345 lines
12 KiB
Rust
345 lines
12 KiB
Rust
// Copyright 2012-2016 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
use llvm;
|
|
use trans::common::{return_type_is_void, type_is_fat_ptr};
|
|
use trans::context::CrateContext;
|
|
use trans::cabi_x86;
|
|
use trans::cabi_x86_64;
|
|
use trans::cabi_x86_win64;
|
|
use trans::cabi_arm;
|
|
use trans::cabi_aarch64;
|
|
use trans::cabi_powerpc;
|
|
use trans::cabi_powerpc64;
|
|
use trans::cabi_mips;
|
|
use trans::cabi_asmjs;
|
|
use trans::machine::{llsize_of_alloc, llsize_of_real};
|
|
use trans::type_::Type;
|
|
use trans::type_of;
|
|
|
|
use middle::ty::{self, Ty};
|
|
|
|
pub use syntax::abi::Abi;
|
|
|
|
/// The first half of a fat pointer.
|
|
/// - For a closure, this is the code address.
|
|
/// - For an object or trait instance, this is the address of the box.
|
|
/// - For a slice, this is the base address.
|
|
pub const FAT_PTR_ADDR: usize = 0;
|
|
|
|
/// The second half of a fat pointer.
|
|
/// - For a closure, this is the address of the environment.
|
|
/// - For an object or trait instance, this is the address of the vtable.
|
|
/// - For a slice, this is the length.
|
|
pub const FAT_PTR_EXTRA: usize = 1;
|
|
|
|
#[derive(Clone, Copy, PartialEq, Debug)]
|
|
enum ArgKind {
|
|
/// Pass the argument directly using the normal converted
|
|
/// LLVM type or by coercing to another specified type
|
|
Direct,
|
|
/// Pass the argument indirectly via a hidden pointer
|
|
Indirect,
|
|
/// Ignore the argument (useful for empty struct)
|
|
Ignore,
|
|
}
|
|
|
|
/// Information about how a specific C type
|
|
/// should be passed to or returned from a function
|
|
///
|
|
/// This is borrowed from clang's ABIInfo.h
|
|
#[derive(Clone, Copy, Debug)]
|
|
pub struct ArgType {
|
|
kind: ArgKind,
|
|
/// Original LLVM type
|
|
pub original_ty: Type,
|
|
/// Sizing LLVM type (pointers are opaque).
|
|
/// Unlike original_ty, this is guaranteed to be complete.
|
|
///
|
|
/// For example, while we're computing the function pointer type in
|
|
/// `struct Foo(fn(Foo));`, `original_ty` is still LLVM's `%Foo = {}`.
|
|
/// The field type will likely end up being `void(%Foo)*`, but we cannot
|
|
/// use `%Foo` to compute properties (e.g. size and alignment) of `Foo`,
|
|
/// until `%Foo` is completed by having all of its field types inserted,
|
|
/// so `ty` holds the "sizing type" of `Foo`, which replaces all pointers
|
|
/// with opaque ones, resulting in `{i8*}` for `Foo`.
|
|
/// ABI-specific logic can then look at the size, alignment and fields of
|
|
/// `{i8*}` in order to determine how the argument will be passed.
|
|
/// Only later will `original_ty` aka `%Foo` be used in the LLVM function
|
|
/// pointer type, without ever having introspected it.
|
|
pub ty: Type,
|
|
/// Coerced LLVM Type
|
|
pub cast: Option<Type>,
|
|
/// Dummy argument, which is emitted before the real argument
|
|
pub pad: Option<Type>,
|
|
/// LLVM attributes of argument
|
|
pub attrs: llvm::Attributes
|
|
}
|
|
|
|
impl ArgType {
|
|
fn new(original_ty: Type, ty: Type) -> ArgType {
|
|
ArgType {
|
|
kind: ArgKind::Direct,
|
|
original_ty: original_ty,
|
|
ty: ty,
|
|
cast: None,
|
|
pad: None,
|
|
attrs: llvm::Attributes::default()
|
|
}
|
|
}
|
|
|
|
pub fn make_indirect(&mut self, ccx: &CrateContext) {
|
|
// Wipe old attributes, likely not valid through indirection.
|
|
self.attrs = llvm::Attributes::default();
|
|
|
|
let llarg_sz = llsize_of_real(ccx, self.ty);
|
|
|
|
// For non-immediate arguments the callee gets its own copy of
|
|
// the value on the stack, so there are no aliases. It's also
|
|
// program-invisible so can't possibly capture
|
|
self.attrs.set(llvm::Attribute::NoAlias)
|
|
.set(llvm::Attribute::NoCapture)
|
|
.set_dereferenceable(llarg_sz);
|
|
|
|
self.kind = ArgKind::Indirect;
|
|
}
|
|
|
|
pub fn ignore(&mut self) {
|
|
self.kind = ArgKind::Ignore;
|
|
}
|
|
|
|
pub fn is_indirect(&self) -> bool {
|
|
self.kind == ArgKind::Indirect
|
|
}
|
|
|
|
pub fn is_ignore(&self) -> bool {
|
|
self.kind == ArgKind::Ignore
|
|
}
|
|
}
|
|
|
|
/// Metadata describing how the arguments to a native function
|
|
/// should be passed in order to respect the native ABI.
|
|
///
|
|
/// I will do my best to describe this structure, but these
|
|
/// comments are reverse-engineered and may be inaccurate. -NDM
|
|
pub struct FnType {
|
|
/// The LLVM types of each argument.
|
|
pub args: Vec<ArgType>,
|
|
|
|
/// LLVM return type.
|
|
pub ret: ArgType,
|
|
|
|
pub variadic: bool,
|
|
|
|
pub cconv: llvm::CallConv
|
|
}
|
|
|
|
impl FnType {
|
|
pub fn new<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
abi: Abi,
|
|
sig: &ty::FnSig<'tcx>,
|
|
extra_args: &[Ty<'tcx>]) -> FnType {
|
|
use self::Abi::*;
|
|
let cconv = match ccx.sess().target.target.adjust_abi(abi) {
|
|
RustIntrinsic => {
|
|
// Intrinsics are emitted at the call site
|
|
ccx.sess().bug("asked to compute FnType of intrinsic");
|
|
}
|
|
PlatformIntrinsic => {
|
|
// Intrinsics are emitted at the call site
|
|
ccx.sess().bug("asked to compute FnType of platform intrinsic");
|
|
}
|
|
|
|
Rust | RustCall => llvm::CCallConv,
|
|
|
|
// It's the ABI's job to select this, not us.
|
|
System => ccx.sess().bug("system abi should be selected elsewhere"),
|
|
|
|
Stdcall => llvm::X86StdcallCallConv,
|
|
Fastcall => llvm::X86FastcallCallConv,
|
|
Vectorcall => llvm::X86_VectorCall,
|
|
C => llvm::CCallConv,
|
|
Win64 => llvm::X86_64_Win64,
|
|
|
|
// These API constants ought to be more specific...
|
|
Cdecl => llvm::CCallConv,
|
|
Aapcs => llvm::CCallConv,
|
|
};
|
|
|
|
let mut inputs = &sig.inputs[..];
|
|
let extra_args = if abi == RustCall {
|
|
assert!(!sig.variadic && extra_args.is_empty());
|
|
|
|
match inputs[inputs.len() - 1].sty {
|
|
ty::TyTuple(ref tupled_arguments) => {
|
|
inputs = &inputs[..inputs.len() - 1];
|
|
&tupled_arguments[..]
|
|
}
|
|
_ => {
|
|
unreachable!("argument to function with \"rust-call\" ABI \
|
|
is not a tuple");
|
|
}
|
|
}
|
|
} else {
|
|
assert!(sig.variadic || extra_args.is_empty());
|
|
extra_args
|
|
};
|
|
|
|
let arg_of = |ty: Ty<'tcx>| {
|
|
if ty.is_bool() {
|
|
let llty = Type::i1(ccx);
|
|
let mut arg = ArgType::new(llty, llty);
|
|
arg.attrs.set(llvm::Attribute::ZExt);
|
|
arg
|
|
} else {
|
|
ArgType::new(type_of::type_of(ccx, ty),
|
|
type_of::sizing_type_of(ccx, ty))
|
|
}
|
|
};
|
|
|
|
let ret = match sig.output {
|
|
ty::FnConverging(ret_ty) if !return_type_is_void(ccx, ret_ty) => {
|
|
arg_of(ret_ty)
|
|
}
|
|
_ => ArgType::new(Type::void(ccx), Type::void(ccx))
|
|
};
|
|
|
|
let mut args = Vec::with_capacity(inputs.len() + extra_args.len());
|
|
for ty in inputs.iter().chain(extra_args.iter()) {
|
|
let arg = arg_of(ty);
|
|
if type_is_fat_ptr(ccx.tcx(), ty) {
|
|
let original = arg.original_ty.field_types();
|
|
let sizing = arg.ty.field_types();
|
|
args.extend(original.into_iter().zip(sizing)
|
|
.map(|(o, s)| ArgType::new(o, s)));
|
|
} else {
|
|
args.push(arg);
|
|
}
|
|
}
|
|
|
|
let mut fty = FnType {
|
|
args: args,
|
|
ret: ret,
|
|
variadic: sig.variadic,
|
|
cconv: cconv
|
|
};
|
|
|
|
if abi == Rust || abi == RustCall {
|
|
let fixup = |arg: &mut ArgType| {
|
|
if !arg.ty.is_aggregate() {
|
|
// Scalars and vectors, always immediate.
|
|
return;
|
|
}
|
|
let size = llsize_of_alloc(ccx, arg.ty);
|
|
if size > llsize_of_alloc(ccx, ccx.int_type()) {
|
|
arg.make_indirect(ccx);
|
|
} else if size > 0 {
|
|
// We want to pass small aggregates as immediates, but using
|
|
// a LLVM aggregate type for this leads to bad optimizations,
|
|
// so we pick an appropriately sized integer type instead.
|
|
arg.cast = Some(Type::ix(ccx, size * 8));
|
|
}
|
|
};
|
|
if fty.ret.ty != Type::void(ccx) {
|
|
// Fat pointers are returned by-value.
|
|
if !type_is_fat_ptr(ccx.tcx(), sig.output.unwrap()) {
|
|
fixup(&mut fty.ret);
|
|
}
|
|
}
|
|
for arg in &mut fty.args {
|
|
fixup(arg);
|
|
}
|
|
if fty.ret.is_indirect() {
|
|
fty.ret.attrs.set(llvm::Attribute::StructRet);
|
|
}
|
|
return fty;
|
|
}
|
|
|
|
match &ccx.sess().target.target.arch[..] {
|
|
"x86" => cabi_x86::compute_abi_info(ccx, &mut fty),
|
|
"x86_64" => if ccx.sess().target.target.options.is_like_windows {
|
|
cabi_x86_win64::compute_abi_info(ccx, &mut fty);
|
|
} else {
|
|
cabi_x86_64::compute_abi_info(ccx, &mut fty);
|
|
},
|
|
"aarch64" => cabi_aarch64::compute_abi_info(ccx, &mut fty),
|
|
"arm" => {
|
|
let flavor = if ccx.sess().target.target.target_os == "ios" {
|
|
cabi_arm::Flavor::Ios
|
|
} else {
|
|
cabi_arm::Flavor::General
|
|
};
|
|
cabi_arm::compute_abi_info(ccx, &mut fty, flavor);
|
|
},
|
|
"mips" => cabi_mips::compute_abi_info(ccx, &mut fty),
|
|
"powerpc" => cabi_powerpc::compute_abi_info(ccx, &mut fty),
|
|
"powerpc64" => cabi_powerpc64::compute_abi_info(ccx, &mut fty),
|
|
"asmjs" => cabi_asmjs::compute_abi_info(ccx, &mut fty),
|
|
a => ccx.sess().fatal(&format!("unrecognized arch \"{}\" in target specification", a))
|
|
}
|
|
|
|
if fty.ret.is_indirect() {
|
|
fty.ret.attrs.set(llvm::Attribute::StructRet);
|
|
}
|
|
|
|
fty
|
|
}
|
|
|
|
pub fn llvm_type(&self, ccx: &CrateContext) -> Type {
|
|
let mut llargument_tys = Vec::new();
|
|
|
|
let llreturn_ty = if self.ret.is_indirect() {
|
|
llargument_tys.push(self.ret.original_ty.ptr_to());
|
|
Type::void(ccx)
|
|
} else {
|
|
self.ret.cast.unwrap_or(self.ret.original_ty)
|
|
};
|
|
|
|
for arg in &self.args {
|
|
if arg.is_ignore() {
|
|
continue;
|
|
}
|
|
// add padding
|
|
if let Some(ty) = arg.pad {
|
|
llargument_tys.push(ty);
|
|
}
|
|
|
|
let llarg_ty = if arg.is_indirect() {
|
|
arg.original_ty.ptr_to()
|
|
} else {
|
|
arg.cast.unwrap_or(arg.original_ty)
|
|
};
|
|
|
|
llargument_tys.push(llarg_ty);
|
|
}
|
|
|
|
if self.variadic {
|
|
Type::variadic_func(&llargument_tys, &llreturn_ty)
|
|
} else {
|
|
Type::func(&llargument_tys, &llreturn_ty)
|
|
}
|
|
}
|
|
|
|
pub fn llvm_attrs(&self) -> llvm::AttrBuilder {
|
|
let mut attrs = llvm::AttrBuilder::new();
|
|
let mut i = if self.ret.is_indirect() { 1 } else { 0 };
|
|
*attrs.arg(i) = self.ret.attrs;
|
|
i += 1;
|
|
for arg in &self.args {
|
|
if !arg.is_ignore() {
|
|
if arg.pad.is_some() { i += 1; }
|
|
*attrs.arg(i) = arg.attrs;
|
|
i += 1;
|
|
}
|
|
}
|
|
attrs
|
|
}
|
|
}
|