839 lines
27 KiB
Rust
839 lines
27 KiB
Rust
/**
|
|
Code that is useful in various trans modules.
|
|
|
|
*/
|
|
|
|
import std::int;
|
|
import std::str;
|
|
import std::uint;
|
|
import std::str::rustrt::sbuf;
|
|
import std::map;
|
|
import std::map::hashmap;
|
|
import std::option;
|
|
import std::option::some;
|
|
import std::option::none;
|
|
import std::fs;
|
|
import syntax::ast;
|
|
import syntax::walk;
|
|
import driver::session;
|
|
import middle::ty;
|
|
import back::link;
|
|
import back::x86;
|
|
import back::abi;
|
|
import back::upcall;
|
|
import syntax::visit;
|
|
import visit::vt;
|
|
import util::common;
|
|
import util::common::*;
|
|
import std::map::new_int_hash;
|
|
import std::map::new_str_hash;
|
|
import syntax::codemap::span;
|
|
import lib::llvm::llvm;
|
|
import lib::llvm::builder;
|
|
import lib::llvm::target_data;
|
|
import lib::llvm::type_names;
|
|
import lib::llvm::mk_target_data;
|
|
import lib::llvm::mk_type_names;
|
|
import lib::llvm::llvm::ModuleRef;
|
|
import lib::llvm::llvm::ValueRef;
|
|
import lib::llvm::llvm::TypeRef;
|
|
import lib::llvm::llvm::TypeHandleRef;
|
|
import lib::llvm::llvm::BuilderRef;
|
|
import lib::llvm::llvm::BasicBlockRef;
|
|
import lib::llvm::False;
|
|
import lib::llvm::True;
|
|
import lib::llvm::Bool;
|
|
import link::mangle_internal_name_by_type_only;
|
|
import link::mangle_internal_name_by_seq;
|
|
import link::mangle_internal_name_by_path;
|
|
import link::mangle_internal_name_by_path_and_seq;
|
|
import link::mangle_exported_name;
|
|
import metadata::creader;
|
|
import metadata::csearch;
|
|
import metadata::cstore;
|
|
import util::ppaux::ty_to_str;
|
|
import util::ppaux::ty_to_short_str;
|
|
import syntax::print::pprust::expr_to_str;
|
|
import syntax::print::pprust::path_to_str;
|
|
|
|
// FIXME: These should probably be pulled in here too.
|
|
import trans::type_of_fn_full;
|
|
import trans::drop_slot;
|
|
import trans::drop_ty;
|
|
|
|
obj namegen(mutable i: int) {
|
|
fn next(prefix: str) -> str { i += 1; ret prefix + int::str(i); }
|
|
}
|
|
|
|
type derived_tydesc_info = {lltydesc: ValueRef, escapes: bool};
|
|
|
|
type glue_fns = {no_op_type_glue: ValueRef};
|
|
|
|
type tydesc_info =
|
|
{ty: ty::t,
|
|
tydesc: ValueRef,
|
|
size: ValueRef,
|
|
align: ValueRef,
|
|
mutable copy_glue: option::t[ValueRef],
|
|
mutable drop_glue: option::t[ValueRef],
|
|
mutable free_glue: option::t[ValueRef],
|
|
mutable cmp_glue: option::t[ValueRef],
|
|
ty_params: uint[]};
|
|
|
|
/*
|
|
* A note on nomenclature of linking: "upcall", "extern" and "native".
|
|
*
|
|
* An "extern" is an LLVM symbol we wind up emitting an undefined external
|
|
* reference to. This means "we don't have the thing in this compilation unit,
|
|
* please make sure you link it in at runtime". This could be a reference to
|
|
* C code found in a C library, or rust code found in a rust crate.
|
|
*
|
|
* A "native" is an extern that references C code. Called with cdecl.
|
|
*
|
|
* An upcall is a native call generated by the compiler (not corresponding to
|
|
* any user-written call in the code) into librustrt, to perform some helper
|
|
* task such as bringing a task to life, allocating memory, etc.
|
|
*
|
|
*/
|
|
type stats =
|
|
{mutable n_static_tydescs: uint,
|
|
mutable n_derived_tydescs: uint,
|
|
mutable n_glues_created: uint,
|
|
mutable n_null_glues: uint,
|
|
mutable n_real_glues: uint,
|
|
fn_times: @mutable {ident: str, time: int}[]};
|
|
|
|
// Crate context. Every crate we compile has one of these.
|
|
type crate_ctxt =
|
|
|
|
// A mapping from the def_id of each item in this crate to the address
|
|
// of the first instruction of the item's definition in the executable
|
|
// we're generating.
|
|
|
|
// TODO: hashmap[tup(tag_id,subtys), @tag_info]
|
|
{sess: session::session,
|
|
llmod: ModuleRef,
|
|
td: target_data,
|
|
tn: type_names,
|
|
externs: hashmap[str, ValueRef],
|
|
intrinsics: hashmap[str, ValueRef],
|
|
item_ids: hashmap[ast::node_id, ValueRef],
|
|
ast_map: ast_map::map,
|
|
item_symbols: hashmap[ast::node_id, str],
|
|
mutable main_fn: option::t[ValueRef],
|
|
link_meta: link::link_meta,
|
|
tag_sizes: hashmap[ty::t, uint],
|
|
discrims: hashmap[ast::node_id, ValueRef],
|
|
discrim_symbols: hashmap[ast::node_id, str],
|
|
fn_pairs: hashmap[ast::node_id, ValueRef],
|
|
consts: hashmap[ast::node_id, ValueRef],
|
|
obj_methods: hashmap[ast::node_id, ()],
|
|
tydescs: hashmap[ty::t, @tydesc_info],
|
|
module_data: hashmap[str, ValueRef],
|
|
lltypes: hashmap[ty::t, TypeRef],
|
|
glues: @glue_fns,
|
|
names: namegen,
|
|
sha: std::sha1::sha1,
|
|
type_sha1s: hashmap[ty::t, str],
|
|
type_short_names: hashmap[ty::t, str],
|
|
tcx: ty::ctxt,
|
|
stats: stats,
|
|
upcalls: @upcall::upcalls,
|
|
rust_object_type: TypeRef,
|
|
tydesc_type: TypeRef,
|
|
task_type: TypeRef};
|
|
|
|
type local_ctxt =
|
|
{path: str[],
|
|
module_path: str[],
|
|
obj_typarams: ast::ty_param[],
|
|
obj_fields: ast::obj_field[],
|
|
ccx: @crate_ctxt};
|
|
|
|
// Types used for llself.
|
|
type val_self_pair = {v: ValueRef, t: ty::t};
|
|
|
|
// Function context. Every LLVM function we create will have one of these.
|
|
type fn_ctxt =
|
|
// The ValueRef returned from a call to llvm::LLVMAddFunction; the
|
|
// address of the first instruction in the sequence of instructions
|
|
// for this function that will go in the .text section of the
|
|
// executable we're generating.
|
|
|
|
// The three implicit arguments that arrive in the function we're
|
|
// creating. For instance, foo(int, int) is really foo(ret*, task*,
|
|
// env*, int, int). These are also available via
|
|
// llvm::LLVMGetParam(llfn, uint) where uint = 1, 2, 0 respectively,
|
|
// but we unpack them into these fields for convenience.
|
|
|
|
// Points to the current task.
|
|
|
|
// Points to the current environment (bindings of variables to
|
|
// values), if this is a regular function; points to the current
|
|
// object, if this is a method.
|
|
|
|
// Points to where the return value of this function should end up.
|
|
|
|
// The next three elements: "hoisted basic blocks" containing
|
|
// administrative activities that have to happen in only one place in
|
|
// the function, due to LLVM's quirks.
|
|
|
|
// A block for all the function's static allocas, so that LLVM will
|
|
// coalesce them into a single alloca call.
|
|
|
|
// A block containing code that copies incoming arguments to space
|
|
// already allocated by code in one of the llallocas blocks. (LLVM
|
|
// requires that arguments be copied to local allocas before allowing
|
|
// most any operation to be performed on them.)
|
|
|
|
// The first block containing derived tydescs received from the
|
|
// runtime. See description of derived_tydescs, below.
|
|
|
|
// The last block of the llderivedtydescs group.
|
|
|
|
// A block for all of the dynamically sized allocas. This must be
|
|
// after llderivedtydescs, because these sometimes depend on
|
|
// information computed from derived tydescs.
|
|
|
|
// FIXME: Is llcopyargs actually the block containing the allocas for
|
|
// incoming function arguments? Or is it merely the block containing
|
|
// code that copies incoming args to space already alloca'd by code in
|
|
// llallocas?
|
|
|
|
// The 'self' object currently in use in this function, if there is
|
|
// one.
|
|
|
|
// If this function is actually a iter, a block containing the code
|
|
// called whenever the iter calls 'put'.
|
|
|
|
// The next four items: hash tables mapping from AST def_ids to
|
|
// LLVM-stuff-in-the-frame.
|
|
|
|
// Maps arguments to allocas created for them in llallocas.
|
|
|
|
// Maps fields in objects to pointers into the interior of llself's
|
|
// body.
|
|
|
|
// Maps the def_ids for local variables to the allocas created for
|
|
// them in llallocas.
|
|
|
|
// The same as above, but for variables accessed via the frame pointer
|
|
// we pass into an iter, for access to the static environment of the
|
|
// iter-calling frame.
|
|
|
|
// For convenience, a vector of the incoming tydescs for each of this
|
|
// functions type parameters, fetched via llvm::LLVMGetParam. For
|
|
// example, for a function foo[A, B, C](), lltydescs contains the
|
|
// ValueRefs for the tydescs for A, B, and C.
|
|
|
|
// Derived tydescs are tydescs created at runtime, for types that
|
|
// involve type parameters inside type constructors. For example,
|
|
// suppose a function parameterized by T creates a vector of type
|
|
// [T]. The function doesn't know what T is until runtime, and the
|
|
// function's caller knows T but doesn't know that a vector is
|
|
// involved. So a tydesc for [T] can't be created until runtime,
|
|
// when information about both "[T]" and "T" are available. When such
|
|
// a tydesc is created, we cache it in the derived_tydescs table for
|
|
// the next time that such a tydesc is needed.
|
|
|
|
// The source span where this function comes from, for error
|
|
// reporting.
|
|
|
|
// This function's enclosing local context.
|
|
{llfn: ValueRef,
|
|
lltaskptr: ValueRef,
|
|
llenv: ValueRef,
|
|
llretptr: ValueRef,
|
|
mutable llstaticallocas: BasicBlockRef,
|
|
mutable llcopyargs: BasicBlockRef,
|
|
mutable llderivedtydescs_first: BasicBlockRef,
|
|
mutable llderivedtydescs: BasicBlockRef,
|
|
mutable lldynamicallocas: BasicBlockRef,
|
|
mutable llself: option::t[val_self_pair],
|
|
mutable lliterbody: option::t[ValueRef],
|
|
llargs: hashmap[ast::node_id, ValueRef],
|
|
llobjfields: hashmap[ast::node_id, ValueRef],
|
|
lllocals: hashmap[ast::node_id, ValueRef],
|
|
llupvars: hashmap[ast::node_id, ValueRef],
|
|
mutable lltydescs: ValueRef[],
|
|
derived_tydescs: hashmap[ty::t, derived_tydesc_info],
|
|
sp: span,
|
|
lcx: @local_ctxt};
|
|
|
|
tag cleanup {
|
|
clean(fn(&@block_ctxt) -> result );
|
|
clean_temp(ValueRef, fn(&@block_ctxt) -> result );
|
|
}
|
|
|
|
fn add_clean(cx: &@block_ctxt, val: ValueRef, ty: ty::t) {
|
|
find_scope_cx(cx).cleanups += ~[clean(bind drop_slot(_, val, ty))];
|
|
}
|
|
fn add_clean_temp(cx: &@block_ctxt, val: ValueRef, ty: ty::t) {
|
|
find_scope_cx(cx).cleanups +=
|
|
~[clean_temp(val, bind drop_ty(_, val, ty))];
|
|
}
|
|
|
|
// Note that this only works for temporaries. We should, at some point, move
|
|
// to a system where we can also cancel the cleanup on local variables, but
|
|
// this will be more involved. For now, we simply zero out the local, and the
|
|
// drop glue checks whether it is zero.
|
|
fn revoke_clean(cx: &@block_ctxt, val: ValueRef) {
|
|
let sc_cx = find_scope_cx(cx);
|
|
let found = -1;
|
|
let i = 0;
|
|
for c: cleanup in sc_cx.cleanups {
|
|
alt c {
|
|
clean_temp(v, _) {
|
|
if v as uint == val as uint { found = i; break; }
|
|
}
|
|
_ { }
|
|
}
|
|
i += 1;
|
|
}
|
|
// The value does not have a cleanup associated with it. Might be a
|
|
// constant or some immediate value.
|
|
if found == -1 { ret; }
|
|
// We found the cleanup and remove it
|
|
sc_cx.cleanups =
|
|
std::ivec::slice(sc_cx.cleanups, 0u, found as uint) +
|
|
std::ivec::slice(sc_cx.cleanups, (found as uint) + 1u,
|
|
std::ivec::len(sc_cx.cleanups));
|
|
}
|
|
|
|
tag block_kind {
|
|
|
|
|
|
// A scope block is a basic block created by translating a block { ... }
|
|
// the the source language. Since these blocks create variable scope, any
|
|
// variables created in them that are still live at the end of the block
|
|
// must be dropped and cleaned up when the block ends.
|
|
SCOPE_BLOCK;
|
|
|
|
|
|
// A basic block created from the body of a loop. Contains pointers to
|
|
// which block to jump to in the case of "continue" or "break", with the
|
|
// "continue" block optional, because "while" and "do while" don't support
|
|
// "continue" (TODO: is this intentional?)
|
|
LOOP_SCOPE_BLOCK(option::t[@block_ctxt], @block_ctxt);
|
|
|
|
|
|
// A non-scope block is a basic block created as a translation artifact
|
|
// from translating code that expresses conditional logic rather than by
|
|
// explicit { ... } block structure in the source language. It's called a
|
|
// non-scope block because it doesn't introduce a new variable scope.
|
|
NON_SCOPE_BLOCK;
|
|
}
|
|
|
|
|
|
// Basic block context. We create a block context for each basic block
|
|
// (single-entry, single-exit sequence of instructions) we generate from Rust
|
|
// code. Each basic block we generate is attached to a function, typically
|
|
// with many basic blocks per function. All the basic blocks attached to a
|
|
// function are organized as a directed graph.
|
|
type block_ctxt =
|
|
// The BasicBlockRef returned from a call to
|
|
// llvm::LLVMAppendBasicBlock(llfn, name), which adds a basic block to
|
|
// the function pointed to by llfn. We insert instructions into that
|
|
// block by way of this block context.
|
|
|
|
// The llvm::builder object serving as an interface to LLVM's
|
|
// LLVMBuild* functions.
|
|
|
|
// The block pointing to this one in the function's digraph.
|
|
|
|
// The 'kind' of basic block this is.
|
|
|
|
// A list of functions that run at the end of translating this block,
|
|
// cleaning up any variables that were introduced in the block and
|
|
// need to go out of scope at the end of it.
|
|
|
|
// The source span where this block comes from, for error reporting.
|
|
|
|
// The function context for the function to which this block is
|
|
// attached.
|
|
{llbb: BasicBlockRef,
|
|
build: builder,
|
|
parent: block_parent,
|
|
kind: block_kind,
|
|
mutable cleanups: cleanup[],
|
|
sp: span,
|
|
fcx: @fn_ctxt};
|
|
|
|
// FIXME: we should be able to use option::t[@block_parent] here but
|
|
// the infinite-tag check in rustboot gets upset.
|
|
tag block_parent { parent_none; parent_some(@block_ctxt); }
|
|
|
|
type result = {bcx: @block_ctxt, val: ValueRef};
|
|
type result_t = {bcx: @block_ctxt, val: ValueRef, ty: ty::t};
|
|
|
|
fn extend_path(cx: @local_ctxt, name: &str) -> @local_ctxt {
|
|
ret @{path: cx.path + ~[name] with *cx};
|
|
}
|
|
|
|
fn rslt(bcx: @block_ctxt, val: ValueRef) -> result {
|
|
ret {bcx: bcx, val: val};
|
|
}
|
|
|
|
fn ty_str(tn: type_names, t: TypeRef) -> str {
|
|
ret lib::llvm::type_to_str(tn, t);
|
|
}
|
|
|
|
fn val_ty(v: ValueRef) -> TypeRef { ret llvm::LLVMTypeOf(v); }
|
|
|
|
fn val_str(tn: type_names, v: ValueRef) -> str { ret ty_str(tn, val_ty(v)); }
|
|
|
|
// Returns the nth element of the given LLVM structure type.
|
|
fn struct_elt(llstructty: TypeRef, n: uint) -> TypeRef {
|
|
let elt_count = llvm::LLVMCountStructElementTypes(llstructty);
|
|
assert (n < elt_count);
|
|
let elt_tys = std::ivec::init_elt(T_nil(), elt_count);
|
|
llvm::LLVMGetStructElementTypes(llstructty, std::ivec::to_ptr(elt_tys));
|
|
ret llvm::LLVMGetElementType(elt_tys.(n));
|
|
}
|
|
|
|
fn find_scope_cx(cx: &@block_ctxt) -> @block_ctxt {
|
|
if cx.kind != NON_SCOPE_BLOCK { ret cx; }
|
|
alt cx.parent {
|
|
parent_some(b) { ret find_scope_cx(b); }
|
|
parent_none. {
|
|
cx.fcx.lcx.ccx.sess.bug("trans::find_scope_cx() " +
|
|
"called on parentless block_ctxt");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Accessors
|
|
// TODO: When we have overloading, simplify these names!
|
|
|
|
fn bcx_tcx(bcx: &@block_ctxt) -> ty::ctxt { ret bcx.fcx.lcx.ccx.tcx; }
|
|
fn bcx_ccx(bcx: &@block_ctxt) -> @crate_ctxt { ret bcx.fcx.lcx.ccx; }
|
|
fn bcx_lcx(bcx: &@block_ctxt) -> @local_ctxt { ret bcx.fcx.lcx; }
|
|
fn bcx_fcx(bcx: &@block_ctxt) -> @fn_ctxt { ret bcx.fcx; }
|
|
fn lcx_ccx(lcx: &@local_ctxt) -> @crate_ctxt { ret lcx.ccx; }
|
|
fn ccx_tcx(ccx: &@crate_ctxt) -> ty::ctxt { ret ccx.tcx; }
|
|
|
|
// LLVM type constructors.
|
|
fn T_void() -> TypeRef {
|
|
// Note: For the time being llvm is kinda busted here, it has the notion
|
|
// of a 'void' type that can only occur as part of the signature of a
|
|
// function, but no general unit type of 0-sized value. This is, afaict,
|
|
// vestigial from its C heritage, and we'll be attempting to submit a
|
|
// patch upstream to fix it. In the mean time we only model function
|
|
// outputs (Rust functions and C functions) using T_void, and model the
|
|
// Rust general purpose nil type you can construct as 1-bit (always
|
|
// zero). This makes the result incorrect for now -- things like a tuple
|
|
// of 10 nil values will have 10-bit size -- but it doesn't seem like we
|
|
// have any other options until it's fixed upstream.
|
|
|
|
ret llvm::LLVMVoidType();
|
|
}
|
|
|
|
fn T_nil() -> TypeRef {
|
|
// NB: See above in T_void().
|
|
|
|
ret llvm::LLVMInt1Type();
|
|
}
|
|
|
|
fn T_i1() -> TypeRef { ret llvm::LLVMInt1Type(); }
|
|
|
|
fn T_i8() -> TypeRef { ret llvm::LLVMInt8Type(); }
|
|
|
|
fn T_i16() -> TypeRef { ret llvm::LLVMInt16Type(); }
|
|
|
|
fn T_i32() -> TypeRef { ret llvm::LLVMInt32Type(); }
|
|
|
|
fn T_i64() -> TypeRef { ret llvm::LLVMInt64Type(); }
|
|
|
|
fn T_f32() -> TypeRef { ret llvm::LLVMFloatType(); }
|
|
|
|
fn T_f64() -> TypeRef { ret llvm::LLVMDoubleType(); }
|
|
|
|
fn T_bool() -> TypeRef { ret T_i1(); }
|
|
|
|
fn T_int() -> TypeRef {
|
|
// FIXME: switch on target type.
|
|
|
|
ret T_i32();
|
|
}
|
|
|
|
fn T_float() -> TypeRef {
|
|
// FIXME: switch on target type.
|
|
ret T_f64();
|
|
}
|
|
|
|
fn T_char() -> TypeRef { ret T_i32(); }
|
|
|
|
fn T_size_t() -> TypeRef {
|
|
// FIXME: switch on target type.
|
|
|
|
ret T_i32();
|
|
}
|
|
|
|
fn T_fn(inputs: &TypeRef[], output: TypeRef) -> TypeRef {
|
|
ret llvm::LLVMFunctionType(output, std::ivec::to_ptr(inputs),
|
|
std::ivec::len[TypeRef](inputs), False);
|
|
}
|
|
|
|
fn T_fn_pair(cx: &crate_ctxt, tfn: TypeRef) -> TypeRef {
|
|
ret T_struct(~[T_ptr(tfn), T_opaque_closure_ptr(cx)]);
|
|
}
|
|
|
|
fn T_ptr(t: TypeRef) -> TypeRef { ret llvm::LLVMPointerType(t, 0u); }
|
|
|
|
fn T_struct(elts: &TypeRef[]) -> TypeRef {
|
|
ret llvm::LLVMStructType(std::ivec::to_ptr(elts), std::ivec::len(elts),
|
|
False);
|
|
}
|
|
|
|
fn T_named_struct(name: &str) -> TypeRef {
|
|
let c = llvm::LLVMGetGlobalContext();
|
|
ret llvm::LLVMStructCreateNamed(c, str::buf(name));
|
|
}
|
|
|
|
fn set_struct_body(t: TypeRef, elts: &TypeRef[]) {
|
|
llvm::LLVMStructSetBody(t, std::ivec::to_ptr(elts), std::ivec::len(elts),
|
|
False);
|
|
}
|
|
|
|
fn T_empty_struct() -> TypeRef { ret T_struct(~[]); }
|
|
|
|
fn T_rust_object() -> TypeRef {
|
|
let t = T_named_struct("rust_object");
|
|
let e = T_ptr(T_empty_struct());
|
|
set_struct_body(t, ~[e, e]);
|
|
ret t;
|
|
}
|
|
|
|
fn T_task() -> TypeRef {
|
|
let t = T_named_struct("task");
|
|
|
|
let // Refcount
|
|
// Delegate pointer
|
|
// Stack segment pointer
|
|
// Runtime SP
|
|
// Rust SP
|
|
// GC chain
|
|
|
|
// Domain pointer
|
|
// Crate cache pointer
|
|
elems =
|
|
~[T_int(), T_int(), T_int(), T_int(), T_int(), T_int(), T_int(),
|
|
T_int()];
|
|
set_struct_body(t, elems);
|
|
ret t;
|
|
}
|
|
|
|
fn T_tydesc_field(cx: &crate_ctxt, field: int) -> TypeRef {
|
|
// Bit of a kludge: pick the fn typeref out of the tydesc..
|
|
|
|
let tydesc_elts: TypeRef[] =
|
|
std::ivec::init_elt[TypeRef](T_nil(), abi::n_tydesc_fields as uint);
|
|
llvm::LLVMGetStructElementTypes(cx.tydesc_type,
|
|
std::ivec::to_ptr[TypeRef](tydesc_elts));
|
|
let t = llvm::LLVMGetElementType(tydesc_elts.(field));
|
|
ret t;
|
|
}
|
|
|
|
fn T_glue_fn(cx: &crate_ctxt) -> TypeRef {
|
|
let s = "glue_fn";
|
|
if cx.tn.name_has_type(s) { ret cx.tn.get_type(s); }
|
|
let t = T_tydesc_field(cx, abi::tydesc_field_drop_glue);
|
|
cx.tn.associate(s, t);
|
|
ret t;
|
|
}
|
|
|
|
fn T_dtor(ccx: &@crate_ctxt, sp: &span) -> TypeRef {
|
|
ret type_of_fn_full(ccx, sp, ast::proto_fn, true, ~[],
|
|
ty::mk_nil(ccx.tcx), 0u);
|
|
}
|
|
|
|
fn T_cmp_glue_fn(cx: &crate_ctxt) -> TypeRef {
|
|
let s = "cmp_glue_fn";
|
|
if cx.tn.name_has_type(s) { ret cx.tn.get_type(s); }
|
|
let t = T_tydesc_field(cx, abi::tydesc_field_cmp_glue);
|
|
cx.tn.associate(s, t);
|
|
ret t;
|
|
}
|
|
|
|
fn T_tydesc(taskptr_type: TypeRef) -> TypeRef {
|
|
let tydesc = T_named_struct("tydesc");
|
|
let tydescpp = T_ptr(T_ptr(tydesc));
|
|
let pvoid = T_ptr(T_i8());
|
|
let glue_fn_ty =
|
|
T_ptr(T_fn(~[T_ptr(T_nil()), taskptr_type, T_ptr(T_nil()), tydescpp,
|
|
pvoid], T_void()));
|
|
let cmp_glue_fn_ty =
|
|
T_ptr(T_fn(~[T_ptr(T_i1()), taskptr_type, T_ptr(T_nil()), tydescpp,
|
|
pvoid, pvoid, T_i8()], T_void()));
|
|
|
|
let // first_param
|
|
// size
|
|
// align
|
|
// copy_glue
|
|
// drop_glue
|
|
// free_glue
|
|
// sever_glue
|
|
// mark_glue
|
|
// obj_drop_glue
|
|
// is_stateful
|
|
elems =
|
|
~[tydescpp, T_int(), T_int(), glue_fn_ty, glue_fn_ty, glue_fn_ty,
|
|
glue_fn_ty, glue_fn_ty, glue_fn_ty, glue_fn_ty, cmp_glue_fn_ty];
|
|
set_struct_body(tydesc, elems);
|
|
ret tydesc;
|
|
}
|
|
|
|
fn T_array(t: TypeRef, n: uint) -> TypeRef { ret llvm::LLVMArrayType(t, n); }
|
|
|
|
fn T_vec(t: TypeRef) -> TypeRef {
|
|
ret T_struct(~[T_int(), // Refcount
|
|
T_int(), // Alloc
|
|
T_int(), // Fill
|
|
|
|
T_int(), // Pad
|
|
// Body elements
|
|
T_array(t, 0u)]);
|
|
}
|
|
|
|
fn T_opaque_vec_ptr() -> TypeRef { ret T_ptr(T_vec(T_int())); }
|
|
|
|
|
|
// Interior vector.
|
|
//
|
|
// TODO: Support user-defined vector sizes.
|
|
fn T_ivec(t: TypeRef) -> TypeRef {
|
|
ret T_struct(~[T_int(), // Length ("fill"; if zero, heapified)
|
|
T_int(), // Alloc
|
|
T_array(t, abi::ivec_default_length)]); // Body elements
|
|
|
|
}
|
|
|
|
|
|
// Note that the size of this one is in bytes.
|
|
fn T_opaque_ivec() -> TypeRef {
|
|
ret T_struct(~[T_int(), // Length ("fill"; if zero, heapified)
|
|
T_int(), // Alloc
|
|
T_array(T_i8(), 0u)]); // Body elements
|
|
|
|
}
|
|
|
|
fn T_ivec_heap_part(t: TypeRef) -> TypeRef {
|
|
ret T_struct(~[T_int(), // Real length
|
|
T_array(t, 0u)]); // Body elements
|
|
|
|
}
|
|
|
|
|
|
// Interior vector on the heap, also known as the "stub". Cast to this when
|
|
// the allocated length (second element of T_ivec above) is zero.
|
|
fn T_ivec_heap(t: TypeRef) -> TypeRef {
|
|
ret T_struct(~[T_int(), // Length (zero)
|
|
T_int(), // Alloc
|
|
T_ptr(T_ivec_heap_part(t))]); // Pointer
|
|
|
|
}
|
|
|
|
fn T_opaque_ivec_heap_part() -> TypeRef {
|
|
ret T_struct(~[T_int(), // Real length
|
|
T_array(T_i8(), 0u)]); // Body elements
|
|
|
|
}
|
|
|
|
fn T_opaque_ivec_heap() -> TypeRef {
|
|
ret T_struct(~[T_int(), // Length (zero)
|
|
T_int(), // Alloc
|
|
T_ptr(T_opaque_ivec_heap_part())]); // Pointer
|
|
|
|
}
|
|
|
|
fn T_str() -> TypeRef { ret T_vec(T_i8()); }
|
|
|
|
fn T_box(t: TypeRef) -> TypeRef { ret T_struct(~[T_int(), t]); }
|
|
|
|
fn T_port(t: TypeRef) -> TypeRef {
|
|
ret T_struct(~[T_int()]); // Refcount
|
|
|
|
}
|
|
|
|
fn T_chan(t: TypeRef) -> TypeRef {
|
|
ret T_struct(~[T_int()]); // Refcount
|
|
|
|
}
|
|
|
|
fn T_taskptr(cx: &crate_ctxt) -> TypeRef { ret T_ptr(cx.task_type); }
|
|
|
|
|
|
// This type must never be used directly; it must always be cast away.
|
|
fn T_typaram(tn: &type_names) -> TypeRef {
|
|
let s = "typaram";
|
|
if tn.name_has_type(s) { ret tn.get_type(s); }
|
|
let t = T_i8();
|
|
tn.associate(s, t);
|
|
ret t;
|
|
}
|
|
|
|
fn T_typaram_ptr(tn: &type_names) -> TypeRef { ret T_ptr(T_typaram(tn)); }
|
|
|
|
fn T_closure_ptr(cx: &crate_ctxt, lltarget_ty: TypeRef,
|
|
llbindings_ty: TypeRef, n_ty_params: uint) -> TypeRef {
|
|
// NB: keep this in sync with code in trans_bind; we're making
|
|
// an LLVM typeref structure that has the same "shape" as the ty::t
|
|
// it constructs.
|
|
|
|
ret T_ptr(T_box(T_struct(~[T_ptr(cx.tydesc_type), lltarget_ty,
|
|
llbindings_ty,
|
|
T_captured_tydescs(cx, n_ty_params)])));
|
|
}
|
|
|
|
fn T_opaque_closure_ptr(cx: &crate_ctxt) -> TypeRef {
|
|
let s = "*closure";
|
|
if cx.tn.name_has_type(s) { ret cx.tn.get_type(s); }
|
|
let t =
|
|
T_closure_ptr(cx, T_struct(~[T_ptr(T_nil()), T_ptr(T_nil())]),
|
|
T_nil(), 0u);
|
|
cx.tn.associate(s, t);
|
|
ret t;
|
|
}
|
|
|
|
fn T_tag(tn: &type_names, size: uint) -> TypeRef {
|
|
let s = "tag_" + uint::to_str(size, 10u);
|
|
if tn.name_has_type(s) { ret tn.get_type(s); }
|
|
let t = T_struct(~[T_int(), T_array(T_i8(), size)]);
|
|
tn.associate(s, t);
|
|
ret t;
|
|
}
|
|
|
|
fn T_opaque_tag(tn: &type_names) -> TypeRef {
|
|
let s = "opaque_tag";
|
|
if tn.name_has_type(s) { ret tn.get_type(s); }
|
|
let t = T_struct(~[T_int(), T_i8()]);
|
|
tn.associate(s, t);
|
|
ret t;
|
|
}
|
|
|
|
fn T_opaque_tag_ptr(tn: &type_names) -> TypeRef {
|
|
ret T_ptr(T_opaque_tag(tn));
|
|
}
|
|
|
|
fn T_captured_tydescs(cx: &crate_ctxt, n: uint) -> TypeRef {
|
|
ret T_struct(std::ivec::init_elt[TypeRef](T_ptr(cx.tydesc_type), n));
|
|
}
|
|
|
|
fn T_obj_ptr(cx: &crate_ctxt, n_captured_tydescs: uint) -> TypeRef {
|
|
// This function is not publicly exposed because it returns an incomplete
|
|
// type. The dynamically-sized fields follow the captured tydescs.
|
|
|
|
fn T_obj(cx: &crate_ctxt, n_captured_tydescs: uint) -> TypeRef {
|
|
ret T_struct(~[T_ptr(cx.tydesc_type),
|
|
T_captured_tydescs(cx, n_captured_tydescs)]);
|
|
}
|
|
ret T_ptr(T_box(T_obj(cx, n_captured_tydescs)));
|
|
}
|
|
|
|
fn T_opaque_obj_ptr(cx: &crate_ctxt) -> TypeRef { ret T_obj_ptr(cx, 0u); }
|
|
|
|
fn T_opaque_port_ptr() -> TypeRef { ret T_ptr(T_i8()); }
|
|
|
|
fn T_opaque_chan_ptr() -> TypeRef { ret T_ptr(T_i8()); }
|
|
|
|
|
|
// LLVM constant constructors.
|
|
fn C_null(t: TypeRef) -> ValueRef { ret llvm::LLVMConstNull(t); }
|
|
|
|
fn C_integral(t: TypeRef, u: uint, sign_extend: Bool) -> ValueRef {
|
|
// FIXME: We can't use LLVM::ULongLong with our existing minimal native
|
|
// API, which only knows word-sized args.
|
|
//
|
|
// ret llvm::LLVMConstInt(T_int(), t as LLVM::ULongLong, False);
|
|
//
|
|
|
|
ret llvm::LLVMRustConstSmallInt(t, u, sign_extend);
|
|
}
|
|
|
|
fn C_float(s: &str) -> ValueRef {
|
|
ret llvm::LLVMConstRealOfString(T_float(), str::buf(s));
|
|
}
|
|
|
|
fn C_floating(s: &str, t: TypeRef) -> ValueRef {
|
|
ret llvm::LLVMConstRealOfString(t, str::buf(s));
|
|
}
|
|
|
|
fn C_nil() -> ValueRef {
|
|
// NB: See comment above in T_void().
|
|
|
|
ret C_integral(T_i1(), 0u, False);
|
|
}
|
|
|
|
fn C_bool(b: bool) -> ValueRef {
|
|
if b {
|
|
ret C_integral(T_bool(), 1u, False);
|
|
} else { ret C_integral(T_bool(), 0u, False); }
|
|
}
|
|
|
|
fn C_int(i: int) -> ValueRef { ret C_integral(T_int(), i as uint, True); }
|
|
|
|
fn C_uint(i: uint) -> ValueRef { ret C_integral(T_int(), i, False); }
|
|
|
|
fn C_u8(i: uint) -> ValueRef { ret C_integral(T_i8(), i, False); }
|
|
|
|
|
|
// This is a 'c-like' raw string, which differs from
|
|
// our boxed-and-length-annotated strings.
|
|
fn C_cstr(cx: &@crate_ctxt, s: &str) -> ValueRef {
|
|
let sc = llvm::LLVMConstString(str::buf(s), str::byte_len(s), False);
|
|
let g =
|
|
llvm::LLVMAddGlobal(cx.llmod, val_ty(sc),
|
|
str::buf(cx.names.next("str")));
|
|
llvm::LLVMSetInitializer(g, sc);
|
|
llvm::LLVMSetGlobalConstant(g, True);
|
|
llvm::LLVMSetLinkage(g, lib::llvm::LLVMInternalLinkage as llvm::Linkage);
|
|
ret g;
|
|
}
|
|
|
|
|
|
// A rust boxed-and-length-annotated string.
|
|
fn C_str(cx: &@crate_ctxt, s: &str) -> ValueRef {
|
|
let len = str::byte_len(s);
|
|
let // 'alloc'
|
|
// 'fill'
|
|
// 'pad'
|
|
box =
|
|
C_struct(~[C_int(abi::const_refcount as int), C_int(len + 1u as int),
|
|
C_int(len + 1u as int), C_int(0),
|
|
llvm::LLVMConstString(str::buf(s), len, False)]);
|
|
let g =
|
|
llvm::LLVMAddGlobal(cx.llmod, val_ty(box),
|
|
str::buf(cx.names.next("str")));
|
|
llvm::LLVMSetInitializer(g, box);
|
|
llvm::LLVMSetGlobalConstant(g, True);
|
|
llvm::LLVMSetLinkage(g, lib::llvm::LLVMInternalLinkage as llvm::Linkage);
|
|
ret llvm::LLVMConstPointerCast(g, T_ptr(T_str()));
|
|
}
|
|
|
|
// Returns a Plain Old LLVM String:
|
|
fn C_postr(s: &str) -> ValueRef {
|
|
ret llvm::LLVMConstString(str::buf(s), str::byte_len(s), False);
|
|
}
|
|
|
|
fn C_zero_byte_arr(size: uint) -> ValueRef {
|
|
let i = 0u;
|
|
let elts: ValueRef[] = ~[];
|
|
while i < size { elts += ~[C_u8(0u)]; i += 1u; }
|
|
ret llvm::LLVMConstArray(T_i8(), std::ivec::to_ptr(elts),
|
|
std::ivec::len(elts));
|
|
}
|
|
|
|
fn C_struct(elts: &ValueRef[]) -> ValueRef {
|
|
ret llvm::LLVMConstStruct(std::ivec::to_ptr(elts), std::ivec::len(elts),
|
|
False);
|
|
}
|
|
|
|
fn C_named_struct(T: TypeRef, elts: &ValueRef[]) -> ValueRef {
|
|
ret llvm::LLVMConstNamedStruct(T, std::ivec::to_ptr(elts),
|
|
std::ivec::len(elts));
|
|
}
|
|
|
|
fn C_array(ty: TypeRef, elts: &ValueRef[]) -> ValueRef {
|
|
ret llvm::LLVMConstArray(ty, std::ivec::to_ptr(elts),
|
|
std::ivec::len(elts));
|
|
} |