Go to file
bors dedd4302d1 Auto merge of #25641 - geofft:execve-const, r=alexcrichton
The `execv` family of functions and `getopt` are prototyped somewhat strangely in C: they take a `char *const argv[]` (and `envp`, for `execve`), an immutable array of mutable C strings -- in other words, a `char *const *argv` or `argv: *const *mut c_char`. The current Rust binding uses `*mut *const c_char`, which is backwards (a mutable array of constant C strings).

That said, these functions do not actually modify their arguments. Once upon a time, C didn't have `const`, and to this day, string literals in C have type `char *` (`*mut c_char`). So an array of string literals has type `char * []`, equivalent to `char **` in a function parameter (Rust `*mut *mut c_char`). C allows an implicit cast from `T **` to `T * const *` (`*const *mut T`) but not to `const T * const *` (`*const *const T`). Therefore, prototyping `execv` as taking `const char * const argv[]` would have broken existing code (by requiring an explicit cast), despite being more correct. So, even though these functions don't need mutable data, they're prototyped as if they do.

While it's theoretically possible that an implementation could choose to use its freedom to modify the mutable data, such an implementation would break the innumerable users of `execv`-family functions that call them with string literals. Such an implementation would also break `std::process`, which currently works around this with an unsafe `as *mut _` cast, and assumes that `execvp` secretly does not modify its argument. Furthermore, there's nothing useful to be gained by being able to write to the strings in `argv` themselves but not being able to write to the array containing those strings (you can't reorder arguments, add arguments, increase the length of any parameter, etc.).

So, despite the C prototype with its legacy C problems, it's simpler for everyone for Rust to consider these functions as taking `*const *const c_char`, and it's also safe to do so. Rust does not need to expose the mistakes of C here. This patch makes that change, and drops the unsafe cast in `std::process` since it's now unnecessary.
2015-06-21 17:45:01 +00:00
man
mk Auto merge of #26381 - alexcrichton:fix-srel, r=brson 2015-06-20 23:09:55 +00:00
src Auto merge of #25641 - geofft:execve-const, r=alexcrichton 2015-06-21 17:45:01 +00:00
.gitattributes
.gitignore
.gitmodules
.mailmap
.travis.yml
AUTHORS.txt
configure
CONTRIBUTING.md
COPYRIGHT
LICENSE-APACHE
LICENSE-MIT
Makefile.in
README.md README: improve description of Rust 2015-06-18 23:48:51 +02:00
RELEASES.md Update RELEASES.md for 1.1 2015-06-18 13:59:30 -07:00

The Rust Programming Language

Rust is a fast systems programming language that guarantees memory safety and offers painless concurrency (no data races). It does not employ a garbage collector and has minimal runtime overhead.

This repo contains the code for rustc, the Rust compiler, as well as standard libraries, tools and documentation for Rust.

Quick Start

Read "Installing Rust" from The Book.

Building from Source

  1. Make sure you have installed the dependencies:

    • g++ 4.7 or clang++ 3.x
    • python 2.6 or later (but not 3.x)
    • GNU make 3.81 or later
    • curl
    • git
  2. Clone the source with git:

    $ git clone https://github.com/rust-lang/rust.git
    $ cd rust
    
  1. Build and install:

    $ ./configure
    $ make && make install
    

    Note: You may need to use sudo make install if you do not normally have permission to modify the destination directory. The install locations can be adjusted by passing a --prefix argument to configure. Various other options are also supported pass --help for more information on them.

    When complete, make install will place several programs into /usr/local/bin: rustc, the Rust compiler, and rustdoc, the API-documentation tool. This install does not include Cargo, Rust's package manager, which you may also want to build.

Building on Windows

MSYS2 can be used to easily build Rust on Windows:

  1. Grab the latest MSYS2 installer and go through the installer.

  2. From the MSYS2 terminal, install the mingw64 toolchain and other required tools.

    # Choose one based on platform:
    $ pacman -S mingw-w64-i686-toolchain
    $ pacman -S mingw-w64-x86_64-toolchain
    
    $ pacman -S base-devel
    
  3. Run mingw32_shell.bat or mingw64_shell.bat from wherever you installed MYSY2 (i.e. C:\msys), depending on whether you want 32-bit or 64-bit Rust.

  4. Navigate to Rust's source code, configure and build it:

    $ ./configure
    $ make && make install
    

Notes

Since the Rust compiler is written in Rust, it must be built by a precompiled "snapshot" version of itself (made in an earlier state of development). As such, source builds require a connection to the Internet, to fetch snapshots, and an OS that can execute the available snapshot binaries.

Snapshot binaries are currently built and tested on several platforms:

Platform \ Architecture x86 x86_64
Windows (7, 8, Server 2008 R2)
Linux (2.6.18 or later)
OSX (10.7 Lion or later)

You may find that other platforms work, but these are our officially supported build environments that are most likely to work.

Rust currently needs about 1.5 GiB of RAM to build without swapping; if it hits swap, it will take a very long time to build.

There is more advice about hacking on Rust in CONTRIBUTING.md.

Getting Help

The Rust community congregates in a few places:

Contributing

To contribute to Rust, please see CONTRIBUTING.

Rust has an IRC culture and most real-time collaboration happens in a variety of channels on Mozilla's IRC network, irc.mozilla.org. The most popular channel is #rust, a venue for general discussion about Rust, and a good place to ask for help.

License

Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.

See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.