rust/src/librustc_driver/test.rs
Manish Goregaokar debac97a10 Rollup merge of #23895 - nikomatsakis:fn-trait-inheritance-add-impls, r=pnkfelix
The primary purpose of this PR is to add blanket impls for the `Fn` traits of the following (simplified) form:

    impl<F:Fn> Fn for &F
    impl<F:FnMut> FnMut for &mut F

However, this wound up requiring two changes:

1. A slight hack so that `x()` where `x: &mut F` is translated to `FnMut::call_mut(&mut *x, ())` vs `FnMut::call_mut(&mut x, ())`. This is achieved by just autoderef'ing one time when calling something whose type is `&F` or `&mut F`.
2. Making the infinite recursion test in trait matching a bit more tailored. This involves adding a notion of "matching" types that looks to see if types are potentially unifiable (it's an approximation).

The PR also includes various small refactorings to the inference code that are aimed at moving the unification and other code into a library (I've got that particular change in a branch, these changes just lead the way there by removing unnecessary dependencies between the compiler and the more general unification code). 

Note that per rust-lang/rfcs#1023, adding impls like these would be a breaking change in the future. 

cc @japaric
cc @alexcrichton 
cc @aturon 

Fixes #23015.
2015-04-02 00:40:39 +05:30

854 lines
29 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! # Standalone Tests for the Inference Module
use diagnostic;
use diagnostic::Emitter;
use driver;
use rustc_lint;
use rustc_resolve as resolve;
use rustc_typeck::middle::lang_items;
use rustc_typeck::middle::region::{self, CodeExtent, DestructionScopeData};
use rustc_typeck::middle::resolve_lifetime;
use rustc_typeck::middle::stability;
use rustc_typeck::middle::subst;
use rustc_typeck::middle::subst::Subst;
use rustc_typeck::middle::ty::{self, Ty};
use rustc_typeck::middle::ty_relate::TypeRelation;
use rustc_typeck::middle::infer;
use rustc_typeck::middle::infer::lub::Lub;
use rustc_typeck::middle::infer::glb::Glb;
use rustc_typeck::middle::infer::sub::Sub;
use rustc_typeck::util::ppaux::{ty_to_string, Repr, UserString};
use rustc::session::{self,config};
use syntax::{abi, ast, ast_map};
use syntax::codemap;
use syntax::codemap::{Span, CodeMap, DUMMY_SP};
use syntax::diagnostic::{Level, RenderSpan, Bug, Fatal, Error, Warning, Note, Help};
use syntax::parse::token;
struct Env<'a, 'tcx: 'a> {
infcx: &'a infer::InferCtxt<'a, 'tcx>,
}
struct RH<'a> {
id: ast::NodeId,
sub: &'a [RH<'a>]
}
const EMPTY_SOURCE_STR: &'static str = "#![feature(no_std)] #![no_std]";
struct ExpectErrorEmitter {
messages: Vec<String>
}
fn remove_message(e: &mut ExpectErrorEmitter, msg: &str, lvl: Level) {
match lvl {
Bug | Fatal | Error => { }
Warning | Note | Help => { return; }
}
debug!("Error: {}", msg);
match e.messages.iter().position(|m| msg.contains(m)) {
Some(i) => {
e.messages.remove(i);
}
None => {
panic!("Unexpected error: {} Expected: {:?}",
msg, e.messages);
}
}
}
impl Emitter for ExpectErrorEmitter {
fn emit(&mut self,
_cmsp: Option<(&codemap::CodeMap, Span)>,
msg: &str,
_: Option<&str>,
lvl: Level)
{
remove_message(self, msg, lvl);
}
fn custom_emit(&mut self,
_cm: &codemap::CodeMap,
_sp: RenderSpan,
msg: &str,
lvl: Level)
{
remove_message(self, msg, lvl);
}
}
fn errors(msgs: &[&str]) -> (Box<Emitter+Send>, usize) {
let v = msgs.iter().map(|m| m.to_string()).collect();
(box ExpectErrorEmitter { messages: v } as Box<Emitter+Send>, msgs.len())
}
fn test_env<F>(source_string: &str,
(emitter, expected_err_count): (Box<Emitter+Send>, usize),
body: F) where
F: FnOnce(Env),
{
let mut options =
config::basic_options();
options.debugging_opts.verbose = true;
let codemap =
CodeMap::new();
let diagnostic_handler =
diagnostic::mk_handler(true, emitter);
let span_diagnostic_handler =
diagnostic::mk_span_handler(diagnostic_handler, codemap);
let sess = session::build_session_(options, None, span_diagnostic_handler);
rustc_lint::register_builtins(&mut sess.lint_store.borrow_mut(), Some(&sess));
let krate_config = Vec::new();
let input = config::Input::Str(source_string.to_string());
let krate = driver::phase_1_parse_input(&sess, krate_config, &input);
let krate = driver::phase_2_configure_and_expand(&sess, krate, "test", None)
.expect("phase 2 aborted");
let mut forest = ast_map::Forest::new(krate);
let arenas = ty::CtxtArenas::new();
let ast_map = driver::assign_node_ids_and_map(&sess, &mut forest);
let krate = ast_map.krate();
// run just enough stuff to build a tcx:
let lang_items = lang_items::collect_language_items(krate, &sess);
let resolve::CrateMap { def_map, freevars, .. } =
resolve::resolve_crate(&sess, &ast_map, &lang_items, krate, resolve::MakeGlobMap::No);
let named_region_map = resolve_lifetime::krate(&sess, krate, &def_map);
let region_map = region::resolve_crate(&sess, krate);
let tcx = ty::mk_ctxt(sess,
&arenas,
def_map,
named_region_map,
ast_map,
freevars,
region_map,
lang_items,
stability::Index::new(krate));
let infcx = infer::new_infer_ctxt(&tcx);
body(Env { infcx: &infcx });
infcx.resolve_regions_and_report_errors(ast::CRATE_NODE_ID);
assert_eq!(tcx.sess.err_count(), expected_err_count);
}
impl<'a, 'tcx> Env<'a, 'tcx> {
pub fn tcx(&self) -> &ty::ctxt<'tcx> {
self.infcx.tcx
}
pub fn create_region_hierarchy(&self, rh: &RH) {
for child_rh in rh.sub {
self.create_region_hierarchy(child_rh);
self.infcx.tcx.region_maps.record_encl_scope(
CodeExtent::from_node_id(child_rh.id),
CodeExtent::from_node_id(rh.id));
}
}
pub fn create_simple_region_hierarchy(&self) {
// creates a region hierarchy where 1 is root, 10 and 11 are
// children of 1, etc
self.create_region_hierarchy(
&RH {id: 1,
sub: &[RH {id: 10,
sub: &[]},
RH {id: 11,
sub: &[]}]});
}
#[allow(dead_code)] // this seems like it could be useful, even if we don't use it now
pub fn lookup_item(&self, names: &[String]) -> ast::NodeId {
return match search_mod(self, &self.infcx.tcx.map.krate().module, 0, names) {
Some(id) => id,
None => {
panic!("no item found: `{}`", names.connect("::"));
}
};
fn search_mod(this: &Env,
m: &ast::Mod,
idx: usize,
names: &[String])
-> Option<ast::NodeId> {
assert!(idx < names.len());
for item in &m.items {
if item.ident.user_string(this.infcx.tcx) == names[idx] {
return search(this, &**item, idx+1, names);
}
}
return None;
}
fn search(this: &Env,
it: &ast::Item,
idx: usize,
names: &[String])
-> Option<ast::NodeId> {
if idx == names.len() {
return Some(it.id);
}
return match it.node {
ast::ItemUse(..) | ast::ItemExternCrate(..) |
ast::ItemConst(..) | ast::ItemStatic(..) | ast::ItemFn(..) |
ast::ItemForeignMod(..) | ast::ItemTy(..) => {
None
}
ast::ItemEnum(..) | ast::ItemStruct(..) |
ast::ItemTrait(..) | ast::ItemImpl(..) |
ast::ItemMac(..) | ast::ItemDefaultImpl(..) => {
None
}
ast::ItemMod(ref m) => {
search_mod(this, m, idx, names)
}
};
}
}
pub fn make_subtype(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
match infer::mk_subty(self.infcx, true, infer::Misc(DUMMY_SP), a, b) {
Ok(_) => true,
Err(ref e) => panic!("Encountered error: {}",
ty::type_err_to_str(self.infcx.tcx, e))
}
}
pub fn is_subtype(&self, a: Ty<'tcx>, b: Ty<'tcx>) -> bool {
match infer::can_mk_subty(self.infcx, a, b) {
Ok(_) => true,
Err(_) => false
}
}
pub fn assert_subtype(&self, a: Ty<'tcx>, b: Ty<'tcx>) {
if !self.is_subtype(a, b) {
panic!("{} is not a subtype of {}, but it should be",
self.ty_to_string(a),
self.ty_to_string(b));
}
}
pub fn assert_eq(&self, a: Ty<'tcx>, b: Ty<'tcx>) {
self.assert_subtype(a, b);
self.assert_subtype(b, a);
}
pub fn ty_to_string(&self, a: Ty<'tcx>) -> String {
ty_to_string(self.infcx.tcx, a)
}
pub fn t_fn(&self,
input_tys: &[Ty<'tcx>],
output_ty: Ty<'tcx>)
-> Ty<'tcx>
{
let input_args = input_tys.iter().cloned().collect();
ty::mk_bare_fn(self.infcx.tcx,
None,
self.infcx.tcx.mk_bare_fn(ty::BareFnTy {
unsafety: ast::Unsafety::Normal,
abi: abi::Rust,
sig: ty::Binder(ty::FnSig {
inputs: input_args,
output: ty::FnConverging(output_ty),
variadic: false
})
}))
}
pub fn t_nil(&self) -> Ty<'tcx> {
ty::mk_nil(self.infcx.tcx)
}
pub fn t_pair(&self, ty1: Ty<'tcx>, ty2: Ty<'tcx>) -> Ty<'tcx> {
ty::mk_tup(self.infcx.tcx, vec![ty1, ty2])
}
pub fn t_param(&self, space: subst::ParamSpace, index: u32) -> Ty<'tcx> {
let name = format!("T{}", index);
ty::mk_param(self.infcx.tcx, space, index, token::intern(&name[..]))
}
pub fn re_early_bound(&self,
space: subst::ParamSpace,
index: u32,
name: &'static str)
-> ty::Region
{
let name = token::intern(name);
ty::ReEarlyBound(ast::DUMMY_NODE_ID, space, index, name)
}
pub fn re_late_bound_with_debruijn(&self, id: u32, debruijn: ty::DebruijnIndex) -> ty::Region {
ty::ReLateBound(debruijn, ty::BrAnon(id))
}
pub fn t_rptr(&self, r: ty::Region) -> Ty<'tcx> {
ty::mk_imm_rptr(self.infcx.tcx,
self.infcx.tcx.mk_region(r),
self.tcx().types.isize)
}
pub fn t_rptr_late_bound(&self, id: u32) -> Ty<'tcx> {
let r = self.re_late_bound_with_debruijn(id, ty::DebruijnIndex::new(1));
ty::mk_imm_rptr(self.infcx.tcx,
self.infcx.tcx.mk_region(r),
self.tcx().types.isize)
}
pub fn t_rptr_late_bound_with_debruijn(&self,
id: u32,
debruijn: ty::DebruijnIndex)
-> Ty<'tcx> {
let r = self.re_late_bound_with_debruijn(id, debruijn);
ty::mk_imm_rptr(self.infcx.tcx,
self.infcx.tcx.mk_region(r),
self.tcx().types.isize)
}
pub fn t_rptr_scope(&self, id: ast::NodeId) -> Ty<'tcx> {
let r = ty::ReScope(CodeExtent::from_node_id(id));
ty::mk_imm_rptr(self.infcx.tcx, self.infcx.tcx.mk_region(r),
self.tcx().types.isize)
}
pub fn re_free(&self, nid: ast::NodeId, id: u32) -> ty::Region {
ty::ReFree(ty::FreeRegion { scope: DestructionScopeData::new(nid),
bound_region: ty::BrAnon(id)})
}
pub fn t_rptr_free(&self, nid: ast::NodeId, id: u32) -> Ty<'tcx> {
let r = self.re_free(nid, id);
ty::mk_imm_rptr(self.infcx.tcx,
self.infcx.tcx.mk_region(r),
self.tcx().types.isize)
}
pub fn t_rptr_static(&self) -> Ty<'tcx> {
ty::mk_imm_rptr(self.infcx.tcx,
self.infcx.tcx.mk_region(ty::ReStatic),
self.tcx().types.isize)
}
pub fn dummy_type_trace(&self) -> infer::TypeTrace<'tcx> {
infer::TypeTrace::dummy(self.tcx())
}
pub fn sub(&self) -> Sub<'a, 'tcx> {
let trace = self.dummy_type_trace();
self.infcx.sub(true, trace)
}
pub fn lub(&self) -> Lub<'a, 'tcx> {
let trace = self.dummy_type_trace();
self.infcx.lub(true, trace)
}
pub fn glb(&self) -> Glb<'a, 'tcx> {
let trace = self.dummy_type_trace();
self.infcx.glb(true, trace)
}
pub fn make_lub_ty(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) -> Ty<'tcx> {
match self.lub().relate(&t1, &t2) {
Ok(t) => t,
Err(ref e) => panic!("unexpected error computing LUB: {}",
ty::type_err_to_str(self.infcx.tcx, e))
}
}
/// Checks that `t1 <: t2` is true (this may register additional
/// region checks).
pub fn check_sub(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) {
match self.sub().relate(&t1, &t2) {
Ok(_) => { }
Err(ref e) => {
panic!("unexpected error computing sub({},{}): {}",
t1.repr(self.infcx.tcx),
t2.repr(self.infcx.tcx),
ty::type_err_to_str(self.infcx.tcx, e));
}
}
}
/// Checks that `t1 <: t2` is false (this may register additional
/// region checks).
pub fn check_not_sub(&self, t1: Ty<'tcx>, t2: Ty<'tcx>) {
match self.sub().relate(&t1, &t2) {
Err(_) => { }
Ok(_) => {
panic!("unexpected success computing sub({},{})",
t1.repr(self.infcx.tcx),
t2.repr(self.infcx.tcx));
}
}
}
/// Checks that `LUB(t1,t2) == t_lub`
pub fn check_lub(&self, t1: Ty<'tcx>, t2: Ty<'tcx>, t_lub: Ty<'tcx>) {
match self.lub().relate(&t1, &t2) {
Ok(t) => {
self.assert_eq(t, t_lub);
}
Err(ref e) => {
panic!("unexpected error in LUB: {}",
ty::type_err_to_str(self.infcx.tcx, e))
}
}
}
/// Checks that `GLB(t1,t2) == t_glb`
pub fn check_glb(&self, t1: Ty<'tcx>, t2: Ty<'tcx>, t_glb: Ty<'tcx>) {
debug!("check_glb(t1={}, t2={}, t_glb={})",
self.ty_to_string(t1),
self.ty_to_string(t2),
self.ty_to_string(t_glb));
match self.glb().relate(&t1, &t2) {
Err(e) => {
panic!("unexpected error computing LUB: {:?}", e)
}
Ok(t) => {
self.assert_eq(t, t_glb);
// sanity check for good measure:
self.assert_subtype(t, t1);
self.assert_subtype(t, t2);
}
}
}
}
#[test]
fn contravariant_region_ptr_ok() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
env.create_simple_region_hierarchy();
let t_rptr1 = env.t_rptr_scope(1);
let t_rptr10 = env.t_rptr_scope(10);
env.assert_eq(t_rptr1, t_rptr1);
env.assert_eq(t_rptr10, t_rptr10);
env.make_subtype(t_rptr1, t_rptr10);
})
}
#[test]
fn contravariant_region_ptr_err() {
test_env(EMPTY_SOURCE_STR,
errors(&["lifetime mismatch"]),
|env| {
env.create_simple_region_hierarchy();
let t_rptr1 = env.t_rptr_scope(1);
let t_rptr10 = env.t_rptr_scope(10);
env.assert_eq(t_rptr1, t_rptr1);
env.assert_eq(t_rptr10, t_rptr10);
// will cause an error when regions are resolved
env.make_subtype(t_rptr10, t_rptr1);
})
}
#[test]
fn sub_free_bound_false() {
//! Test that:
//!
//! fn(&'a isize) <: for<'b> fn(&'b isize)
//!
//! does NOT hold.
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_free1 = env.t_rptr_free(0, 1);
let t_rptr_bound1 = env.t_rptr_late_bound(1);
env.check_not_sub(env.t_fn(&[t_rptr_free1], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound1], env.tcx().types.isize));
})
}
#[test]
fn sub_bound_free_true() {
//! Test that:
//!
//! for<'a> fn(&'a isize) <: fn(&'b isize)
//!
//! DOES hold.
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_free1 = env.t_rptr_free(0, 1);
env.check_sub(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize),
env.t_fn(&[t_rptr_free1], env.tcx().types.isize));
})
}
#[test]
fn sub_free_bound_false_infer() {
//! Test that:
//!
//! fn(_#1) <: for<'b> fn(&'b isize)
//!
//! does NOT hold for any instantiation of `_#1`.
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_infer1 = env.infcx.next_ty_var();
let t_rptr_bound1 = env.t_rptr_late_bound(1);
env.check_not_sub(env.t_fn(&[t_infer1], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound1], env.tcx().types.isize));
})
}
#[test]
fn lub_free_bound_infer() {
//! Test result of:
//!
//! LUB(fn(_#1), for<'b> fn(&'b isize))
//!
//! This should yield `fn(&'_ isize)`. We check
//! that it yields `fn(&'x isize)` for some free `'x`,
//! anyhow.
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_infer1 = env.infcx.next_ty_var();
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_free1 = env.t_rptr_free(0, 1);
env.check_lub(env.t_fn(&[t_infer1], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound1], env.tcx().types.isize),
env.t_fn(&[t_rptr_free1], env.tcx().types.isize));
});
}
#[test]
fn lub_bound_bound() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_bound2 = env.t_rptr_late_bound(2);
env.check_lub(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound2], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound1], env.tcx().types.isize));
})
}
#[test]
fn lub_bound_free() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_free1 = env.t_rptr_free(0, 1);
env.check_lub(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize),
env.t_fn(&[t_rptr_free1], env.tcx().types.isize),
env.t_fn(&[t_rptr_free1], env.tcx().types.isize));
})
}
#[test]
fn lub_bound_static() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_static = env.t_rptr_static();
env.check_lub(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize),
env.t_fn(&[t_rptr_static], env.tcx().types.isize),
env.t_fn(&[t_rptr_static], env.tcx().types.isize));
})
}
#[test]
fn lub_bound_bound_inverse_order() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_bound2 = env.t_rptr_late_bound(2);
env.check_lub(env.t_fn(&[t_rptr_bound1, t_rptr_bound2], t_rptr_bound1),
env.t_fn(&[t_rptr_bound2, t_rptr_bound1], t_rptr_bound1),
env.t_fn(&[t_rptr_bound1, t_rptr_bound1], t_rptr_bound1));
})
}
#[test]
fn lub_free_free() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_free1 = env.t_rptr_free(0, 1);
let t_rptr_free2 = env.t_rptr_free(0, 2);
let t_rptr_static = env.t_rptr_static();
env.check_lub(env.t_fn(&[t_rptr_free1], env.tcx().types.isize),
env.t_fn(&[t_rptr_free2], env.tcx().types.isize),
env.t_fn(&[t_rptr_static], env.tcx().types.isize));
})
}
#[test]
fn lub_returning_scope() {
test_env(EMPTY_SOURCE_STR,
errors(&["cannot infer an appropriate lifetime"]), |env| {
env.create_simple_region_hierarchy();
let t_rptr_scope10 = env.t_rptr_scope(10);
let t_rptr_scope11 = env.t_rptr_scope(11);
// this should generate an error when regions are resolved
env.make_lub_ty(env.t_fn(&[], t_rptr_scope10),
env.t_fn(&[], t_rptr_scope11));
})
}
#[test]
fn glb_free_free_with_common_scope() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_free1 = env.t_rptr_free(0, 1);
let t_rptr_free2 = env.t_rptr_free(0, 2);
let t_rptr_scope = env.t_rptr_scope(0);
env.check_glb(env.t_fn(&[t_rptr_free1], env.tcx().types.isize),
env.t_fn(&[t_rptr_free2], env.tcx().types.isize),
env.t_fn(&[t_rptr_scope], env.tcx().types.isize));
})
}
#[test]
fn glb_bound_bound() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_bound2 = env.t_rptr_late_bound(2);
env.check_glb(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound2], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound1], env.tcx().types.isize));
})
}
#[test]
fn glb_bound_free() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_free1 = env.t_rptr_free(0, 1);
env.check_glb(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize),
env.t_fn(&[t_rptr_free1], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound1], env.tcx().types.isize));
})
}
#[test]
fn glb_bound_free_infer() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_infer1 = env.infcx.next_ty_var();
// compute GLB(fn(_) -> isize, for<'b> fn(&'b isize) -> isize),
// which should yield for<'b> fn(&'b isize) -> isize
env.check_glb(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize),
env.t_fn(&[t_infer1], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound1], env.tcx().types.isize));
// as a side-effect, computing GLB should unify `_` with
// `&'_ isize`
let t_resolve1 = env.infcx.shallow_resolve(t_infer1);
match t_resolve1.sty {
ty::ty_rptr(..) => { }
_ => { panic!("t_resolve1={}", t_resolve1.repr(env.infcx.tcx)); }
}
})
}
#[test]
fn glb_bound_static() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let t_rptr_bound1 = env.t_rptr_late_bound(1);
let t_rptr_static = env.t_rptr_static();
env.check_glb(env.t_fn(&[t_rptr_bound1], env.tcx().types.isize),
env.t_fn(&[t_rptr_static], env.tcx().types.isize),
env.t_fn(&[t_rptr_bound1], env.tcx().types.isize));
})
}
/// Test substituting a bound region into a function, which introduces another level of binding.
/// This requires adjusting the Debruijn index.
#[test]
fn subst_ty_renumber_bound() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
// Situation:
// Theta = [A -> &'a foo]
let t_rptr_bound1 = env.t_rptr_late_bound(1);
// t_source = fn(A)
let t_source = {
let t_param = env.t_param(subst::TypeSpace, 0);
env.t_fn(&[t_param], env.t_nil())
};
let substs = subst::Substs::new_type(vec![t_rptr_bound1], vec![]);
let t_substituted = t_source.subst(env.infcx.tcx, &substs);
// t_expected = fn(&'a isize)
let t_expected = {
let t_ptr_bound2 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(2));
env.t_fn(&[t_ptr_bound2], env.t_nil())
};
debug!("subst_bound: t_source={} substs={} t_substituted={} t_expected={}",
t_source.repr(env.infcx.tcx),
substs.repr(env.infcx.tcx),
t_substituted.repr(env.infcx.tcx),
t_expected.repr(env.infcx.tcx));
assert_eq!(t_substituted, t_expected);
})
}
/// Test substituting a bound region into a function, which introduces another level of binding.
/// This requires adjusting the Debruijn index.
#[test]
fn subst_ty_renumber_some_bounds() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
// Situation:
// Theta = [A -> &'a foo]
let t_rptr_bound1 = env.t_rptr_late_bound(1);
// t_source = (A, fn(A))
let t_source = {
let t_param = env.t_param(subst::TypeSpace, 0);
env.t_pair(t_param, env.t_fn(&[t_param], env.t_nil()))
};
let substs = subst::Substs::new_type(vec![t_rptr_bound1], vec![]);
let t_substituted = t_source.subst(env.infcx.tcx, &substs);
// t_expected = (&'a isize, fn(&'a isize))
//
// but not that the Debruijn index is different in the different cases.
let t_expected = {
let t_rptr_bound2 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(2));
env.t_pair(t_rptr_bound1, env.t_fn(&[t_rptr_bound2], env.t_nil()))
};
debug!("subst_bound: t_source={} substs={} t_substituted={} t_expected={}",
t_source.repr(env.infcx.tcx),
substs.repr(env.infcx.tcx),
t_substituted.repr(env.infcx.tcx),
t_expected.repr(env.infcx.tcx));
assert_eq!(t_substituted, t_expected);
})
}
/// Test that we correctly compute whether a type has escaping regions or not.
#[test]
fn escaping() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
// Situation:
// Theta = [A -> &'a foo]
assert!(!ty::type_has_escaping_regions(env.t_nil()));
let t_rptr_free1 = env.t_rptr_free(0, 1);
assert!(!ty::type_has_escaping_regions(t_rptr_free1));
let t_rptr_bound1 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(1));
assert!(ty::type_has_escaping_regions(t_rptr_bound1));
let t_rptr_bound2 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(2));
assert!(ty::type_has_escaping_regions(t_rptr_bound2));
// t_fn = fn(A)
let t_param = env.t_param(subst::TypeSpace, 0);
assert!(!ty::type_has_escaping_regions(t_param));
let t_fn = env.t_fn(&[t_param], env.t_nil());
assert!(!ty::type_has_escaping_regions(t_fn));
})
}
/// Test applying a substitution where the value being substituted for an early-bound region is a
/// late-bound region.
#[test]
fn subst_region_renumber_region() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let re_bound1 = env.re_late_bound_with_debruijn(1, ty::DebruijnIndex::new(1));
// type t_source<'a> = fn(&'a isize)
let t_source = {
let re_early = env.re_early_bound(subst::TypeSpace, 0, "'a");
env.t_fn(&[env.t_rptr(re_early)], env.t_nil())
};
let substs = subst::Substs::new_type(vec![], vec![re_bound1]);
let t_substituted = t_source.subst(env.infcx.tcx, &substs);
// t_expected = fn(&'a isize)
//
// but not that the Debruijn index is different in the different cases.
let t_expected = {
let t_rptr_bound2 = env.t_rptr_late_bound_with_debruijn(1, ty::DebruijnIndex::new(2));
env.t_fn(&[t_rptr_bound2], env.t_nil())
};
debug!("subst_bound: t_source={} substs={} t_substituted={} t_expected={}",
t_source.repr(env.infcx.tcx),
substs.repr(env.infcx.tcx),
t_substituted.repr(env.infcx.tcx),
t_expected.repr(env.infcx.tcx));
assert_eq!(t_substituted, t_expected);
})
}
#[test]
fn walk_ty() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let tcx = env.infcx.tcx;
let int_ty = tcx.types.isize;
let uint_ty = tcx.types.usize;
let tup1_ty = ty::mk_tup(tcx, vec!(int_ty, uint_ty, int_ty, uint_ty));
let tup2_ty = ty::mk_tup(tcx, vec!(tup1_ty, tup1_ty, uint_ty));
let uniq_ty = ty::mk_uniq(tcx, tup2_ty);
let walked: Vec<_> = uniq_ty.walk().collect();
assert_eq!(walked, [uniq_ty,
tup2_ty,
tup1_ty, int_ty, uint_ty, int_ty, uint_ty,
tup1_ty, int_ty, uint_ty, int_ty, uint_ty,
uint_ty]);
})
}
#[test]
fn walk_ty_skip_subtree() {
test_env(EMPTY_SOURCE_STR, errors(&[]), |env| {
let tcx = env.infcx.tcx;
let int_ty = tcx.types.isize;
let uint_ty = tcx.types.usize;
let tup1_ty = ty::mk_tup(tcx, vec!(int_ty, uint_ty, int_ty, uint_ty));
let tup2_ty = ty::mk_tup(tcx, vec!(tup1_ty, tup1_ty, uint_ty));
let uniq_ty = ty::mk_uniq(tcx, tup2_ty);
// types we expect to see (in order), plus a boolean saying
// whether to skip the subtree.
let mut expected = vec!((uniq_ty, false),
(tup2_ty, false),
(tup1_ty, false),
(int_ty, false),
(uint_ty, false),
(int_ty, false),
(uint_ty, false),
(tup1_ty, true), // skip the isize/usize/isize/usize
(uint_ty, false));
expected.reverse();
let mut walker = uniq_ty.walk();
while let Some(t) = walker.next() {
debug!("walked to {:?}", t);
let (expected_ty, skip) = expected.pop().unwrap();
assert_eq!(t, expected_ty);
if skip { walker.skip_current_subtree(); }
}
assert!(expected.is_empty());
})
}