303 lines
11 KiB
Rust
303 lines
11 KiB
Rust
use clippy_utils::diagnostics::span_lint_and_sugg;
|
|
use clippy_utils::ty::same_type_and_consts;
|
|
use clippy_utils::{in_macro, meets_msrv, msrvs};
|
|
use if_chain::if_chain;
|
|
use rustc_data_structures::fx::FxHashSet;
|
|
use rustc_errors::Applicability;
|
|
use rustc_hir::{
|
|
self as hir,
|
|
def::{CtorOf, DefKind, Res},
|
|
def_id::LocalDefId,
|
|
intravisit::{walk_inf, walk_ty, NestedVisitorMap, Visitor},
|
|
Expr, ExprKind, FnRetTy, FnSig, GenericArg, HirId, Impl, ImplItemKind, Item, ItemKind, Path, QPath, TyKind,
|
|
};
|
|
use rustc_lint::{LateContext, LateLintPass, LintContext};
|
|
use rustc_middle::hir::map::Map;
|
|
use rustc_middle::ty::AssocKind;
|
|
use rustc_semver::RustcVersion;
|
|
use rustc_session::{declare_tool_lint, impl_lint_pass};
|
|
use rustc_span::Span;
|
|
use rustc_typeck::hir_ty_to_ty;
|
|
|
|
declare_clippy_lint! {
|
|
/// ### What it does
|
|
/// Checks for unnecessary repetition of structure name when a
|
|
/// replacement with `Self` is applicable.
|
|
///
|
|
/// ### Why is this bad?
|
|
/// Unnecessary repetition. Mixed use of `Self` and struct
|
|
/// name
|
|
/// feels inconsistent.
|
|
///
|
|
/// ### Known problems
|
|
/// - Unaddressed false negative in fn bodies of trait implementations
|
|
/// - False positive with assotiated types in traits (#4140)
|
|
///
|
|
/// ### Example
|
|
/// ```rust
|
|
/// struct Foo {}
|
|
/// impl Foo {
|
|
/// fn new() -> Foo {
|
|
/// Foo {}
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
/// could be
|
|
/// ```rust
|
|
/// struct Foo {}
|
|
/// impl Foo {
|
|
/// fn new() -> Self {
|
|
/// Self {}
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
pub USE_SELF,
|
|
nursery,
|
|
"unnecessary structure name repetition whereas `Self` is applicable"
|
|
}
|
|
|
|
#[derive(Default)]
|
|
pub struct UseSelf {
|
|
msrv: Option<RustcVersion>,
|
|
stack: Vec<StackItem>,
|
|
}
|
|
|
|
impl UseSelf {
|
|
#[must_use]
|
|
pub fn new(msrv: Option<RustcVersion>) -> Self {
|
|
Self {
|
|
msrv,
|
|
..Self::default()
|
|
}
|
|
}
|
|
}
|
|
|
|
#[derive(Debug)]
|
|
enum StackItem {
|
|
Check {
|
|
impl_id: LocalDefId,
|
|
in_body: u32,
|
|
types_to_skip: FxHashSet<HirId>,
|
|
},
|
|
NoCheck,
|
|
}
|
|
|
|
impl_lint_pass!(UseSelf => [USE_SELF]);
|
|
|
|
const SEGMENTS_MSG: &str = "segments should be composed of at least 1 element";
|
|
|
|
impl<'tcx> LateLintPass<'tcx> for UseSelf {
|
|
fn check_item(&mut self, _cx: &LateContext<'_>, item: &Item<'_>) {
|
|
if matches!(item.kind, ItemKind::OpaqueTy(_)) {
|
|
// skip over `ItemKind::OpaqueTy` in order to lint `foo() -> impl <..>`
|
|
return;
|
|
}
|
|
// We push the self types of `impl`s on a stack here. Only the top type on the stack is
|
|
// relevant for linting, since this is the self type of the `impl` we're currently in. To
|
|
// avoid linting on nested items, we push `StackItem::NoCheck` on the stack to signal, that
|
|
// we're in an `impl` or nested item, that we don't want to lint
|
|
let stack_item = if_chain! {
|
|
if let ItemKind::Impl(Impl { self_ty, .. }) = item.kind;
|
|
if let TyKind::Path(QPath::Resolved(_, item_path)) = self_ty.kind;
|
|
let parameters = &item_path.segments.last().expect(SEGMENTS_MSG).args;
|
|
if parameters.as_ref().map_or(true, |params| {
|
|
!params.parenthesized && !params.args.iter().any(|arg| matches!(arg, GenericArg::Lifetime(_)))
|
|
});
|
|
then {
|
|
StackItem::Check {
|
|
impl_id: item.def_id,
|
|
in_body: 0,
|
|
types_to_skip: std::iter::once(self_ty.hir_id).collect(),
|
|
}
|
|
} else {
|
|
StackItem::NoCheck
|
|
}
|
|
};
|
|
self.stack.push(stack_item);
|
|
}
|
|
|
|
fn check_item_post(&mut self, _: &LateContext<'_>, item: &Item<'_>) {
|
|
if !matches!(item.kind, ItemKind::OpaqueTy(_)) {
|
|
self.stack.pop();
|
|
}
|
|
}
|
|
|
|
fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) {
|
|
// We want to skip types in trait `impl`s that aren't declared as `Self` in the trait
|
|
// declaration. The collection of those types is all this method implementation does.
|
|
if_chain! {
|
|
if let ImplItemKind::Fn(FnSig { decl, .. }, ..) = impl_item.kind;
|
|
if let Some(&mut StackItem::Check {
|
|
impl_id,
|
|
ref mut types_to_skip,
|
|
..
|
|
}) = self.stack.last_mut();
|
|
if let Some(impl_trait_ref) = cx.tcx.impl_trait_ref(impl_id);
|
|
then {
|
|
// `self_ty` is the semantic self type of `impl <trait> for <type>`. This cannot be
|
|
// `Self`.
|
|
let self_ty = impl_trait_ref.self_ty();
|
|
|
|
// `trait_method_sig` is the signature of the function, how it is declared in the
|
|
// trait, not in the impl of the trait.
|
|
let trait_method = cx
|
|
.tcx
|
|
.associated_items(impl_trait_ref.def_id)
|
|
.find_by_name_and_kind(cx.tcx, impl_item.ident, AssocKind::Fn, impl_trait_ref.def_id)
|
|
.expect("impl method matches a trait method");
|
|
let trait_method_sig = cx.tcx.fn_sig(trait_method.def_id);
|
|
let trait_method_sig = cx.tcx.erase_late_bound_regions(trait_method_sig);
|
|
|
|
// `impl_inputs_outputs` is an iterator over the types (`hir::Ty`) declared in the
|
|
// implementation of the trait.
|
|
let output_hir_ty = if let FnRetTy::Return(ty) = &decl.output {
|
|
Some(&**ty)
|
|
} else {
|
|
None
|
|
};
|
|
let impl_inputs_outputs = decl.inputs.iter().chain(output_hir_ty);
|
|
|
|
// `impl_hir_ty` (of type `hir::Ty`) represents the type written in the signature.
|
|
//
|
|
// `trait_sem_ty` (of type `ty::Ty`) is the semantic type for the signature in the
|
|
// trait declaration. This is used to check if `Self` was used in the trait
|
|
// declaration.
|
|
//
|
|
// If `any`where in the `trait_sem_ty` the `self_ty` was used verbatim (as opposed
|
|
// to `Self`), we want to skip linting that type and all subtypes of it. This
|
|
// avoids suggestions to e.g. replace `Vec<u8>` with `Vec<Self>`, in an `impl Trait
|
|
// for u8`, when the trait always uses `Vec<u8>`.
|
|
//
|
|
// See also https://github.com/rust-lang/rust-clippy/issues/2894.
|
|
for (impl_hir_ty, trait_sem_ty) in impl_inputs_outputs.zip(trait_method_sig.inputs_and_output) {
|
|
if trait_sem_ty.walk(cx.tcx).any(|inner| inner == self_ty.into()) {
|
|
let mut visitor = SkipTyCollector::default();
|
|
visitor.visit_ty(impl_hir_ty);
|
|
types_to_skip.extend(visitor.types_to_skip);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
fn check_body(&mut self, _: &LateContext<'_>, _: &hir::Body<'_>) {
|
|
// `hir_ty_to_ty` cannot be called in `Body`s or it will panic (sometimes). But in bodies
|
|
// we can use `cx.typeck_results.node_type(..)` to get the `ty::Ty` from a `hir::Ty`.
|
|
// However the `node_type()` method can *only* be called in bodies.
|
|
if let Some(&mut StackItem::Check { ref mut in_body, .. }) = self.stack.last_mut() {
|
|
*in_body = in_body.saturating_add(1);
|
|
}
|
|
}
|
|
|
|
fn check_body_post(&mut self, _: &LateContext<'_>, _: &hir::Body<'_>) {
|
|
if let Some(&mut StackItem::Check { ref mut in_body, .. }) = self.stack.last_mut() {
|
|
*in_body = in_body.saturating_sub(1);
|
|
}
|
|
}
|
|
|
|
fn check_ty(&mut self, cx: &LateContext<'_>, hir_ty: &hir::Ty<'_>) {
|
|
if_chain! {
|
|
if !in_macro(hir_ty.span);
|
|
if meets_msrv(self.msrv.as_ref(), &msrvs::TYPE_ALIAS_ENUM_VARIANTS);
|
|
if let Some(&StackItem::Check {
|
|
impl_id,
|
|
in_body,
|
|
ref types_to_skip,
|
|
}) = self.stack.last();
|
|
if let TyKind::Path(QPath::Resolved(_, path)) = hir_ty.kind;
|
|
if !matches!(path.res, Res::SelfTy(..) | Res::Def(DefKind::TyParam, _));
|
|
if !types_to_skip.contains(&hir_ty.hir_id);
|
|
let ty = if in_body > 0 {
|
|
cx.typeck_results().node_type(hir_ty.hir_id)
|
|
} else {
|
|
hir_ty_to_ty(cx.tcx, hir_ty)
|
|
};
|
|
if same_type_and_consts(ty, cx.tcx.type_of(impl_id));
|
|
let hir = cx.tcx.hir();
|
|
let id = hir.get_parent_node(hir_ty.hir_id);
|
|
if !hir.opt_span(id).map_or(false, in_macro);
|
|
then {
|
|
span_lint(cx, hir_ty.span);
|
|
}
|
|
}
|
|
}
|
|
|
|
fn check_expr(&mut self, cx: &LateContext<'_>, expr: &Expr<'_>) {
|
|
if_chain! {
|
|
if !in_macro(expr.span);
|
|
if meets_msrv(self.msrv.as_ref(), &msrvs::TYPE_ALIAS_ENUM_VARIANTS);
|
|
if let Some(&StackItem::Check { impl_id, .. }) = self.stack.last();
|
|
if cx.typeck_results().expr_ty(expr) == cx.tcx.type_of(impl_id);
|
|
then {} else { return; }
|
|
}
|
|
match expr.kind {
|
|
ExprKind::Struct(QPath::Resolved(_, path), ..) => match path.res {
|
|
Res::SelfTy(..) => (),
|
|
Res::Def(DefKind::Variant, _) => lint_path_to_variant(cx, path),
|
|
_ => span_lint(cx, path.span),
|
|
},
|
|
// tuple struct instantiation (`Foo(arg)` or `Enum::Foo(arg)`)
|
|
ExprKind::Call(fun, _) => {
|
|
if let ExprKind::Path(QPath::Resolved(_, path)) = fun.kind {
|
|
if let Res::Def(DefKind::Ctor(ctor_of, _), ..) = path.res {
|
|
match ctor_of {
|
|
CtorOf::Variant => lint_path_to_variant(cx, path),
|
|
CtorOf::Struct => span_lint(cx, path.span),
|
|
}
|
|
}
|
|
}
|
|
},
|
|
// unit enum variants (`Enum::A`)
|
|
ExprKind::Path(QPath::Resolved(_, path)) => lint_path_to_variant(cx, path),
|
|
_ => (),
|
|
}
|
|
}
|
|
|
|
extract_msrv_attr!(LateContext);
|
|
}
|
|
|
|
#[derive(Default)]
|
|
struct SkipTyCollector {
|
|
types_to_skip: Vec<HirId>,
|
|
}
|
|
|
|
impl<'tcx> Visitor<'tcx> for SkipTyCollector {
|
|
type Map = Map<'tcx>;
|
|
|
|
fn visit_infer(&mut self, inf: &hir::InferArg) {
|
|
self.types_to_skip.push(inf.hir_id);
|
|
|
|
walk_inf(self, inf);
|
|
}
|
|
fn visit_ty(&mut self, hir_ty: &hir::Ty<'_>) {
|
|
self.types_to_skip.push(hir_ty.hir_id);
|
|
|
|
walk_ty(self, hir_ty);
|
|
}
|
|
|
|
fn nested_visit_map(&mut self) -> NestedVisitorMap<Self::Map> {
|
|
NestedVisitorMap::None
|
|
}
|
|
}
|
|
|
|
fn span_lint(cx: &LateContext<'_>, span: Span) {
|
|
span_lint_and_sugg(
|
|
cx,
|
|
USE_SELF,
|
|
span,
|
|
"unnecessary structure name repetition",
|
|
"use the applicable keyword",
|
|
"Self".to_owned(),
|
|
Applicability::MachineApplicable,
|
|
);
|
|
}
|
|
|
|
fn lint_path_to_variant(cx: &LateContext<'_>, path: &Path<'_>) {
|
|
if let [.., self_seg, _variant] = path.segments {
|
|
let span = path
|
|
.span
|
|
.with_hi(self_seg.args().span_ext().unwrap_or(self_seg.ident.span).hi());
|
|
span_lint(cx, span);
|
|
}
|
|
}
|