rust/compiler/rustc_ty_utils/src/ty.rs
Nicholas Nethercote ca5525d564 Improve AdtDef interning.
This commit makes `AdtDef` use `Interned`. Much the commit is tedious
changes to introduce getter functions. The interesting changes are in
`compiler/rustc_middle/src/ty/adt.rs`.
2022-03-11 13:31:24 +11:00

506 lines
18 KiB
Rust

use rustc_data_structures::fx::FxIndexSet;
use rustc_hir as hir;
use rustc_hir::def_id::DefId;
use rustc_middle::ty::subst::Subst;
use rustc_middle::ty::{self, Binder, Predicate, PredicateKind, ToPredicate, Ty, TyCtxt};
use rustc_span::{sym, Span};
use rustc_trait_selection::traits;
fn sized_constraint_for_ty<'tcx>(
tcx: TyCtxt<'tcx>,
adtdef: ty::AdtDef<'tcx>,
ty: Ty<'tcx>,
) -> Vec<Ty<'tcx>> {
use ty::TyKind::*;
let result = match ty.kind() {
Bool | Char | Int(..) | Uint(..) | Float(..) | RawPtr(..) | Ref(..) | FnDef(..)
| FnPtr(_) | Array(..) | Closure(..) | Generator(..) | Never => vec![],
Str | Dynamic(..) | Slice(_) | Foreign(..) | Error(_) | GeneratorWitness(..) => {
// these are never sized - return the target type
vec![ty]
}
Tuple(ref tys) => match tys.last() {
None => vec![],
Some(&ty) => sized_constraint_for_ty(tcx, adtdef, ty),
},
Adt(adt, substs) => {
// recursive case
let adt_tys = adt.sized_constraint(tcx);
debug!("sized_constraint_for_ty({:?}) intermediate = {:?}", ty, adt_tys);
adt_tys
.iter()
.map(|ty| ty.subst(tcx, substs))
.flat_map(|ty| sized_constraint_for_ty(tcx, adtdef, ty))
.collect()
}
Projection(..) | Opaque(..) => {
// must calculate explicitly.
// FIXME: consider special-casing always-Sized projections
vec![ty]
}
Param(..) => {
// perf hack: if there is a `T: Sized` bound, then
// we know that `T` is Sized and do not need to check
// it on the impl.
let Some(sized_trait) = tcx.lang_items().sized_trait() else { return vec![ty] };
let sized_predicate = ty::Binder::dummy(ty::TraitRef {
def_id: sized_trait,
substs: tcx.mk_substs_trait(ty, &[]),
})
.without_const()
.to_predicate(tcx);
let predicates = tcx.predicates_of(adtdef.did()).predicates;
if predicates.iter().any(|(p, _)| *p == sized_predicate) { vec![] } else { vec![ty] }
}
Placeholder(..) | Bound(..) | Infer(..) => {
bug!("unexpected type `{:?}` in sized_constraint_for_ty", ty)
}
};
debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result);
result
}
fn impl_defaultness(tcx: TyCtxt<'_>, def_id: DefId) -> hir::Defaultness {
let item = tcx.hir().expect_item(def_id.expect_local());
if let hir::ItemKind::Impl(impl_) = &item.kind {
impl_.defaultness
} else {
bug!("`impl_defaultness` called on {:?}", item);
}
}
fn impl_constness(tcx: TyCtxt<'_>, def_id: DefId) -> hir::Constness {
let item = tcx.hir().expect_item(def_id.expect_local());
if let hir::ItemKind::Impl(impl_) = &item.kind {
impl_.constness
} else {
bug!("`impl_constness` called on {:?}", item);
}
}
/// Calculates the `Sized` constraint.
///
/// In fact, there are only a few options for the types in the constraint:
/// - an obviously-unsized type
/// - a type parameter or projection whose Sizedness can't be known
/// - a tuple of type parameters or projections, if there are multiple
/// such.
/// - an Error, if a type contained itself. The representability
/// check should catch this case.
fn adt_sized_constraint(tcx: TyCtxt<'_>, def_id: DefId) -> ty::AdtSizedConstraint<'_> {
let def = tcx.adt_def(def_id);
let result = tcx.mk_type_list(
def.variants()
.iter()
.flat_map(|v| v.fields.last())
.flat_map(|f| sized_constraint_for_ty(tcx, def, tcx.type_of(f.did))),
);
debug!("adt_sized_constraint: {:?} => {:?}", def, result);
ty::AdtSizedConstraint(result)
}
fn def_ident_span(tcx: TyCtxt<'_>, def_id: DefId) -> Option<Span> {
tcx.hir()
.get_if_local(def_id)
.and_then(|node| match node {
// A `Ctor` doesn't have an identifier itself, but its parent
// struct/variant does. Compare with `hir::Map::opt_span`.
hir::Node::Ctor(ctor) => ctor
.ctor_hir_id()
.and_then(|ctor_id| tcx.hir().find(tcx.hir().get_parent_node(ctor_id)))
.and_then(|parent| parent.ident()),
_ => node.ident(),
})
.map(|ident| ident.span)
}
/// See `ParamEnv` struct definition for details.
#[instrument(level = "debug", skip(tcx))]
fn param_env(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ParamEnv<'_> {
// The param_env of an impl Trait type is its defining function's param_env
if let Some(parent) = ty::is_impl_trait_defn(tcx, def_id) {
return param_env(tcx, parent.to_def_id());
}
// Compute the bounds on Self and the type parameters.
let ty::InstantiatedPredicates { mut predicates, .. } =
tcx.predicates_of(def_id).instantiate_identity(tcx);
// Finally, we have to normalize the bounds in the environment, in
// case they contain any associated type projections. This process
// can yield errors if the put in illegal associated types, like
// `<i32 as Foo>::Bar` where `i32` does not implement `Foo`. We
// report these errors right here; this doesn't actually feel
// right to me, because constructing the environment feels like a
// kind of an "idempotent" action, but I'm not sure where would be
// a better place. In practice, we construct environments for
// every fn once during type checking, and we'll abort if there
// are any errors at that point, so outside of type inference you can be
// sure that this will succeed without errors anyway.
if tcx.sess.opts.debugging_opts.chalk {
let environment = well_formed_types_in_env(tcx, def_id);
predicates.extend(environment);
}
let local_did = def_id.as_local();
let hir_id = local_did.map(|def_id| tcx.hir().local_def_id_to_hir_id(def_id));
let constness = match hir_id {
Some(hir_id) => match tcx.hir().get(hir_id) {
hir::Node::TraitItem(hir::TraitItem { kind: hir::TraitItemKind::Fn(..), .. })
if tcx.has_attr(def_id, sym::default_method_body_is_const) =>
{
hir::Constness::Const
}
hir::Node::Item(hir::Item { kind: hir::ItemKind::Const(..), .. })
| hir::Node::Item(hir::Item { kind: hir::ItemKind::Static(..), .. })
| hir::Node::TraitItem(hir::TraitItem {
kind: hir::TraitItemKind::Const(..), ..
})
| hir::Node::AnonConst(_)
| hir::Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Const(..), .. })
| hir::Node::ImplItem(hir::ImplItem {
kind:
hir::ImplItemKind::Fn(
hir::FnSig {
header: hir::FnHeader { constness: hir::Constness::Const, .. },
..
},
..,
),
..
}) => hir::Constness::Const,
hir::Node::ImplItem(hir::ImplItem {
kind: hir::ImplItemKind::TyAlias(..) | hir::ImplItemKind::Fn(..),
..
}) => {
let parent_hir_id = tcx.hir().get_parent_node(hir_id);
match tcx.hir().get(parent_hir_id) {
hir::Node::Item(hir::Item {
kind: hir::ItemKind::Impl(hir::Impl { constness, .. }),
..
}) => *constness,
_ => span_bug!(
tcx.def_span(parent_hir_id.owner),
"impl item's parent node is not an impl",
),
}
}
hir::Node::Item(hir::Item {
kind:
hir::ItemKind::Fn(hir::FnSig { header: hir::FnHeader { constness, .. }, .. }, ..),
..
})
| hir::Node::TraitItem(hir::TraitItem {
kind:
hir::TraitItemKind::Fn(
hir::FnSig { header: hir::FnHeader { constness, .. }, .. },
..,
),
..
})
| hir::Node::Item(hir::Item {
kind: hir::ItemKind::Impl(hir::Impl { constness, .. }),
..
}) => *constness,
_ => hir::Constness::NotConst,
},
None => hir::Constness::NotConst,
};
let unnormalized_env = ty::ParamEnv::new(
tcx.intern_predicates(&predicates),
traits::Reveal::UserFacing,
constness,
);
let body_id = hir_id.map_or(hir::CRATE_HIR_ID, |id| {
tcx.hir().maybe_body_owned_by(id).map_or(id, |body| body.hir_id)
});
let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id);
traits::normalize_param_env_or_error(tcx, def_id, unnormalized_env, cause)
}
/// Elaborate the environment.
///
/// Collect a list of `Predicate`'s used for building the `ParamEnv`. Adds `TypeWellFormedFromEnv`'s
/// that are assumed to be well-formed (because they come from the environment).
///
/// Used only in chalk mode.
fn well_formed_types_in_env<'tcx>(
tcx: TyCtxt<'tcx>,
def_id: DefId,
) -> &'tcx ty::List<Predicate<'tcx>> {
use rustc_hir::{ForeignItemKind, ImplItemKind, ItemKind, Node, TraitItemKind};
use rustc_middle::ty::subst::GenericArgKind;
debug!("environment(def_id = {:?})", def_id);
// The environment of an impl Trait type is its defining function's environment.
if let Some(parent) = ty::is_impl_trait_defn(tcx, def_id) {
return well_formed_types_in_env(tcx, parent.to_def_id());
}
// Compute the bounds on `Self` and the type parameters.
let ty::InstantiatedPredicates { predicates, .. } =
tcx.predicates_of(def_id).instantiate_identity(tcx);
let clauses = predicates.into_iter();
if !def_id.is_local() {
return ty::List::empty();
}
let node = tcx.hir().get_by_def_id(def_id.expect_local());
enum NodeKind {
TraitImpl,
InherentImpl,
Fn,
Other,
}
let node_kind = match node {
Node::TraitItem(item) => match item.kind {
TraitItemKind::Fn(..) => NodeKind::Fn,
_ => NodeKind::Other,
},
Node::ImplItem(item) => match item.kind {
ImplItemKind::Fn(..) => NodeKind::Fn,
_ => NodeKind::Other,
},
Node::Item(item) => match item.kind {
ItemKind::Impl(hir::Impl { of_trait: Some(_), .. }) => NodeKind::TraitImpl,
ItemKind::Impl(hir::Impl { of_trait: None, .. }) => NodeKind::InherentImpl,
ItemKind::Fn(..) => NodeKind::Fn,
_ => NodeKind::Other,
},
Node::ForeignItem(item) => match item.kind {
ForeignItemKind::Fn(..) => NodeKind::Fn,
_ => NodeKind::Other,
},
// FIXME: closures?
_ => NodeKind::Other,
};
// FIXME(eddyb) isn't the unordered nature of this a hazard?
let mut inputs = FxIndexSet::default();
match node_kind {
// In a trait impl, we assume that the header trait ref and all its
// constituents are well-formed.
NodeKind::TraitImpl => {
let trait_ref = tcx.impl_trait_ref(def_id).expect("not an impl");
// FIXME(chalk): this has problems because of late-bound regions
//inputs.extend(trait_ref.substs.iter().flat_map(|arg| arg.walk()));
inputs.extend(trait_ref.substs.iter());
}
// In an inherent impl, we assume that the receiver type and all its
// constituents are well-formed.
NodeKind::InherentImpl => {
let self_ty = tcx.type_of(def_id);
inputs.extend(self_ty.walk());
}
// In an fn, we assume that the arguments and all their constituents are
// well-formed.
NodeKind::Fn => {
let fn_sig = tcx.fn_sig(def_id);
let fn_sig = tcx.liberate_late_bound_regions(def_id, fn_sig);
inputs.extend(fn_sig.inputs().iter().flat_map(|ty| ty.walk()));
}
NodeKind::Other => (),
}
let input_clauses = inputs.into_iter().filter_map(|arg| {
match arg.unpack() {
GenericArgKind::Type(ty) => {
let binder = Binder::dummy(PredicateKind::TypeWellFormedFromEnv(ty));
Some(tcx.mk_predicate(binder))
}
// FIXME(eddyb) no WF conditions from lifetimes?
GenericArgKind::Lifetime(_) => None,
// FIXME(eddyb) support const generics in Chalk
GenericArgKind::Const(_) => None,
}
});
tcx.mk_predicates(clauses.chain(input_clauses))
}
fn param_env_reveal_all_normalized(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ParamEnv<'_> {
tcx.param_env(def_id).with_reveal_all_normalized(tcx)
}
fn instance_def_size_estimate<'tcx>(
tcx: TyCtxt<'tcx>,
instance_def: ty::InstanceDef<'tcx>,
) -> usize {
use ty::InstanceDef;
match instance_def {
InstanceDef::Item(..) | InstanceDef::DropGlue(..) => {
let mir = tcx.instance_mir(instance_def);
mir.basic_blocks().iter().map(|bb| bb.statements.len() + 1).sum()
}
// Estimate the size of other compiler-generated shims to be 1.
_ => 1,
}
}
/// If `def_id` is an issue 33140 hack impl, returns its self type; otherwise, returns `None`.
///
/// See [`ty::ImplOverlapKind::Issue33140`] for more details.
fn issue33140_self_ty(tcx: TyCtxt<'_>, def_id: DefId) -> Option<Ty<'_>> {
debug!("issue33140_self_ty({:?})", def_id);
let trait_ref = tcx
.impl_trait_ref(def_id)
.unwrap_or_else(|| bug!("issue33140_self_ty called on inherent impl {:?}", def_id));
debug!("issue33140_self_ty({:?}), trait-ref={:?}", def_id, trait_ref);
let is_marker_like = tcx.impl_polarity(def_id) == ty::ImplPolarity::Positive
&& tcx.associated_item_def_ids(trait_ref.def_id).is_empty();
// Check whether these impls would be ok for a marker trait.
if !is_marker_like {
debug!("issue33140_self_ty - not marker-like!");
return None;
}
// impl must be `impl Trait for dyn Marker1 + Marker2 + ...`
if trait_ref.substs.len() != 1 {
debug!("issue33140_self_ty - impl has substs!");
return None;
}
let predicates = tcx.predicates_of(def_id);
if predicates.parent.is_some() || !predicates.predicates.is_empty() {
debug!("issue33140_self_ty - impl has predicates {:?}!", predicates);
return None;
}
let self_ty = trait_ref.self_ty();
let self_ty_matches = match self_ty.kind() {
ty::Dynamic(ref data, re) if re.is_static() => data.principal().is_none(),
_ => false,
};
if self_ty_matches {
debug!("issue33140_self_ty - MATCHES!");
Some(self_ty)
} else {
debug!("issue33140_self_ty - non-matching self type");
None
}
}
/// Check if a function is async.
fn asyncness(tcx: TyCtxt<'_>, def_id: DefId) -> hir::IsAsync {
let node = tcx.hir().get_by_def_id(def_id.expect_local());
let fn_kind = node.fn_kind().unwrap_or_else(|| {
bug!("asyncness: expected fn-like node but got `{:?}`", def_id);
});
fn_kind.asyncness()
}
/// Don't call this directly: use ``tcx.conservative_is_privately_uninhabited`` instead.
#[instrument(level = "debug", skip(tcx))]
pub fn conservative_is_privately_uninhabited_raw<'tcx>(
tcx: TyCtxt<'tcx>,
param_env_and: ty::ParamEnvAnd<'tcx, Ty<'tcx>>,
) -> bool {
let (param_env, ty) = param_env_and.into_parts();
match ty.kind() {
ty::Never => {
debug!("ty::Never =>");
true
}
ty::Adt(def, _) if def.is_union() => {
debug!("ty::Adt(def, _) if def.is_union() =>");
// For now, `union`s are never considered uninhabited.
false
}
ty::Adt(def, substs) => {
debug!("ty::Adt(def, _) if def.is_not_union() =>");
// Any ADT is uninhabited if either:
// (a) It has no variants (i.e. an empty `enum`);
// (b) Each of its variants (a single one in the case of a `struct`) has at least
// one uninhabited field.
def.variants().iter().all(|var| {
var.fields.iter().any(|field| {
let ty = tcx.type_of(field.did).subst(tcx, substs);
tcx.conservative_is_privately_uninhabited(param_env.and(ty))
})
})
}
ty::Tuple(fields) => {
debug!("ty::Tuple(..) =>");
fields.iter().any(|ty| tcx.conservative_is_privately_uninhabited(param_env.and(ty)))
}
ty::Array(ty, len) => {
debug!("ty::Array(ty, len) =>");
match len.try_eval_usize(tcx, param_env) {
Some(0) | None => false,
// If the array is definitely non-empty, it's uninhabited if
// the type of its elements is uninhabited.
Some(1..) => tcx.conservative_is_privately_uninhabited(param_env.and(*ty)),
}
}
ty::Ref(..) => {
debug!("ty::Ref(..) =>");
// References to uninitialised memory is valid for any type, including
// uninhabited types, in unsafe code, so we treat all references as
// inhabited.
false
}
_ => {
debug!("_ =>");
false
}
}
}
pub fn provide(providers: &mut ty::query::Providers) {
*providers = ty::query::Providers {
asyncness,
adt_sized_constraint,
def_ident_span,
param_env,
param_env_reveal_all_normalized,
instance_def_size_estimate,
issue33140_self_ty,
impl_defaultness,
impl_constness,
conservative_is_privately_uninhabited: conservative_is_privately_uninhabited_raw,
..*providers
};
}