rust/src/test/run-pass/augmented-assignments.rs
Ulrik Sverdrup a03222c2b1 Do not trigger unused_assignments for overloaded AssignOps
If `v` were a type with some kind of indirection, so that `v += 1` would
have an effect even if `v` were not used anymore, the unused_assignments lint
would mark a false positive.

This exempts overloaded (non-primitive) assign ops from being treated as
assignments (they are method calls).

The previous compile-fail tests that ensure x += 1 can trigger for
primitive types continue to pass. Added a representative test for the
"view" indirection.
2016-03-04 21:07:11 +01:00

180 lines
3.4 KiB
Rust

// Copyright 2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![deny(unused_assignments)]
use std::mem;
use std::ops::{
AddAssign, BitAndAssign, BitOrAssign, BitXorAssign, DivAssign, Index, MulAssign, RemAssign,
ShlAssign, ShrAssign, SubAssign,
};
#[derive(Debug, PartialEq)]
struct Int(i32);
struct Slice([i32]);
impl Slice {
fn new(slice: &mut [i32]) -> &mut Slice {
unsafe {
mem::transmute(slice)
}
}
}
struct View<'a>(&'a mut [i32]);
fn main() {
let mut x = Int(1);
x += Int(2);
assert_eq!(x, Int(0b11));
x &= Int(0b01);
assert_eq!(x, Int(0b01));
x |= Int(0b10);
assert_eq!(x, Int(0b11));
x ^= Int(0b01);
assert_eq!(x, Int(0b10));
x /= Int(2);
assert_eq!(x, Int(1));
x *= Int(3);
assert_eq!(x, Int(3));
x %= Int(2);
assert_eq!(x, Int(1));
// overloaded RHS
x <<= 1u8;
assert_eq!(x, Int(2));
x <<= 1u16;
assert_eq!(x, Int(4));
x >>= 1u8;
assert_eq!(x, Int(2));
x >>= 1u16;
assert_eq!(x, Int(1));
x -= Int(1);
assert_eq!(x, Int(0));
// indexed LHS
let mut v = vec![Int(1), Int(2)];
v[0] += Int(2);
assert_eq!(v[0], Int(3));
// unsized RHS
let mut array = [0, 1, 2];
*Slice::new(&mut array) += 1;
assert_eq!(array[0], 1);
assert_eq!(array[1], 2);
assert_eq!(array[2], 3);
// sized indirection
// check that this does *not* trigger the unused_assignments lint
let mut array = [0, 1, 2];
let mut view = View(&mut array);
view += 1;
}
impl AddAssign for Int {
fn add_assign(&mut self, rhs: Int) {
self.0 += rhs.0;
}
}
impl BitAndAssign for Int {
fn bitand_assign(&mut self, rhs: Int) {
self.0 &= rhs.0;
}
}
impl BitOrAssign for Int {
fn bitor_assign(&mut self, rhs: Int) {
self.0 |= rhs.0;
}
}
impl BitXorAssign for Int {
fn bitxor_assign(&mut self, rhs: Int) {
self.0 ^= rhs.0;
}
}
impl DivAssign for Int {
fn div_assign(&mut self, rhs: Int) {
self.0 /= rhs.0;
}
}
impl MulAssign for Int {
fn mul_assign(&mut self, rhs: Int) {
self.0 *= rhs.0;
}
}
impl RemAssign for Int {
fn rem_assign(&mut self, rhs: Int) {
self.0 %= rhs.0;
}
}
impl ShlAssign<u8> for Int {
fn shl_assign(&mut self, rhs: u8) {
self.0 <<= rhs;
}
}
impl ShlAssign<u16> for Int {
fn shl_assign(&mut self, rhs: u16) {
self.0 <<= rhs;
}
}
impl ShrAssign<u8> for Int {
fn shr_assign(&mut self, rhs: u8) {
self.0 >>= rhs;
}
}
impl ShrAssign<u16> for Int {
fn shr_assign(&mut self, rhs: u16) {
self.0 >>= rhs;
}
}
impl SubAssign for Int {
fn sub_assign(&mut self, rhs: Int) {
self.0 -= rhs.0;
}
}
impl AddAssign<i32> for Slice {
fn add_assign(&mut self, rhs: i32) {
for lhs in &mut self.0 {
*lhs += rhs;
}
}
}
impl<'a> AddAssign<i32> for View<'a> {
fn add_assign(&mut self, rhs: i32) {
for lhs in self.0.iter_mut() {
*lhs += rhs;
}
}
}