decl,
|
||
&**body,
|
||
llfn,
|
||
empty_substs,
|
||
item.id,
|
||
&item.attrs);
|
||
}
|
||
set_global_section(ccx, llfn, item);
|
||
update_linkage(ccx,
|
||
llfn,
|
||
Some(item.id),
|
||
if is_origin {
|
||
OriginalTranslation
|
||
} else {
|
||
InlinedCopy
|
||
});
|
||
|
||
if is_entry_fn(ccx.sess(), item.id) {
|
||
create_entry_wrapper(ccx, item.span, llfn);
|
||
// check for the #[rustc_error] annotation, which forces an
|
||
// error in trans. This is used to write compile-fail tests
|
||
// that actually test that compilation succeeds without
|
||
// reporting an error.
|
||
let item_def_id = ccx.tcx().map.local_def_id(item.id);
|
||
if ccx.tcx().has_attr(item_def_id, "rustc_error") {
|
||
ccx.tcx().sess.span_fatal(item.span, "compilation successful");
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
hir::ItemImpl(_, _, ref generics, _, _, ref impl_items) => {
|
||
meth::trans_impl(ccx, item.name, impl_items, generics, item.id);
|
||
}
|
||
hir::ItemMod(_) => {
|
||
// modules have no equivalent at runtime, they just affect
|
||
// the mangled names of things contained within
|
||
}
|
||
hir::ItemEnum(ref enum_definition, ref gens) => {
|
||
if gens.ty_params.is_empty() {
|
||
// sizes only make sense for non-generic types
|
||
|
||
enum_variant_size_lint(ccx, enum_definition, item.span, item.id);
|
||
}
|
||
}
|
||
hir::ItemConst(..) => {}
|
||
hir::ItemStatic(_, m, ref expr) => {
|
||
let g = match consts::trans_static(ccx, m, expr, item.id, &item.attrs) {
|
||
Ok(g) => g,
|
||
Err(err) => ccx.tcx().sess.span_fatal(expr.span, &err.description()),
|
||
};
|
||
set_global_section(ccx, g, item);
|
||
update_linkage(ccx, g, Some(item.id), OriginalTranslation);
|
||
}
|
||
hir::ItemForeignMod(ref foreign_mod) => {
|
||
foreign::trans_foreign_mod(ccx, foreign_mod);
|
||
}
|
||
hir::ItemTrait(..) => {}
|
||
_ => {
|
||
// fall through
|
||
}
|
||
}
|
||
}
|
||
|
||
// only use this for foreign function ABIs and glue, use `register_fn` for Rust functions
|
||
pub fn register_fn_llvmty(ccx: &CrateContext,
|
||
sp: Span,
|
||
sym: String,
|
||
node_id: ast::NodeId,
|
||
cc: llvm::CallConv,
|
||
llfty: Type)
|
||
-> ValueRef {
|
||
debug!("register_fn_llvmty id={} sym={}", node_id, sym);
|
||
|
||
let llfn = declare::define_fn(ccx, &sym[..], cc, llfty,
|
||
ty::FnConverging(ccx.tcx().mk_nil())).unwrap_or_else(||{
|
||
ccx.sess().span_fatal(sp, &format!("symbol `{}` is already defined", sym));
|
||
});
|
||
finish_register_fn(ccx, sym, node_id);
|
||
llfn
|
||
}
|
||
|
||
fn finish_register_fn(ccx: &CrateContext, sym: String, node_id: ast::NodeId) {
|
||
ccx.item_symbols().borrow_mut().insert(node_id, sym);
|
||
}
|
||
|
||
fn register_fn<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
||
sp: Span,
|
||
sym: String,
|
||
node_id: ast::NodeId,
|
||
node_type: Ty<'tcx>)
|
||
-> ValueRef {
|
||
if let ty::TyBareFn(_, ref f) = node_type.sty {
|
||
if f.abi != Rust && f.abi != RustCall {
|
||
ccx.sess().span_bug(sp,
|
||
&format!("only the `{}` or `{}` calling conventions are valid \
|
||
for this function; `{}` was specified",
|
||
Rust.name(),
|
||
RustCall.name(),
|
||
f.abi.name()));
|
||
}
|
||
} else {
|
||
ccx.sess().span_bug(sp, "expected bare rust function")
|
||
}
|
||
|
||
let llfn = declare::define_rust_fn(ccx, &sym[..], node_type).unwrap_or_else(|| {
|
||
ccx.sess().span_fatal(sp, &format!("symbol `{}` is already defined", sym));
|
||
});
|
||
finish_register_fn(ccx, sym, node_id);
|
||
llfn
|
||
}
|
||
|
||
pub fn is_entry_fn(sess: &Session, node_id: ast::NodeId) -> bool {
|
||
match *sess.entry_fn.borrow() {
|
||
Some((entry_id, _)) => node_id == entry_id,
|
||
None => false,
|
||
}
|
||
}
|
||
|
||
/// Create the `main` function which will initialise the rust runtime and call users’ main
|
||
/// function.
|
||
pub fn create_entry_wrapper(ccx: &CrateContext, sp: Span, main_llfn: ValueRef) {
|
||
let et = ccx.sess().entry_type.get().unwrap();
|
||
match et {
|
||
config::EntryMain => {
|
||
create_entry_fn(ccx, sp, main_llfn, true);
|
||
}
|
||
config::EntryStart => create_entry_fn(ccx, sp, main_llfn, false),
|
||
config::EntryNone => {} // Do nothing.
|
||
}
|
||
|
||
fn create_entry_fn(ccx: &CrateContext,
|
||
sp: Span,
|
||
rust_main: ValueRef,
|
||
use_start_lang_item: bool) {
|
||
let llfty = Type::func(&[ccx.int_type(), Type::i8p(ccx).ptr_to()], &ccx.int_type());
|
||
|
||
let llfn = declare::define_cfn(ccx, "main", llfty, ccx.tcx().mk_nil()).unwrap_or_else(|| {
|
||
ccx.sess().span_err(sp, "entry symbol `main` defined multiple times");
|
||
// FIXME: We should be smart and show a better diagnostic here.
|
||
ccx.sess().help("did you use #[no_mangle] on `fn main`? Use #[start] instead");
|
||
ccx.sess().abort_if_errors();
|
||
panic!();
|
||
});
|
||
|
||
let llbb = unsafe {
|
||
llvm::LLVMAppendBasicBlockInContext(ccx.llcx(), llfn, "top\0".as_ptr() as *const _)
|
||
};
|
||
let bld = ccx.raw_builder();
|
||
unsafe {
|
||
llvm::LLVMPositionBuilderAtEnd(bld, llbb);
|
||
|
||
debuginfo::gdb::insert_reference_to_gdb_debug_scripts_section_global(ccx);
|
||
|
||
let (start_fn, args) = if use_start_lang_item {
|
||
let start_def_id = match ccx.tcx().lang_items.require(StartFnLangItem) {
|
||
Ok(id) => id,
|
||
Err(s) => {
|
||
ccx.sess().fatal(&s[..]);
|
||
}
|
||
};
|
||
let start_fn = if let Some(start_node_id) = ccx.tcx()
|
||
.map
|
||
.as_local_node_id(start_def_id) {
|
||
get_item_val(ccx, start_node_id)
|
||
} else {
|
||
let start_fn_type = ccx.tcx().lookup_item_type(start_def_id).ty;
|
||
trans_external_path(ccx, start_def_id, start_fn_type)
|
||
};
|
||
let args = {
|
||
let opaque_rust_main =
|
||
llvm::LLVMBuildPointerCast(bld,
|
||
rust_main,
|
||
Type::i8p(ccx).to_ref(),
|
||
"rust_main\0".as_ptr() as *const _);
|
||
|
||
vec![opaque_rust_main, get_param(llfn, 0), get_param(llfn, 1)]
|
||
};
|
||
(start_fn, args)
|
||
} else {
|
||
debug!("using user-defined start fn");
|
||
let args = vec![get_param(llfn, 0 as c_uint), get_param(llfn, 1 as c_uint)];
|
||
|
||
(rust_main, args)
|
||
};
|
||
|
||
let result = llvm::LLVMBuildCall(bld,
|
||
start_fn,
|
||
args.as_ptr(),
|
||
args.len() as c_uint,
|
||
noname());
|
||
|
||
llvm::LLVMBuildRet(bld, result);
|
||
}
|
||
}
|
||
}
|
||
|
||
fn exported_name<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
||
id: ast::NodeId,
|
||
ty: Ty<'tcx>,
|
||
attrs: &[ast::Attribute])
|
||
-> String {
|
||
match ccx.external_srcs().borrow().get(&id) {
|
||
Some(&did) => {
|
||
let sym = ccx.sess().cstore.item_symbol(did);
|
||
debug!("found item {} in other crate...", sym);
|
||
return sym;
|
||
}
|
||
None => {}
|
||
}
|
||
|
||
match attr::find_export_name_attr(ccx.sess().diagnostic(), attrs) {
|
||
// Use provided name
|
||
Some(name) => name.to_string(),
|
||
_ => {
|
||
let path = ccx.tcx().map.def_path_from_id(id);
|
||
if attr::contains_name(attrs, "no_mangle") {
|
||
// Don't mangle
|
||
path.last().unwrap().data.to_string()
|
||
} else {
|
||
match weak_lang_items::link_name(attrs) {
|
||
Some(name) => name.to_string(),
|
||
None => {
|
||
// Usual name mangling
|
||
mangle_exported_name(ccx, path, ty, id)
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
fn contains_null(s: &str) -> bool {
|
||
s.bytes().any(|b| b == 0)
|
||
}
|
||
|
||
pub fn get_item_val(ccx: &CrateContext, id: ast::NodeId) -> ValueRef {
|
||
debug!("get_item_val(id=`{}`)", id);
|
||
|
||
match ccx.item_vals().borrow().get(&id).cloned() {
|
||
Some(v) => return v,
|
||
None => {}
|
||
}
|
||
|
||
let item = ccx.tcx().map.get(id);
|
||
debug!("get_item_val: id={} item={:?}", id, item);
|
||
let val = match item {
|
||
hir_map::NodeItem(i) => {
|
||
let ty = ccx.tcx().node_id_to_type(i.id);
|
||
let sym = || exported_name(ccx, id, ty, &i.attrs);
|
||
|
||
let v = match i.node {
|
||
hir::ItemStatic(..) => {
|
||
// If this static came from an external crate, then
|
||
// we need to get the symbol from metadata instead of
|
||
// using the current crate's name/version
|
||
// information in the hash of the symbol
|
||
let sym = sym();
|
||
debug!("making {}", sym);
|
||
|
||
// Create the global before evaluating the initializer;
|
||
// this is necessary to allow recursive statics.
|
||
let llty = type_of(ccx, ty);
|
||
let g = declare::define_global(ccx, &sym[..], llty).unwrap_or_else(|| {
|
||
ccx.sess()
|
||
.span_fatal(i.span, &format!("symbol `{}` is already defined", sym))
|
||
});
|
||
|
||
ccx.item_symbols().borrow_mut().insert(i.id, sym);
|
||
g
|
||
}
|
||
|
||
hir::ItemFn(_, _, _, abi, _, _) => {
|
||
let sym = sym();
|
||
let llfn = if abi == Rust {
|
||
register_fn(ccx, i.span, sym, i.id, ty)
|
||
} else {
|
||
foreign::register_rust_fn_with_foreign_abi(ccx, i.span, sym, i.id)
|
||
};
|
||
attributes::from_fn_attrs(ccx, &i.attrs, llfn);
|
||
llfn
|
||
}
|
||
|
||
_ => ccx.sess().bug("get_item_val: weird result in table"),
|
||
};
|
||
|
||
v
|
||
}
|
||
|
||
hir_map::NodeTraitItem(trait_item) => {
|
||
debug!("get_item_val(): processing a NodeTraitItem");
|
||
match trait_item.node {
|
||
hir::MethodTraitItem(_, Some(_)) => {
|
||
register_method(ccx, id, &trait_item.attrs, trait_item.span)
|
||
}
|
||
_ => {
|
||
ccx.sess().span_bug(trait_item.span,
|
||
"unexpected variant: trait item other than a provided \
|
||
method in get_item_val()");
|
||
}
|
||
}
|
||
}
|
||
|
||
hir_map::NodeImplItem(impl_item) => {
|
||
match impl_item.node {
|
||
hir::ImplItemKind::Method(..) => {
|
||
register_method(ccx, id, &impl_item.attrs, impl_item.span)
|
||
}
|
||
_ => {
|
||
ccx.sess().span_bug(impl_item.span,
|
||
"unexpected variant: non-method impl item in \
|
||
get_item_val()");
|
||
}
|
||
}
|
||
}
|
||
|
||
hir_map::NodeForeignItem(ni) => {
|
||
match ni.node {
|
||
hir::ForeignItemFn(..) => {
|
||
let abi = ccx.tcx().map.get_foreign_abi(id);
|
||
let ty = ccx.tcx().node_id_to_type(ni.id);
|
||
let name = foreign::link_name(&*ni);
|
||
foreign::register_foreign_item_fn(ccx, abi, ty, &name, &ni.attrs)
|
||
}
|
||
hir::ForeignItemStatic(..) => {
|
||
foreign::register_static(ccx, &*ni)
|
||
}
|
||
}
|
||
}
|
||
|
||
hir_map::NodeVariant(ref v) => {
|
||
let llfn;
|
||
let fields = if v.node.data.is_struct() {
|
||
ccx.sess().bug("struct variant kind unexpected in get_item_val")
|
||
} else {
|
||
v.node.data.fields()
|
||
};
|
||
assert!(!fields.is_empty());
|
||
let ty = ccx.tcx().node_id_to_type(id);
|
||
let parent = ccx.tcx().map.get_parent(id);
|
||
let enm = ccx.tcx().map.expect_item(parent);
|
||
let sym = exported_name(ccx, id, ty, &enm.attrs);
|
||
|
||
llfn = match enm.node {
|
||
hir::ItemEnum(_, _) => {
|
||
register_fn(ccx, (*v).span, sym, id, ty)
|
||
}
|
||
_ => ccx.sess().bug("NodeVariant, shouldn't happen"),
|
||
};
|
||
attributes::inline(llfn, attributes::InlineAttr::Hint);
|
||
llfn
|
||
}
|
||
|
||
hir_map::NodeStructCtor(struct_def) => {
|
||
// Only register the constructor if this is a tuple-like struct.
|
||
let ctor_id = if struct_def.is_struct() {
|
||
ccx.sess().bug("attempt to register a constructor of a non-tuple-like struct")
|
||
} else {
|
||
struct_def.id()
|
||
};
|
||
let parent = ccx.tcx().map.get_parent(id);
|
||
let struct_item = ccx.tcx().map.expect_item(parent);
|
||
let ty = ccx.tcx().node_id_to_type(ctor_id);
|
||
let sym = exported_name(ccx, id, ty, &struct_item.attrs);
|
||
let llfn = register_fn(ccx, struct_item.span, sym, ctor_id, ty);
|
||
attributes::inline(llfn, attributes::InlineAttr::Hint);
|
||
llfn
|
||
}
|
||
|
||
ref variant => {
|
||
ccx.sess().bug(&format!("get_item_val(): unexpected variant: {:?}", variant))
|
||
}
|
||
};
|
||
|
||
// All LLVM globals and functions are initially created as external-linkage
|
||
// declarations. If `trans_item`/`trans_fn` later turns the declaration
|
||
// into a definition, it adjusts the linkage then (using `update_linkage`).
|
||
//
|
||
// The exception is foreign items, which have their linkage set inside the
|
||
// call to `foreign::register_*` above. We don't touch the linkage after
|
||
// that (`foreign::trans_foreign_mod` doesn't adjust the linkage like the
|
||
// other item translation functions do).
|
||
|
||
ccx.item_vals().borrow_mut().insert(id, val);
|
||
val
|
||
}
|
||
|
||
fn register_method(ccx: &CrateContext,
|
||
id: ast::NodeId,
|
||
attrs: &[ast::Attribute],
|
||
span: Span)
|
||
-> ValueRef {
|
||
let mty = ccx.tcx().node_id_to_type(id);
|
||
|
||
let sym = exported_name(ccx, id, mty, &attrs);
|
||
|
||
if let ty::TyBareFn(_, ref f) = mty.sty {
|
||
let llfn = if f.abi == Rust || f.abi == RustCall {
|
||
register_fn(ccx, span, sym, id, mty)
|
||
} else {
|
||
foreign::register_rust_fn_with_foreign_abi(ccx, span, sym, id)
|
||
};
|
||
attributes::from_fn_attrs(ccx, &attrs, llfn);
|
||
return llfn;
|
||
} else {
|
||
ccx.sess().span_bug(span, "expected bare rust function");
|
||
}
|
||
}
|
||
|
||
pub fn write_metadata<'a, 'tcx>(cx: &SharedCrateContext<'a, 'tcx>,
|
||
krate: &hir::Crate,
|
||
reachable: &NodeSet,
|
||
mir_map: &MirMap<'tcx>)
|
||
-> Vec<u8> {
|
||
use flate;
|
||
|
||
let any_library = cx.sess()
|
||
.crate_types
|
||
.borrow()
|
||
.iter()
|
||
.any(|ty| *ty != config::CrateTypeExecutable);
|
||
if !any_library {
|
||
return Vec::new();
|
||
}
|
||
|
||
let cstore = &cx.tcx().sess.cstore;
|
||
let metadata = cstore.encode_metadata(cx.tcx(),
|
||
cx.export_map(),
|
||
cx.item_symbols(),
|
||
cx.link_meta(),
|
||
reachable,
|
||
mir_map,
|
||
krate);
|
||
let mut compressed = cstore.metadata_encoding_version().to_vec();
|
||
compressed.extend_from_slice(&flate::deflate_bytes(&metadata));
|
||
|
||
let llmeta = C_bytes_in_context(cx.metadata_llcx(), &compressed[..]);
|
||
let llconst = C_struct_in_context(cx.metadata_llcx(), &[llmeta], false);
|
||
let name = format!("rust_metadata_{}_{}",
|
||
cx.link_meta().crate_name,
|
||
cx.link_meta().crate_hash);
|
||
let buf = CString::new(name).unwrap();
|
||
let llglobal = unsafe {
|
||
llvm::LLVMAddGlobal(cx.metadata_llmod(), val_ty(llconst).to_ref(), buf.as_ptr())
|
||
};
|
||
unsafe {
|
||
llvm::LLVMSetInitializer(llglobal, llconst);
|
||
let name =
|
||
cx.tcx().sess.cstore.metadata_section_name(&cx.sess().target.target);
|
||
let name = CString::new(name).unwrap();
|
||
llvm::LLVMSetSection(llglobal, name.as_ptr())
|
||
}
|
||
return metadata;
|
||
}
|
||
|
||
/// Find any symbols that are defined in one compilation unit, but not declared
|
||
/// in any other compilation unit. Give these symbols internal linkage.
|
||
fn internalize_symbols(cx: &SharedCrateContext, reachable: &HashSet<&str>) {
|
||
unsafe {
|
||
let mut declared = HashSet::new();
|
||
|
||
// Collect all external declarations in all compilation units.
|
||
for ccx in cx.iter() {
|
||
for val in iter_globals(ccx.llmod()).chain(iter_functions(ccx.llmod())) {
|
||
let linkage = llvm::LLVMGetLinkage(val);
|
||
// We only care about external declarations (not definitions)
|
||
// and available_externally definitions.
|
||
if !(linkage == llvm::ExternalLinkage as c_uint &&
|
||
llvm::LLVMIsDeclaration(val) != 0) &&
|
||
!(linkage == llvm::AvailableExternallyLinkage as c_uint) {
|
||
continue;
|
||
}
|
||
|
||
let name = CStr::from_ptr(llvm::LLVMGetValueName(val))
|
||
.to_bytes()
|
||
.to_vec();
|
||
declared.insert(name);
|
||
}
|
||
}
|
||
|
||
// Examine each external definition. If the definition is not used in
|
||
// any other compilation unit, and is not reachable from other crates,
|
||
// then give it internal linkage.
|
||
for ccx in cx.iter() {
|
||
for val in iter_globals(ccx.llmod()).chain(iter_functions(ccx.llmod())) {
|
||
// We only care about external definitions.
|
||
if !(llvm::LLVMGetLinkage(val) == llvm::ExternalLinkage as c_uint &&
|
||
llvm::LLVMIsDeclaration(val) == 0) {
|
||
continue;
|
||
}
|
||
|
||
let name = CStr::from_ptr(llvm::LLVMGetValueName(val))
|
||
.to_bytes()
|
||
.to_vec();
|
||
if !declared.contains(&name) &&
|
||
!reachable.contains(str::from_utf8(&name).unwrap()) {
|
||
llvm::SetLinkage(val, llvm::InternalLinkage);
|
||
llvm::SetDLLStorageClass(val, llvm::DefaultStorageClass);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// Create a `__imp_<symbol> = &symbol` global for every public static `symbol`.
|
||
// This is required to satisfy `dllimport` references to static data in .rlibs
|
||
// when using MSVC linker. We do this only for data, as linker can fix up
|
||
// code references on its own.
|
||
// See #26591, #27438
|
||
fn create_imps(cx: &SharedCrateContext) {
|
||
// The x86 ABI seems to require that leading underscores are added to symbol
|
||
// names, so we need an extra underscore on 32-bit. There's also a leading
|
||
// '\x01' here which disables LLVM's symbol mangling (e.g. no extra
|
||
// underscores added in front).
|
||
let prefix = if cx.sess().target.target.target_pointer_width == "32" {
|
||
"\x01__imp__"
|
||
} else {
|
||
"\x01__imp_"
|
||
};
|
||
unsafe {
|
||
for ccx in cx.iter() {
|
||
let exported: Vec<_> = iter_globals(ccx.llmod())
|
||
.filter(|&val| {
|
||
llvm::LLVMGetLinkage(val) ==
|
||
llvm::ExternalLinkage as c_uint &&
|
||
llvm::LLVMIsDeclaration(val) == 0
|
||
})
|
||
.collect();
|
||
|
||
let i8p_ty = Type::i8p(&ccx);
|
||
for val in exported {
|
||
let name = CStr::from_ptr(llvm::LLVMGetValueName(val));
|
||
let mut imp_name = prefix.as_bytes().to_vec();
|
||
imp_name.extend(name.to_bytes());
|
||
let imp_name = CString::new(imp_name).unwrap();
|
||
let imp = llvm::LLVMAddGlobal(ccx.llmod(),
|
||
i8p_ty.to_ref(),
|
||
imp_name.as_ptr() as *const _);
|
||
let init = llvm::LLVMConstBitCast(val, i8p_ty.to_ref());
|
||
llvm::LLVMSetInitializer(imp, init);
|
||
llvm::SetLinkage(imp, llvm::ExternalLinkage);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
struct ValueIter {
|
||
cur: ValueRef,
|
||
step: unsafe extern "C" fn(ValueRef) -> ValueRef,
|
||
}
|
||
|
||
impl Iterator for ValueIter {
|
||
type Item = ValueRef;
|
||
|
||
fn next(&mut self) -> Option<ValueRef> {
|
||
let old = self.cur;
|
||
if !old.is_null() {
|
||
self.cur = unsafe { (self.step)(old) };
|
||
Some(old)
|
||
} else {
|
||
None
|
||
}
|
||
}
|
||
}
|
||
|
||
fn iter_globals(llmod: llvm::ModuleRef) -> ValueIter {
|
||
unsafe {
|
||
ValueIter {
|
||
cur: llvm::LLVMGetFirstGlobal(llmod),
|
||
step: llvm::LLVMGetNextGlobal,
|
||
}
|
||
}
|
||
}
|
||
|
||
fn iter_functions(llmod: llvm::ModuleRef) -> ValueIter {
|
||
unsafe {
|
||
ValueIter {
|
||
cur: llvm::LLVMGetFirstFunction(llmod),
|
||
step: llvm::LLVMGetNextFunction,
|
||
}
|
||
}
|
||
}
|
||
|
||
/// The context provided lists a set of reachable ids as calculated by
|
||
/// middle::reachable, but this contains far more ids and symbols than we're
|
||
/// actually exposing from the object file. This function will filter the set in
|
||
/// the context to the set of ids which correspond to symbols that are exposed
|
||
/// from the object file being generated.
|
||
///
|
||
/// This list is later used by linkers to determine the set of symbols needed to
|
||
/// be exposed from a dynamic library and it's also encoded into the metadata.
|
||
pub fn filter_reachable_ids(ccx: &SharedCrateContext) -> NodeSet {
|
||
ccx.reachable().iter().map(|x| *x).filter(|id| {
|
||
// First, only worry about nodes which have a symbol name
|
||
ccx.item_symbols().borrow().contains_key(id)
|
||
}).filter(|&id| {
|
||
// Next, we want to ignore some FFI functions that are not exposed from
|
||
// this crate. Reachable FFI functions can be lumped into two
|
||
// categories:
|
||
//
|
||
// 1. Those that are included statically via a static library
|
||
// 2. Those included otherwise (e.g. dynamically or via a framework)
|
||
//
|
||
// Although our LLVM module is not literally emitting code for the
|
||
// statically included symbols, it's an export of our library which
|
||
// needs to be passed on to the linker and encoded in the metadata.
|
||
//
|
||
// As a result, if this id is an FFI item (foreign item) then we only
|
||
// let it through if it's included statically.
|
||
match ccx.tcx().map.get(id) {
|
||
hir_map::NodeForeignItem(..) => {
|
||
ccx.sess().cstore.is_statically_included_foreign_item(id)
|
||
}
|
||
_ => true,
|
||
}
|
||
}).collect()
|
||
}
|
||
|
||
pub fn trans_crate<'tcx>(tcx: &ty::ctxt<'tcx>,
|
||
mir_map: &MirMap<'tcx>,
|
||
analysis: ty::CrateAnalysis)
|
||
-> CrateTranslation {
|
||
let ty::CrateAnalysis { export_map, reachable, name, .. } = analysis;
|
||
let krate = tcx.map.krate();
|
||
|
||
let check_overflow = if let Some(v) = tcx.sess.opts.debugging_opts.force_overflow_checks {
|
||
v
|
||
} else {
|
||
tcx.sess.opts.debug_assertions
|
||
};
|
||
|
||
let check_dropflag = if let Some(v) = tcx.sess.opts.debugging_opts.force_dropflag_checks {
|
||
v
|
||
} else {
|
||
tcx.sess.opts.debug_assertions
|
||
};
|
||
|
||
// Before we touch LLVM, make sure that multithreading is enabled.
|
||
unsafe {
|
||
use std::sync::Once;
|
||
static INIT: Once = Once::new();
|
||
static mut POISONED: bool = false;
|
||
INIT.call_once(|| {
|
||
if llvm::LLVMStartMultithreaded() != 1 {
|
||
// use an extra bool to make sure that all future usage of LLVM
|
||
// cannot proceed despite the Once not running more than once.
|
||
POISONED = true;
|
||
}
|
||
|
||
::back::write::configure_llvm(&tcx.sess);
|
||
});
|
||
|
||
if POISONED {
|
||
tcx.sess.bug("couldn't enable multi-threaded LLVM");
|
||
}
|
||
}
|
||
|
||
let link_meta = link::build_link_meta(&tcx.sess, krate, name);
|
||
|
||
let codegen_units = tcx.sess.opts.cg.codegen_units;
|
||
let shared_ccx = SharedCrateContext::new(&link_meta.crate_name,
|
||
codegen_units,
|
||
tcx,
|
||
&mir_map,
|
||
export_map,
|
||
Sha256::new(),
|
||
link_meta.clone(),
|
||
reachable,
|
||
check_overflow,
|
||
check_dropflag);
|
||
|
||
{
|
||
let ccx = shared_ccx.get_ccx(0);
|
||
|
||
// First, verify intrinsics.
|
||
intrinsic::check_intrinsics(&ccx);
|
||
|
||
// Next, translate all items. See `TransModVisitor` for
|
||
// details on why we walk in this particular way.
|
||
{
|
||
let _icx = push_ctxt("text");
|
||
intravisit::walk_mod(&mut TransItemsWithinModVisitor { ccx: &ccx }, &krate.module);
|
||
krate.visit_all_items(&mut TransModVisitor { ccx: &ccx });
|
||
}
|
||
}
|
||
|
||
for ccx in shared_ccx.iter() {
|
||
if ccx.sess().opts.debuginfo != NoDebugInfo {
|
||
debuginfo::finalize(&ccx);
|
||
}
|
||
for &(old_g, new_g) in ccx.statics_to_rauw().borrow().iter() {
|
||
unsafe {
|
||
let bitcast = llvm::LLVMConstPointerCast(new_g, llvm::LLVMTypeOf(old_g));
|
||
llvm::LLVMReplaceAllUsesWith(old_g, bitcast);
|
||
llvm::LLVMDeleteGlobal(old_g);
|
||
}
|
||
}
|
||
}
|
||
|
||
let reachable_symbol_ids = filter_reachable_ids(&shared_ccx);
|
||
|
||
// Translate the metadata.
|
||
let metadata = write_metadata(&shared_ccx, krate, &reachable_symbol_ids, mir_map);
|
||
|
||
if shared_ccx.sess().trans_stats() {
|
||
let stats = shared_ccx.stats();
|
||
println!("--- trans stats ---");
|
||
println!("n_glues_created: {}", stats.n_glues_created.get());
|
||
println!("n_null_glues: {}", stats.n_null_glues.get());
|
||
println!("n_real_glues: {}", stats.n_real_glues.get());
|
||
|
||
println!("n_fns: {}", stats.n_fns.get());
|
||
println!("n_monos: {}", stats.n_monos.get());
|
||
println!("n_inlines: {}", stats.n_inlines.get());
|
||
println!("n_closures: {}", stats.n_closures.get());
|
||
println!("fn stats:");
|
||
stats.fn_stats.borrow_mut().sort_by(|&(_, insns_a), &(_, insns_b)| {
|
||
insns_b.cmp(&insns_a)
|
||
});
|
||
for tuple in stats.fn_stats.borrow().iter() {
|
||
match *tuple {
|
||
(ref name, insns) => {
|
||
println!("{} insns, {}", insns, *name);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
if shared_ccx.sess().count_llvm_insns() {
|
||
for (k, v) in shared_ccx.stats().llvm_insns.borrow().iter() {
|
||
println!("{:7} {}", *v, *k);
|
||
}
|
||
}
|
||
|
||
let modules = shared_ccx.iter()
|
||
.map(|ccx| ModuleTranslation { llcx: ccx.llcx(), llmod: ccx.llmod() })
|
||
.collect();
|
||
|
||
let sess = shared_ccx.sess();
|
||
let mut reachable_symbols = reachable_symbol_ids.iter().map(|id| {
|
||
shared_ccx.item_symbols().borrow()[id].to_string()
|
||
}).collect::<Vec<_>>();
|
||
if sess.entry_fn.borrow().is_some() {
|
||
reachable_symbols.push("main".to_string());
|
||
}
|
||
|
||
// For the purposes of LTO, we add to the reachable set all of the upstream
|
||
// reachable extern fns. These functions are all part of the public ABI of
|
||
// the final product, so LTO needs to preserve them.
|
||
if sess.lto() {
|
||
for cnum in sess.cstore.crates() {
|
||
let syms = sess.cstore.reachable_ids(cnum);
|
||
reachable_symbols.extend(syms.into_iter().filter(|did| {
|
||
sess.cstore.is_extern_fn(shared_ccx.tcx(), *did) ||
|
||
sess.cstore.is_static(*did)
|
||
}).map(|did| {
|
||
sess.cstore.item_symbol(did)
|
||
}));
|
||
}
|
||
}
|
||
|
||
if codegen_units > 1 {
|
||
internalize_symbols(&shared_ccx,
|
||
&reachable_symbols.iter().map(|x| &x[..]).collect());
|
||
}
|
||
|
||
if sess.target.target.options.is_like_msvc &&
|
||
sess.crate_types.borrow().iter().any(|ct| *ct == config::CrateTypeRlib) {
|
||
create_imps(&shared_ccx);
|
||
}
|
||
|
||
let metadata_module = ModuleTranslation {
|
||
llcx: shared_ccx.metadata_llcx(),
|
||
llmod: shared_ccx.metadata_llmod(),
|
||
};
|
||
let no_builtins = attr::contains_name(&krate.attrs, "no_builtins");
|
||
|
||
CrateTranslation {
|
||
modules: modules,
|
||
metadata_module: metadata_module,
|
||
link: link_meta,
|
||
metadata: metadata,
|
||
reachable: reachable_symbols,
|
||
no_builtins: no_builtins,
|
||
}
|
||
}
|
||
|
||
/// We visit all the items in the krate and translate them. We do
|
||
/// this in two walks. The first walk just finds module items. It then
|
||
/// walks the full contents of those module items and translates all
|
||
/// the items within. Note that this entire process is O(n). The
|
||
/// reason for this two phased walk is that each module is
|
||
/// (potentially) placed into a distinct codegen-unit. This walk also
|
||
/// ensures that the immediate contents of each module is processed
|
||
/// entirely before we proceed to find more modules, helping to ensure
|
||
/// an equitable distribution amongst codegen-units.
|
||
pub struct TransModVisitor<'a, 'tcx: 'a> {
|
||
pub ccx: &'a CrateContext<'a, 'tcx>,
|
||
}
|
||
|
||
impl<'a, 'tcx, 'v> Visitor<'v> for TransModVisitor<'a, 'tcx> {
|
||
fn visit_item(&mut self, i: &hir::Item) {
|
||
match i.node {
|
||
hir::ItemMod(_) => {
|
||
let item_ccx = self.ccx.rotate();
|
||
intravisit::walk_item(&mut TransItemsWithinModVisitor { ccx: &item_ccx }, i);
|
||
}
|
||
_ => { }
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Translates all the items within a given module. Expects owner to
|
||
/// invoke `walk_item` on a module item. Ignores nested modules.
|
||
pub struct TransItemsWithinModVisitor<'a, 'tcx: 'a> {
|
||
pub ccx: &'a CrateContext<'a, 'tcx>,
|
||
}
|
||
|
||
impl<'a, 'tcx, 'v> Visitor<'v> for TransItemsWithinModVisitor<'a, 'tcx> {
|
||
fn visit_nested_item(&mut self, item_id: hir::ItemId) {
|
||
self.visit_item(self.ccx.tcx().map.expect_item(item_id.id));
|
||
}
|
||
|
||
fn visit_item(&mut self, i: &hir::Item) {
|
||
match i.node {
|
||
hir::ItemMod(..) => {
|
||
// skip modules, they will be uncovered by the TransModVisitor
|
||
}
|
||
_ => {
|
||
trans_item(self.ccx, i);
|
||
intravisit::walk_item(self, i);
|
||
}
|
||
}
|
||
}
|
||
}
|