rust/src/libcore/raw.rs
Ivan Petkov 2b03718618 Enable recursion for visit_ty in lint visitor
* The lint visitor's visit_ty method did not recurse, and had a
  reference to the now closed #10894
* The newly enabled recursion has only affected the `deprectated` lint
  which now detects uses of deprecated items in trait impls and
  function return types
* Renamed some references to `CowString` and `CowVec` to `Cow<str>` and
  `Cow<[T]>`, respectively, which appear outside of the crate which
  defines them
* Replaced a few instances of `InvariantType<T>` with
  `PhantomData<Cell<T>>`
* Disabled the `deprecated` lint in several places that
  reference/implement traits on deprecated items which will get cleaned
  up in the future
* Disabled the `exceeding_bitshifts` lint for
  compile-fail/huge-array-simple test so it doesn't shadow the expected
  error on 32bit systems
* Unfortunately, this means that if a library declares
  `#![deny(deprecated)]` and marks anything as deprecated, it will have
  to disable the lint for any uses of said item, e.g. any impl the now
  deprecated item

For any library that denies deprecated items but has deprecated items
of its own, this is a [breaking-change]
2015-03-02 15:35:48 -08:00

169 lines
5.7 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(missing_docs)]
#![unstable(feature = "core")]
//! Contains struct definitions for the layout of compiler built-in types.
//!
//! They can be used as targets of transmutes in unsafe code for manipulating
//! the raw representations directly.
//!
//! Their definition should always match the ABI defined in `rustc::back::abi`.
use marker::Copy;
use mem;
/// The representation of a slice like `&[T]`.
///
/// This struct is guaranteed to have the layout of types like `&[T]`,
/// `&str`, and `Box<[T]>`, but is not the type of such slices
/// (e.g. the fields are not directly accessible on a `&[T]`) nor does
/// it control that layout (changing the definition will not change
/// the layout of a `&[T]`). It is only designed to be used by unsafe
/// code that needs to manipulate the low-level details.
///
/// However, it is not recommended to use this type for such code,
/// since there are alternatives which may be safer:
///
/// - Creating a slice from a data pointer and length can be done with
/// `std::slice::from_raw_parts` or `std::slice::from_raw_parts_mut`
/// instead of `std::mem::transmute`ing a value of type `Slice`.
/// - Extracting the data pointer and length from a slice can be
/// performed with the `as_ptr` (or `as_mut_ptr`) and `len`
/// methods.
///
/// If one does decide to convert a slice value to a `Slice`, the
/// `Repr` trait in this module provides a method for a safe
/// conversion from `&[T]` (and `&str`) to a `Slice`, more type-safe
/// than a call to `transmute`.
///
/// # Examples
///
/// ```
/// use std::raw::{self, Repr};
///
/// let slice: &[u16] = &[1, 2, 3, 4];
///
/// let repr: raw::Slice<u16> = slice.repr();
/// println!("data pointer = {:?}, length = {}", repr.data, repr.len);
/// ```
#[repr(C)]
pub struct Slice<T> {
pub data: *const T,
pub len: usize,
}
impl<T> Copy for Slice<T> {}
/// The representation of an old closure.
#[repr(C)]
#[derive(Copy)]
#[unstable(feature = "core")]
#[deprecated(reason = "unboxed new closures do not have a universal representation; \
`&Fn` (etc) trait objects should use `TraitObject` instead",
since= "1.0.0")]
#[allow(deprecated) /* for deriving Copy impl */]
pub struct Closure {
pub code: *mut (),
pub env: *mut (),
}
/// The representation of a trait object like `&SomeTrait`.
///
/// This struct has the same layout as types like `&SomeTrait` and
/// `Box<AnotherTrait>`. The [Static and Dynamic Dispatch chapter of the
/// Book][moreinfo] contains more details about the precise nature of
/// these internals.
///
/// [moreinfo]: ../../book/static-and-dynamic-dispatch.html#representation
///
/// `TraitObject` is guaranteed to match layouts, but it is not the
/// type of trait objects (e.g. the fields are not directly accessible
/// on a `&SomeTrait`) nor does it control that layout (changing the
/// definition will not change the layout of a `&SometTrait`). It is
/// only designed to be used by unsafe code that needs to manipulate
/// the low-level details.
///
/// There is no `Repr` implementation for `TraitObject` because there
/// is no way to refer to all trait objects generically, so the only
/// way to create values of this type is with functions like
/// `std::mem::transmute`. Similarly, the only way to create a true
/// trait object from a `TraitObject` value is with `transmute`.
///
/// Synthesizing a trait object with mismatched types—one where the
/// vtable does not correspond to the type of the value to which the
/// data pointer points—is highly likely to lead to undefined
/// behaviour.
///
/// # Examples
///
/// ```
/// use std::mem;
/// use std::raw;
///
/// // an example trait
/// trait Foo {
/// fn bar(&self) -> i32;
/// }
/// impl Foo for i32 {
/// fn bar(&self) -> i32 {
/// *self + 1
/// }
/// }
///
/// let value: i32 = 123;
///
/// // let the compiler make a trait object
/// let object: &Foo = &value;
///
/// // look at the raw representation
/// let raw_object: raw::TraitObject = unsafe { mem::transmute(object) };
///
/// // the data pointer is the address of `value`
/// assert_eq!(raw_object.data as *const i32, &value as *const _);
///
///
/// let other_value: i32 = 456;
///
/// // construct a new object, pointing to a different `i32`, being
/// // careful to use the `i32` vtable from `object`
/// let synthesized: &Foo = unsafe {
/// mem::transmute(raw::TraitObject {
/// data: &other_value as *const _ as *mut (),
/// vtable: raw_object.vtable
/// })
/// };
///
/// // it should work just like we constructed a trait object out of
/// // `other_value` directly
/// assert_eq!(synthesized.bar(), 457);
/// ```
#[repr(C)]
#[derive(Copy)]
pub struct TraitObject {
pub data: *mut (),
pub vtable: *mut (),
}
/// This trait is meant to map equivalences between raw structs and their
/// corresponding rust values.
pub unsafe trait Repr<T> {
/// This function "unwraps" a rust value (without consuming it) into its raw
/// struct representation. This can be used to read/write different values
/// for the struct. This is a safe method because by default it does not
/// enable write-access to the fields of the return value in safe code.
#[inline]
fn repr(&self) -> T { unsafe { mem::transmute_copy(&self) } }
}
unsafe impl<T> Repr<Slice<T>> for [T] {}
unsafe impl Repr<Slice<u8>> for str {}