2016-03-17 21:51:51 +02:00

345 lines
12 KiB
Rust

// Copyright 2012-2016 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use llvm;
use trans::common::{return_type_is_void, type_is_fat_ptr};
use trans::context::CrateContext;
use trans::cabi_x86;
use trans::cabi_x86_64;
use trans::cabi_x86_win64;
use trans::cabi_arm;
use trans::cabi_aarch64;
use trans::cabi_powerpc;
use trans::cabi_powerpc64;
use trans::cabi_mips;
use trans::cabi_asmjs;
use trans::machine::{llsize_of_alloc, llsize_of_real};
use trans::type_::Type;
use trans::type_of;
use middle::ty::{self, Ty};
pub use syntax::abi::Abi;
/// The first half of a fat pointer.
/// - For a closure, this is the code address.
/// - For an object or trait instance, this is the address of the box.
/// - For a slice, this is the base address.
pub const FAT_PTR_ADDR: usize = 0;
/// The second half of a fat pointer.
/// - For a closure, this is the address of the environment.
/// - For an object or trait instance, this is the address of the vtable.
/// - For a slice, this is the length.
pub const FAT_PTR_EXTRA: usize = 1;
#[derive(Clone, Copy, PartialEq, Debug)]
enum ArgKind {
/// Pass the argument directly using the normal converted
/// LLVM type or by coercing to another specified type
Direct,
/// Pass the argument indirectly via a hidden pointer
Indirect,
/// Ignore the argument (useful for empty struct)
Ignore,
}
/// Information about how a specific C type
/// should be passed to or returned from a function
///
/// This is borrowed from clang's ABIInfo.h
#[derive(Clone, Copy, Debug)]
pub struct ArgType {
kind: ArgKind,
/// Original LLVM type
pub original_ty: Type,
/// Sizing LLVM type (pointers are opaque).
/// Unlike original_ty, this is guaranteed to be complete.
///
/// For example, while we're computing the function pointer type in
/// `struct Foo(fn(Foo));`, `original_ty` is still LLVM's `%Foo = {}`.
/// The field type will likely end up being `void(%Foo)*`, but we cannot
/// use `%Foo` to compute properties (e.g. size and alignment) of `Foo`,
/// until `%Foo` is completed by having all of its field types inserted,
/// so `ty` holds the "sizing type" of `Foo`, which replaces all pointers
/// with opaque ones, resulting in `{i8*}` for `Foo`.
/// ABI-specific logic can then look at the size, alignment and fields of
/// `{i8*}` in order to determine how the argument will be passed.
/// Only later will `original_ty` aka `%Foo` be used in the LLVM function
/// pointer type, without ever having introspected it.
pub ty: Type,
/// Coerced LLVM Type
pub cast: Option<Type>,
/// Dummy argument, which is emitted before the real argument
pub pad: Option<Type>,
/// LLVM attributes of argument
pub attrs: llvm::Attributes
}
impl ArgType {
fn new(original_ty: Type, ty: Type) -> ArgType {
ArgType {
kind: ArgKind::Direct,
original_ty: original_ty,
ty: ty,
cast: None,
pad: None,
attrs: llvm::Attributes::default()
}
}
pub fn make_indirect(&mut self, ccx: &CrateContext) {
// Wipe old attributes, likely not valid through indirection.
self.attrs = llvm::Attributes::default();
let llarg_sz = llsize_of_real(ccx, self.ty);
// For non-immediate arguments the callee gets its own copy of
// the value on the stack, so there are no aliases. It's also
// program-invisible so can't possibly capture
self.attrs.set(llvm::Attribute::NoAlias)
.set(llvm::Attribute::NoCapture)
.set_dereferenceable(llarg_sz);
self.kind = ArgKind::Indirect;
}
pub fn ignore(&mut self) {
self.kind = ArgKind::Ignore;
}
pub fn is_indirect(&self) -> bool {
self.kind == ArgKind::Indirect
}
pub fn is_ignore(&self) -> bool {
self.kind == ArgKind::Ignore
}
}
/// Metadata describing how the arguments to a native function
/// should be passed in order to respect the native ABI.
///
/// I will do my best to describe this structure, but these
/// comments are reverse-engineered and may be inaccurate. -NDM
pub struct FnType {
/// The LLVM types of each argument.
pub args: Vec<ArgType>,
/// LLVM return type.
pub ret: ArgType,
pub variadic: bool,
pub cconv: llvm::CallConv
}
impl FnType {
pub fn new<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
abi: Abi,
sig: &ty::FnSig<'tcx>,
extra_args: &[Ty<'tcx>]) -> FnType {
use self::Abi::*;
let cconv = match ccx.sess().target.target.adjust_abi(abi) {
RustIntrinsic => {
// Intrinsics are emitted at the call site
ccx.sess().bug("asked to compute FnType of intrinsic");
}
PlatformIntrinsic => {
// Intrinsics are emitted at the call site
ccx.sess().bug("asked to compute FnType of platform intrinsic");
}
Rust | RustCall => llvm::CCallConv,
// It's the ABI's job to select this, not us.
System => ccx.sess().bug("system abi should be selected elsewhere"),
Stdcall => llvm::X86StdcallCallConv,
Fastcall => llvm::X86FastcallCallConv,
Vectorcall => llvm::X86_VectorCall,
C => llvm::CCallConv,
Win64 => llvm::X86_64_Win64,
// These API constants ought to be more specific...
Cdecl => llvm::CCallConv,
Aapcs => llvm::CCallConv,
};
let mut inputs = &sig.inputs[..];
let extra_args = if abi == RustCall {
assert!(!sig.variadic && extra_args.is_empty());
match inputs[inputs.len() - 1].sty {
ty::TyTuple(ref tupled_arguments) => {
inputs = &inputs[..inputs.len() - 1];
&tupled_arguments[..]
}
_ => {
unreachable!("argument to function with \"rust-call\" ABI \
is not a tuple");
}
}
} else {
assert!(sig.variadic || extra_args.is_empty());
extra_args
};
let arg_of = |ty: Ty<'tcx>| {
if ty.is_bool() {
let llty = Type::i1(ccx);
let mut arg = ArgType::new(llty, llty);
arg.attrs.set(llvm::Attribute::ZExt);
arg
} else {
ArgType::new(type_of::type_of(ccx, ty),
type_of::sizing_type_of(ccx, ty))
}
};
let ret = match sig.output {
ty::FnConverging(ret_ty) if !return_type_is_void(ccx, ret_ty) => {
arg_of(ret_ty)
}
_ => ArgType::new(Type::void(ccx), Type::void(ccx))
};
let mut args = Vec::with_capacity(inputs.len() + extra_args.len());
for ty in inputs.iter().chain(extra_args.iter()) {
let arg = arg_of(ty);
if type_is_fat_ptr(ccx.tcx(), ty) {
let original = arg.original_ty.field_types();
let sizing = arg.ty.field_types();
args.extend(original.into_iter().zip(sizing)
.map(|(o, s)| ArgType::new(o, s)));
} else {
args.push(arg);
}
}
let mut fty = FnType {
args: args,
ret: ret,
variadic: sig.variadic,
cconv: cconv
};
if abi == Rust || abi == RustCall {
let fixup = |arg: &mut ArgType| {
if !arg.ty.is_aggregate() {
// Scalars and vectors, always immediate.
return;
}
let size = llsize_of_alloc(ccx, arg.ty);
if size > llsize_of_alloc(ccx, ccx.int_type()) {
arg.make_indirect(ccx);
} else if size > 0 {
// We want to pass small aggregates as immediates, but using
// a LLVM aggregate type for this leads to bad optimizations,
// so we pick an appropriately sized integer type instead.
arg.cast = Some(Type::ix(ccx, size * 8));
}
};
if fty.ret.ty != Type::void(ccx) {
// Fat pointers are returned by-value.
if !type_is_fat_ptr(ccx.tcx(), sig.output.unwrap()) {
fixup(&mut fty.ret);
}
}
for arg in &mut fty.args {
fixup(arg);
}
if fty.ret.is_indirect() {
fty.ret.attrs.set(llvm::Attribute::StructRet);
}
return fty;
}
match &ccx.sess().target.target.arch[..] {
"x86" => cabi_x86::compute_abi_info(ccx, &mut fty),
"x86_64" => if ccx.sess().target.target.options.is_like_windows {
cabi_x86_win64::compute_abi_info(ccx, &mut fty);
} else {
cabi_x86_64::compute_abi_info(ccx, &mut fty);
},
"aarch64" => cabi_aarch64::compute_abi_info(ccx, &mut fty),
"arm" => {
let flavor = if ccx.sess().target.target.target_os == "ios" {
cabi_arm::Flavor::Ios
} else {
cabi_arm::Flavor::General
};
cabi_arm::compute_abi_info(ccx, &mut fty, flavor);
},
"mips" => cabi_mips::compute_abi_info(ccx, &mut fty),
"powerpc" => cabi_powerpc::compute_abi_info(ccx, &mut fty),
"powerpc64" => cabi_powerpc64::compute_abi_info(ccx, &mut fty),
"asmjs" => cabi_asmjs::compute_abi_info(ccx, &mut fty),
a => ccx.sess().fatal(&format!("unrecognized arch \"{}\" in target specification", a))
}
if fty.ret.is_indirect() {
fty.ret.attrs.set(llvm::Attribute::StructRet);
}
fty
}
pub fn llvm_type(&self, ccx: &CrateContext) -> Type {
let mut llargument_tys = Vec::new();
let llreturn_ty = if self.ret.is_indirect() {
llargument_tys.push(self.ret.original_ty.ptr_to());
Type::void(ccx)
} else {
self.ret.cast.unwrap_or(self.ret.original_ty)
};
for arg in &self.args {
if arg.is_ignore() {
continue;
}
// add padding
if let Some(ty) = arg.pad {
llargument_tys.push(ty);
}
let llarg_ty = if arg.is_indirect() {
arg.original_ty.ptr_to()
} else {
arg.cast.unwrap_or(arg.original_ty)
};
llargument_tys.push(llarg_ty);
}
if self.variadic {
Type::variadic_func(&llargument_tys, &llreturn_ty)
} else {
Type::func(&llargument_tys, &llreturn_ty)
}
}
pub fn llvm_attrs(&self) -> llvm::AttrBuilder {
let mut attrs = llvm::AttrBuilder::new();
let mut i = if self.ret.is_indirect() { 1 } else { 0 };
*attrs.arg(i) = self.ret.attrs;
i += 1;
for arg in &self.args {
if !arg.is_ignore() {
if arg.pad.is_some() { i += 1; }
*attrs.arg(i) = arg.attrs;
i += 1;
}
}
attrs
}
}