rust/src/librustc/middle/astencode.rs
2014-04-02 11:17:18 -04:00

1560 lines
57 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(non_camel_case_types)]
// FIXME: remove this after snapshot, and Results are handled
#![allow(unused_must_use)]
use c = metadata::common;
use cstore = metadata::cstore;
use driver::session::Session;
use metadata::decoder;
use e = metadata::encoder;
use middle::freevars::freevar_entry;
use middle::region;
use metadata::tydecode;
use metadata::tydecode::{DefIdSource, NominalType, TypeWithId, TypeParameter,
RegionParameter};
use metadata::tyencode;
use middle::typeck::{MethodCall, MethodCallee, MethodOrigin};
use middle::{ty, typeck, moves};
use middle;
use util::ppaux::ty_to_str;
use syntax::{ast, ast_map, ast_util, codemap, fold};
use syntax::codemap::Span;
use syntax::fold::Folder;
use syntax::parse::token;
use syntax;
use std::libc;
use std::cast;
use std::cell::RefCell;
use std::io::Seek;
use std::io::MemWriter;
use std::rc::Rc;
use serialize::ebml::reader;
use serialize::ebml;
use serialize;
use serialize::{Encoder, Encodable, EncoderHelpers, DecoderHelpers};
use serialize::{Decoder, Decodable};
use writer = serialize::ebml::writer;
#[cfg(test)] use syntax::parse;
#[cfg(test)] use syntax::print::pprust;
// Auxiliary maps of things to be encoded
pub struct Maps {
pub root_map: middle::borrowck::root_map,
pub method_map: middle::typeck::MethodMap,
pub vtable_map: middle::typeck::vtable_map,
pub capture_map: RefCell<middle::moves::CaptureMap>,
}
struct DecodeContext<'a> {
cdata: @cstore::crate_metadata,
tcx: &'a ty::ctxt,
maps: &'a Maps
}
struct ExtendedDecodeContext<'a> {
dcx: &'a DecodeContext<'a>,
from_id_range: ast_util::IdRange,
to_id_range: ast_util::IdRange
}
trait tr {
fn tr(&self, xcx: &ExtendedDecodeContext) -> Self;
}
trait tr_intern {
fn tr_intern(&self, xcx: &ExtendedDecodeContext) -> ast::DefId;
}
pub type Encoder<'a> = writer::Encoder<'a, MemWriter>;
// ______________________________________________________________________
// Top-level methods.
pub fn encode_inlined_item(ecx: &e::EncodeContext,
ebml_w: &mut Encoder,
ii: e::InlinedItemRef,
maps: &Maps) {
let id = match ii {
e::IIItemRef(i) => i.id,
e::IIForeignRef(i) => i.id,
e::IIMethodRef(_, _, m) => m.id,
};
debug!("> Encoding inlined item: {} ({})",
ecx.tcx.map.path_to_str(id),
ebml_w.writer.tell());
let ii = simplify_ast(ii);
let id_range = ast_util::compute_id_range_for_inlined_item(&ii);
ebml_w.start_tag(c::tag_ast as uint);
id_range.encode(ebml_w);
encode_ast(ebml_w, ii);
encode_side_tables_for_ii(ecx, maps, ebml_w, &ii);
ebml_w.end_tag();
debug!("< Encoded inlined fn: {} ({})",
ecx.tcx.map.path_to_str(id),
ebml_w.writer.tell());
}
pub fn decode_inlined_item(cdata: @cstore::crate_metadata,
tcx: &ty::ctxt,
maps: &Maps,
path: Vec<ast_map::PathElem>,
par_doc: ebml::Doc)
-> Result<ast::InlinedItem, Vec<ast_map::PathElem>> {
let dcx = &DecodeContext {
cdata: cdata,
tcx: tcx,
maps: maps
};
match par_doc.opt_child(c::tag_ast) {
None => Err(path),
Some(ast_doc) => {
let mut path_as_str = None;
debug!("> Decoding inlined fn: {}::?",
{
// Do an Option dance to use the path after it is moved below.
let s = ast_map::path_to_str(ast_map::Values(path.iter()));
path_as_str = Some(s);
path_as_str.as_ref().map(|x| x.as_slice())
});
let mut ast_dsr = reader::Decoder(ast_doc);
let from_id_range = Decodable::decode(&mut ast_dsr).unwrap();
let to_id_range = reserve_id_range(&dcx.tcx.sess, from_id_range);
let xcx = &ExtendedDecodeContext {
dcx: dcx,
from_id_range: from_id_range,
to_id_range: to_id_range
};
let raw_ii = decode_ast(ast_doc);
let ii = renumber_and_map_ast(xcx, &dcx.tcx.map, path, raw_ii);
let ident = match ii {
ast::IIItem(i) => i.ident,
ast::IIForeign(i) => i.ident,
ast::IIMethod(_, _, m) => m.ident,
};
debug!("Fn named: {}", token::get_ident(ident));
debug!("< Decoded inlined fn: {}::{}",
path_as_str.unwrap(),
token::get_ident(ident));
region::resolve_inlined_item(&tcx.sess, &tcx.region_maps, &ii);
decode_side_tables(xcx, ast_doc);
match ii {
ast::IIItem(i) => {
debug!(">>> DECODED ITEM >>>\n{}\n<<< DECODED ITEM <<<",
syntax::print::pprust::item_to_str(i));
}
_ => { }
}
Ok(ii)
}
}
}
// ______________________________________________________________________
// Enumerating the IDs which appear in an AST
fn reserve_id_range(sess: &Session,
from_id_range: ast_util::IdRange) -> ast_util::IdRange {
// Handle the case of an empty range:
if from_id_range.empty() { return from_id_range; }
let cnt = from_id_range.max - from_id_range.min;
let to_id_min = sess.reserve_node_ids(cnt);
let to_id_max = to_id_min + cnt;
ast_util::IdRange { min: to_id_min, max: to_id_max }
}
impl<'a> ExtendedDecodeContext<'a> {
pub fn tr_id(&self, id: ast::NodeId) -> ast::NodeId {
/*!
* Translates an internal id, meaning a node id that is known
* to refer to some part of the item currently being inlined,
* such as a local variable or argument. All naked node-ids
* that appear in types have this property, since if something
* might refer to an external item we would use a def-id to
* allow for the possibility that the item resides in another
* crate.
*/
// from_id_range should be non-empty
assert!(!self.from_id_range.empty());
(id - self.from_id_range.min + self.to_id_range.min)
}
pub fn tr_def_id(&self, did: ast::DefId) -> ast::DefId {
/*!
* Translates an EXTERNAL def-id, converting the crate number
* from the one used in the encoded data to the current crate
* numbers.. By external, I mean that it be translated to a
* reference to the item in its original crate, as opposed to
* being translated to a reference to the inlined version of
* the item. This is typically, but not always, what you
* want, because most def-ids refer to external things like
* types or other fns that may or may not be inlined. Note
* that even when the inlined function is referencing itself
* recursively, we would want `tr_def_id` for that
* reference--- conceptually the function calls the original,
* non-inlined version, and trans deals with linking that
* recursive call to the inlined copy.
*
* However, there are a *few* cases where def-ids are used but
* we know that the thing being referenced is in fact *internal*
* to the item being inlined. In those cases, you should use
* `tr_intern_def_id()` below.
*/
decoder::translate_def_id(self.dcx.cdata, did)
}
pub fn tr_intern_def_id(&self, did: ast::DefId) -> ast::DefId {
/*!
* Translates an INTERNAL def-id, meaning a def-id that is
* known to refer to some part of the item currently being
* inlined. In that case, we want to convert the def-id to
* refer to the current crate and to the new, inlined node-id.
*/
assert_eq!(did.krate, ast::LOCAL_CRATE);
ast::DefId { krate: ast::LOCAL_CRATE, node: self.tr_id(did.node) }
}
pub fn tr_span(&self, _span: Span) -> Span {
codemap::DUMMY_SP // FIXME (#1972): handle span properly
}
}
impl tr_intern for ast::DefId {
fn tr_intern(&self, xcx: &ExtendedDecodeContext) -> ast::DefId {
xcx.tr_intern_def_id(*self)
}
}
impl tr for ast::DefId {
fn tr(&self, xcx: &ExtendedDecodeContext) -> ast::DefId {
xcx.tr_def_id(*self)
}
}
impl tr for Option<ast::DefId> {
fn tr(&self, xcx: &ExtendedDecodeContext) -> Option<ast::DefId> {
self.map(|d| xcx.tr_def_id(d))
}
}
impl tr for Span {
fn tr(&self, xcx: &ExtendedDecodeContext) -> Span {
xcx.tr_span(*self)
}
}
trait def_id_encoder_helpers {
fn emit_def_id(&mut self, did: ast::DefId);
}
impl<S:serialize::Encoder<E>, E> def_id_encoder_helpers for S {
fn emit_def_id(&mut self, did: ast::DefId) {
did.encode(self).unwrap()
}
}
trait def_id_decoder_helpers {
fn read_def_id(&mut self, xcx: &ExtendedDecodeContext) -> ast::DefId;
fn read_def_id_noxcx(&mut self,
cdata: @cstore::crate_metadata) -> ast::DefId;
}
impl<D:serialize::Decoder<E>, E> def_id_decoder_helpers for D {
fn read_def_id(&mut self, xcx: &ExtendedDecodeContext) -> ast::DefId {
let did: ast::DefId = Decodable::decode(self).unwrap();
did.tr(xcx)
}
fn read_def_id_noxcx(&mut self,
cdata: @cstore::crate_metadata) -> ast::DefId {
let did: ast::DefId = Decodable::decode(self).unwrap();
decoder::translate_def_id(cdata, did)
}
}
// ______________________________________________________________________
// Encoding and decoding the AST itself
//
// The hard work is done by an autogenerated module astencode_gen. To
// regenerate astencode_gen, run src/etc/gen-astencode. It will
// replace astencode_gen with a dummy file and regenerate its
// contents. If you get compile errors, the dummy file
// remains---resolve the errors and then rerun astencode_gen.
// Annoying, I know, but hopefully only temporary.
//
// When decoding, we have to renumber the AST so that the node ids that
// appear within are disjoint from the node ids in our existing ASTs.
// We also have to adjust the spans: for now we just insert a dummy span,
// but eventually we should add entries to the local codemap as required.
fn encode_ast(ebml_w: &mut Encoder, item: ast::InlinedItem) {
ebml_w.start_tag(c::tag_tree as uint);
item.encode(ebml_w);
ebml_w.end_tag();
}
struct NestedItemsDropper;
impl Folder for NestedItemsDropper {
fn fold_block(&mut self, blk: ast::P<ast::Block>) -> ast::P<ast::Block> {
let stmts_sans_items = blk.stmts.iter().filter_map(|stmt| {
match stmt.node {
ast::StmtExpr(_, _) | ast::StmtSemi(_, _) => Some(*stmt),
ast::StmtDecl(decl, _) => {
match decl.node {
ast::DeclLocal(_) => Some(*stmt),
ast::DeclItem(_) => None,
}
}
ast::StmtMac(..) => fail!("unexpanded macro in astencode")
}
}).collect();
let blk_sans_items = ast::P(ast::Block {
view_items: Vec::new(), // I don't know if we need the view_items
// here, but it doesn't break tests!
stmts: stmts_sans_items,
expr: blk.expr,
id: blk.id,
rules: blk.rules,
span: blk.span,
});
fold::noop_fold_block(blk_sans_items, self)
}
}
// Produces a simplified copy of the AST which does not include things
// that we do not need to or do not want to export. For example, we
// do not include any nested items: if these nested items are to be
// inlined, their AST will be exported separately (this only makes
// sense because, in Rust, nested items are independent except for
// their visibility).
//
// As it happens, trans relies on the fact that we do not export
// nested items, as otherwise it would get confused when translating
// inlined items.
fn simplify_ast(ii: e::InlinedItemRef) -> ast::InlinedItem {
let mut fld = NestedItemsDropper;
match ii {
// HACK we're not dropping items.
e::IIItemRef(i) => ast::IIItem(fold::noop_fold_item(i, &mut fld)
.expect_one("expected one item")),
e::IIMethodRef(d, p, m) => ast::IIMethod(d, p, fold::noop_fold_method(m, &mut fld)),
e::IIForeignRef(i) => ast::IIForeign(fold::noop_fold_foreign_item(i, &mut fld))
}
}
fn decode_ast(par_doc: ebml::Doc) -> ast::InlinedItem {
let chi_doc = par_doc.get(c::tag_tree as uint);
let mut d = reader::Decoder(chi_doc);
Decodable::decode(&mut d).unwrap()
}
struct AstRenumberer<'a> {
xcx: &'a ExtendedDecodeContext<'a>,
}
impl<'a> ast_map::FoldOps for AstRenumberer<'a> {
fn new_id(&self, id: ast::NodeId) -> ast::NodeId {
if id == ast::DUMMY_NODE_ID {
// Used by ast_map to map the NodeInlinedParent.
self.xcx.dcx.tcx.sess.next_node_id()
} else {
self.xcx.tr_id(id)
}
}
fn new_span(&self, span: Span) -> Span {
self.xcx.tr_span(span)
}
}
fn renumber_and_map_ast(xcx: &ExtendedDecodeContext,
map: &ast_map::Map,
path: Vec<ast_map::PathElem> ,
ii: ast::InlinedItem) -> ast::InlinedItem {
ast_map::map_decoded_item(map,
path.move_iter().collect(),
AstRenumberer { xcx: xcx },
|fld| {
match ii {
ast::IIItem(i) => {
ast::IIItem(fld.fold_item(i).expect_one("expected one item"))
}
ast::IIMethod(d, is_provided, m) => {
ast::IIMethod(xcx.tr_def_id(d), is_provided, fld.fold_method(m))
}
ast::IIForeign(i) => ast::IIForeign(fld.fold_foreign_item(i))
}
})
}
// ______________________________________________________________________
// Encoding and decoding of ast::def
fn decode_def(xcx: &ExtendedDecodeContext, doc: ebml::Doc) -> ast::Def {
let mut dsr = reader::Decoder(doc);
let def: ast::Def = Decodable::decode(&mut dsr).unwrap();
def.tr(xcx)
}
impl tr for ast::Def {
fn tr(&self, xcx: &ExtendedDecodeContext) -> ast::Def {
match *self {
ast::DefFn(did, p) => ast::DefFn(did.tr(xcx), p),
ast::DefStaticMethod(did, wrapped_did2, p) => {
ast::DefStaticMethod(did.tr(xcx),
match wrapped_did2 {
ast::FromTrait(did2) => {
ast::FromTrait(did2.tr(xcx))
}
ast::FromImpl(did2) => {
ast::FromImpl(did2.tr(xcx))
}
},
p)
}
ast::DefMethod(did0, did1) => {
ast::DefMethod(did0.tr(xcx), did1.map(|did1| did1.tr(xcx)))
}
ast::DefSelfTy(nid) => { ast::DefSelfTy(xcx.tr_id(nid)) }
ast::DefMod(did) => { ast::DefMod(did.tr(xcx)) }
ast::DefForeignMod(did) => { ast::DefForeignMod(did.tr(xcx)) }
ast::DefStatic(did, m) => { ast::DefStatic(did.tr(xcx), m) }
ast::DefArg(nid, b) => { ast::DefArg(xcx.tr_id(nid), b) }
ast::DefLocal(nid, b) => { ast::DefLocal(xcx.tr_id(nid), b) }
ast::DefVariant(e_did, v_did, is_s) => {
ast::DefVariant(e_did.tr(xcx), v_did.tr(xcx), is_s)
},
ast::DefTrait(did) => ast::DefTrait(did.tr(xcx)),
ast::DefTy(did) => ast::DefTy(did.tr(xcx)),
ast::DefPrimTy(p) => ast::DefPrimTy(p),
ast::DefTyParam(did, v) => ast::DefTyParam(did.tr(xcx), v),
ast::DefBinding(nid, bm) => ast::DefBinding(xcx.tr_id(nid), bm),
ast::DefUse(did) => ast::DefUse(did.tr(xcx)),
ast::DefUpvar(nid1, def, nid2, nid3) => {
ast::DefUpvar(xcx.tr_id(nid1),
@(*def).tr(xcx),
xcx.tr_id(nid2),
xcx.tr_id(nid3))
}
ast::DefStruct(did) => ast::DefStruct(did.tr(xcx)),
ast::DefRegion(nid) => ast::DefRegion(xcx.tr_id(nid)),
ast::DefTyParamBinder(nid) => {
ast::DefTyParamBinder(xcx.tr_id(nid))
}
ast::DefLabel(nid) => ast::DefLabel(xcx.tr_id(nid))
}
}
}
// ______________________________________________________________________
// Encoding and decoding of adjustment information
impl tr for ty::AutoDerefRef {
fn tr(&self, xcx: &ExtendedDecodeContext) -> ty::AutoDerefRef {
ty::AutoDerefRef {
autoderefs: self.autoderefs,
autoref: match self.autoref {
Some(ref autoref) => Some(autoref.tr(xcx)),
None => None
}
}
}
}
impl tr for ty::AutoRef {
fn tr(&self, xcx: &ExtendedDecodeContext) -> ty::AutoRef {
self.map_region(|r| r.tr(xcx))
}
}
impl tr for ty::Region {
fn tr(&self, xcx: &ExtendedDecodeContext) -> ty::Region {
match *self {
ty::ReLateBound(id, br) => ty::ReLateBound(xcx.tr_id(id),
br.tr(xcx)),
ty::ReEarlyBound(id, index, ident) => ty::ReEarlyBound(xcx.tr_id(id),
index,
ident),
ty::ReScope(id) => ty::ReScope(xcx.tr_id(id)),
ty::ReEmpty | ty::ReStatic | ty::ReInfer(..) => *self,
ty::ReFree(ref fr) => {
ty::ReFree(ty::FreeRegion {scope_id: xcx.tr_id(fr.scope_id),
bound_region: fr.bound_region.tr(xcx)})
}
}
}
}
impl tr for ty::BoundRegion {
fn tr(&self, xcx: &ExtendedDecodeContext) -> ty::BoundRegion {
match *self {
ty::BrAnon(_) |
ty::BrFresh(_) => *self,
ty::BrNamed(id, ident) => ty::BrNamed(xcx.tr_def_id(id),
ident),
}
}
}
// ______________________________________________________________________
// Encoding and decoding of freevar information
fn encode_freevar_entry(ebml_w: &mut Encoder, fv: @freevar_entry) {
(*fv).encode(ebml_w).unwrap();
}
trait ebml_decoder_helper {
fn read_freevar_entry(&mut self, xcx: &ExtendedDecodeContext)
-> freevar_entry;
}
impl<'a> ebml_decoder_helper for reader::Decoder<'a> {
fn read_freevar_entry(&mut self, xcx: &ExtendedDecodeContext)
-> freevar_entry {
let fv: freevar_entry = Decodable::decode(self).unwrap();
fv.tr(xcx)
}
}
impl tr for freevar_entry {
fn tr(&self, xcx: &ExtendedDecodeContext) -> freevar_entry {
freevar_entry {
def: self.def.tr(xcx),
span: self.span.tr(xcx),
}
}
}
// ______________________________________________________________________
// Encoding and decoding of CaptureVar information
trait capture_var_helper {
fn read_capture_var(&mut self, xcx: &ExtendedDecodeContext)
-> moves::CaptureVar;
}
impl<'a> capture_var_helper for reader::Decoder<'a> {
fn read_capture_var(&mut self, xcx: &ExtendedDecodeContext)
-> moves::CaptureVar {
let cvar: moves::CaptureVar = Decodable::decode(self).unwrap();
cvar.tr(xcx)
}
}
impl tr for moves::CaptureVar {
fn tr(&self, xcx: &ExtendedDecodeContext) -> moves::CaptureVar {
moves::CaptureVar {
def: self.def.tr(xcx),
span: self.span.tr(xcx),
mode: self.mode
}
}
}
// ______________________________________________________________________
// Encoding and decoding of MethodCallee
trait read_method_callee_helper {
fn read_method_callee(&mut self, xcx: &ExtendedDecodeContext) -> (u32, MethodCallee);
}
fn encode_method_callee(ecx: &e::EncodeContext,
ebml_w: &mut Encoder,
autoderef: u32,
method: &MethodCallee) {
ebml_w.emit_struct("MethodCallee", 4, |ebml_w| {
ebml_w.emit_struct_field("autoderef", 0u, |ebml_w| {
autoderef.encode(ebml_w)
});
ebml_w.emit_struct_field("origin", 1u, |ebml_w| {
method.origin.encode(ebml_w)
});
ebml_w.emit_struct_field("ty", 2u, |ebml_w| {
Ok(ebml_w.emit_ty(ecx, method.ty))
});
ebml_w.emit_struct_field("substs", 3u, |ebml_w| {
Ok(ebml_w.emit_substs(ecx, &method.substs))
})
}).unwrap();
}
impl<'a> read_method_callee_helper for reader::Decoder<'a> {
fn read_method_callee(&mut self, xcx: &ExtendedDecodeContext) -> (u32, MethodCallee) {
self.read_struct("MethodCallee", 4, |this| {
let autoderef = this.read_struct_field("autoderef", 0, |this| {
Decodable::decode(this)
}).unwrap();
Ok((autoderef, MethodCallee {
origin: this.read_struct_field("origin", 1, |this| {
let method_origin: MethodOrigin =
Decodable::decode(this).unwrap();
Ok(method_origin.tr(xcx))
}).unwrap(),
ty: this.read_struct_field("ty", 2, |this| {
Ok(this.read_ty(xcx))
}).unwrap(),
substs: this.read_struct_field("substs", 3, |this| {
Ok(this.read_substs(xcx))
}).unwrap()
}))
}).unwrap()
}
}
impl tr for MethodOrigin {
fn tr(&self, xcx: &ExtendedDecodeContext) -> MethodOrigin {
match *self {
typeck::MethodStatic(did) => typeck::MethodStatic(did.tr(xcx)),
typeck::MethodParam(ref mp) => {
typeck::MethodParam(
typeck::MethodParam {
trait_id: mp.trait_id.tr(xcx),
.. *mp
}
)
}
typeck::MethodObject(ref mo) => {
typeck::MethodObject(
typeck::MethodObject {
trait_id: mo.trait_id.tr(xcx),
.. *mo
}
)
}
}
}
}
// ______________________________________________________________________
// Encoding and decoding vtable_res
fn encode_vtable_res_with_key(ecx: &e::EncodeContext,
ebml_w: &mut Encoder,
autoderef: u32,
dr: typeck::vtable_res) {
ebml_w.emit_struct("VtableWithKey", 2, |ebml_w| {
ebml_w.emit_struct_field("autoderef", 0u, |ebml_w| {
autoderef.encode(ebml_w)
});
ebml_w.emit_struct_field("vtable_res", 1u, |ebml_w| {
Ok(encode_vtable_res(ecx, ebml_w, dr))
})
}).unwrap()
}
pub fn encode_vtable_res(ecx: &e::EncodeContext,
ebml_w: &mut Encoder,
dr: typeck::vtable_res) {
// can't autogenerate this code because automatic code of
// ty::t doesn't work, and there is no way (atm) to have
// hand-written encoding routines combine with auto-generated
// ones. perhaps we should fix this.
ebml_w.emit_from_vec(dr.as_slice(), |ebml_w, param_tables| {
Ok(encode_vtable_param_res(ecx, ebml_w, *param_tables))
}).unwrap()
}
pub fn encode_vtable_param_res(ecx: &e::EncodeContext,
ebml_w: &mut Encoder,
param_tables: typeck::vtable_param_res) {
ebml_w.emit_from_vec(param_tables.as_slice(), |ebml_w, vtable_origin| {
Ok(encode_vtable_origin(ecx, ebml_w, vtable_origin))
}).unwrap()
}
pub fn encode_vtable_origin(ecx: &e::EncodeContext,
ebml_w: &mut Encoder,
vtable_origin: &typeck::vtable_origin) {
ebml_w.emit_enum("vtable_origin", |ebml_w| {
match *vtable_origin {
typeck::vtable_static(def_id, ref tys, vtable_res) => {
ebml_w.emit_enum_variant("vtable_static", 0u, 3u, |ebml_w| {
ebml_w.emit_enum_variant_arg(0u, |ebml_w| {
Ok(ebml_w.emit_def_id(def_id))
});
ebml_w.emit_enum_variant_arg(1u, |ebml_w| {
Ok(ebml_w.emit_tys(ecx, tys.as_slice()))
});
ebml_w.emit_enum_variant_arg(2u, |ebml_w| {
Ok(encode_vtable_res(ecx, ebml_w, vtable_res))
})
})
}
typeck::vtable_param(pn, bn) => {
ebml_w.emit_enum_variant("vtable_param", 1u, 2u, |ebml_w| {
ebml_w.emit_enum_variant_arg(0u, |ebml_w| {
pn.encode(ebml_w)
});
ebml_w.emit_enum_variant_arg(1u, |ebml_w| {
ebml_w.emit_uint(bn)
})
})
}
}
}).unwrap()
}
pub trait vtable_decoder_helpers {
fn read_vtable_res_with_key(&mut self,
tcx: &ty::ctxt,
cdata: @cstore::crate_metadata)
-> (u32, typeck::vtable_res);
fn read_vtable_res(&mut self,
tcx: &ty::ctxt, cdata: @cstore::crate_metadata)
-> typeck::vtable_res;
fn read_vtable_param_res(&mut self,
tcx: &ty::ctxt, cdata: @cstore::crate_metadata)
-> typeck::vtable_param_res;
fn read_vtable_origin(&mut self,
tcx: &ty::ctxt, cdata: @cstore::crate_metadata)
-> typeck::vtable_origin;
}
impl<'a> vtable_decoder_helpers for reader::Decoder<'a> {
fn read_vtable_res_with_key(&mut self,
tcx: &ty::ctxt,
cdata: @cstore::crate_metadata)
-> (u32, typeck::vtable_res) {
self.read_struct("VtableWithKey", 2, |this| {
let autoderef = this.read_struct_field("autoderef", 0, |this| {
Decodable::decode(this)
}).unwrap();
Ok((autoderef, this.read_struct_field("vtable_res", 1, |this| {
Ok(this.read_vtable_res(tcx, cdata))
}).unwrap()))
}).unwrap()
}
fn read_vtable_res(&mut self,
tcx: &ty::ctxt, cdata: @cstore::crate_metadata)
-> typeck::vtable_res {
@self.read_to_vec(|this|
Ok(this.read_vtable_param_res(tcx, cdata)))
.unwrap()
.move_iter()
.collect()
}
fn read_vtable_param_res(&mut self,
tcx: &ty::ctxt, cdata: @cstore::crate_metadata)
-> typeck::vtable_param_res {
@self.read_to_vec(|this|
Ok(this.read_vtable_origin(tcx, cdata)))
.unwrap()
.move_iter()
.collect()
}
fn read_vtable_origin(&mut self,
tcx: &ty::ctxt, cdata: @cstore::crate_metadata)
-> typeck::vtable_origin {
self.read_enum("vtable_origin", |this| {
this.read_enum_variant(["vtable_static",
"vtable_param",
"vtable_self"],
|this, i| {
Ok(match i {
0 => {
typeck::vtable_static(
this.read_enum_variant_arg(0u, |this| {
Ok(this.read_def_id_noxcx(cdata))
}).unwrap(),
this.read_enum_variant_arg(1u, |this| {
Ok(this.read_tys_noxcx(tcx, cdata))
}).unwrap(),
this.read_enum_variant_arg(2u, |this| {
Ok(this.read_vtable_res(tcx, cdata))
}).unwrap()
)
}
1 => {
typeck::vtable_param(
this.read_enum_variant_arg(0u, |this| {
Decodable::decode(this)
}).unwrap(),
this.read_enum_variant_arg(1u, |this| {
this.read_uint()
}).unwrap()
)
}
// hard to avoid - user input
_ => fail!("bad enum variant")
})
})
}).unwrap()
}
}
// ______________________________________________________________________
// Encoding and decoding the side tables
trait get_ty_str_ctxt {
fn ty_str_ctxt<'a>(&'a self) -> tyencode::ctxt<'a>;
}
impl<'a> get_ty_str_ctxt for e::EncodeContext<'a> {
fn ty_str_ctxt<'a>(&'a self) -> tyencode::ctxt<'a> {
tyencode::ctxt {
diag: self.tcx.sess.diagnostic(),
ds: e::def_to_str,
tcx: self.tcx,
abbrevs: tyencode::ac_use_abbrevs(self.type_abbrevs)
}
}
}
trait ebml_writer_helpers {
fn emit_ty(&mut self, ecx: &e::EncodeContext, ty: ty::t);
fn emit_vstore(&mut self, ecx: &e::EncodeContext, vstore: ty::vstore);
fn emit_tys(&mut self, ecx: &e::EncodeContext, tys: &[ty::t]);
fn emit_type_param_def(&mut self,
ecx: &e::EncodeContext,
type_param_def: &ty::TypeParameterDef);
fn emit_tpbt(&mut self,
ecx: &e::EncodeContext,
tpbt: ty::ty_param_bounds_and_ty);
fn emit_substs(&mut self, ecx: &e::EncodeContext, substs: &ty::substs);
fn emit_auto_adjustment(&mut self, ecx: &e::EncodeContext, adj: &ty::AutoAdjustment);
}
impl<'a> ebml_writer_helpers for Encoder<'a> {
fn emit_ty(&mut self, ecx: &e::EncodeContext, ty: ty::t) {
self.emit_opaque(|this| Ok(e::write_type(ecx, this, ty)));
}
fn emit_vstore(&mut self, ecx: &e::EncodeContext, vstore: ty::vstore) {
self.emit_opaque(|this| Ok(e::write_vstore(ecx, this, vstore)));
}
fn emit_tys(&mut self, ecx: &e::EncodeContext, tys: &[ty::t]) {
self.emit_from_vec(tys, |this, ty| Ok(this.emit_ty(ecx, *ty)));
}
fn emit_type_param_def(&mut self,
ecx: &e::EncodeContext,
type_param_def: &ty::TypeParameterDef) {
self.emit_opaque(|this| {
Ok(tyencode::enc_type_param_def(this.writer,
&ecx.ty_str_ctxt(),
type_param_def))
});
}
fn emit_tpbt(&mut self,
ecx: &e::EncodeContext,
tpbt: ty::ty_param_bounds_and_ty) {
self.emit_struct("ty_param_bounds_and_ty", 2, |this| {
this.emit_struct_field("generics", 0, |this| {
this.emit_struct("Generics", 2, |this| {
this.emit_struct_field("type_param_defs", 0, |this| {
this.emit_from_vec(tpbt.generics.type_param_defs(),
|this, type_param_def| {
Ok(this.emit_type_param_def(ecx, type_param_def))
})
});
this.emit_struct_field("region_param_defs", 1, |this| {
tpbt.generics.region_param_defs().encode(this)
})
})
});
this.emit_struct_field("ty", 1, |this| {
Ok(this.emit_ty(ecx, tpbt.ty))
})
});
}
fn emit_substs(&mut self, ecx: &e::EncodeContext, substs: &ty::substs) {
self.emit_opaque(|this| Ok(tyencode::enc_substs(this.writer,
&ecx.ty_str_ctxt(),
substs)));
}
fn emit_auto_adjustment(&mut self, ecx: &e::EncodeContext, adj: &ty::AutoAdjustment) {
self.emit_enum("AutoAdjustment", |this| {
match *adj {
ty::AutoAddEnv(region, sigil) => {
this.emit_enum_variant("AutoAddEnv", 0, 2, |this| {
this.emit_enum_variant_arg(0, |this| region.encode(this));
this.emit_enum_variant_arg(1, |this| sigil.encode(this))
})
}
ty::AutoDerefRef(ref auto_deref_ref) => {
this.emit_enum_variant("AutoDerefRef", 1, 1, |this| {
this.emit_enum_variant_arg(0, |this| auto_deref_ref.encode(this))
})
}
ty::AutoObject(sigil, region, m, b, def_id, ref substs) => {
this.emit_enum_variant("AutoObject", 2, 6, |this| {
this.emit_enum_variant_arg(0, |this| sigil.encode(this));
this.emit_enum_variant_arg(1, |this| region.encode(this));
this.emit_enum_variant_arg(2, |this| m.encode(this));
this.emit_enum_variant_arg(3, |this| b.encode(this));
this.emit_enum_variant_arg(4, |this| def_id.encode(this));
this.emit_enum_variant_arg(5, |this| Ok(this.emit_substs(ecx, substs)))
})
}
}
});
}
}
trait write_tag_and_id {
fn tag(&mut self, tag_id: c::astencode_tag, f: |&mut Self|);
fn id(&mut self, id: ast::NodeId);
}
impl<'a> write_tag_and_id for Encoder<'a> {
fn tag(&mut self,
tag_id: c::astencode_tag,
f: |&mut Encoder<'a>|) {
self.start_tag(tag_id as uint);
f(self);
self.end_tag();
}
fn id(&mut self, id: ast::NodeId) {
self.wr_tagged_u64(c::tag_table_id as uint, id as u64);
}
}
struct SideTableEncodingIdVisitor<'a,'b> {
ecx_ptr: *libc::c_void,
new_ebml_w: &'a mut Encoder<'b>,
maps: &'a Maps,
}
impl<'a,'b> ast_util::IdVisitingOperation for
SideTableEncodingIdVisitor<'a,'b> {
fn visit_id(&self, id: ast::NodeId) {
// Note: this will cause a copy of ebml_w, which is bad as
// it is mutable. But I believe it's harmless since we generate
// balanced EBML.
//
// FIXME(pcwalton): Don't copy this way.
let mut new_ebml_w = unsafe {
self.new_ebml_w.unsafe_clone()
};
// See above
let ecx: &e::EncodeContext = unsafe {
cast::transmute(self.ecx_ptr)
};
encode_side_tables_for_id(ecx, self.maps, &mut new_ebml_w, id)
}
}
fn encode_side_tables_for_ii(ecx: &e::EncodeContext,
maps: &Maps,
ebml_w: &mut Encoder,
ii: &ast::InlinedItem) {
ebml_w.start_tag(c::tag_table as uint);
let mut new_ebml_w = unsafe {
ebml_w.unsafe_clone()
};
// Because the ast visitor uses @IdVisitingOperation, I can't pass in
// ecx directly, but /I/ know that it'll be fine since the lifetime is
// tied to the CrateContext that lives throughout this entire section.
ast_util::visit_ids_for_inlined_item(ii, &SideTableEncodingIdVisitor {
ecx_ptr: unsafe {
cast::transmute(ecx)
},
new_ebml_w: &mut new_ebml_w,
maps: maps,
});
ebml_w.end_tag();
}
fn encode_side_tables_for_id(ecx: &e::EncodeContext,
maps: &Maps,
ebml_w: &mut Encoder,
id: ast::NodeId) {
let tcx = ecx.tcx;
debug!("Encoding side tables for id {}", id);
for def in tcx.def_map.borrow().find(&id).iter() {
ebml_w.tag(c::tag_table_def, |ebml_w| {
ebml_w.id(id);
ebml_w.tag(c::tag_table_val, |ebml_w| (*def).encode(ebml_w).unwrap());
})
}
for &ty in tcx.node_types.borrow().find(&(id as uint)).iter() {
ebml_w.tag(c::tag_table_node_type, |ebml_w| {
ebml_w.id(id);
ebml_w.tag(c::tag_table_val, |ebml_w| {
ebml_w.emit_ty(ecx, *ty);
})
})
}
for tys in tcx.node_type_substs.borrow().find(&id).iter() {
ebml_w.tag(c::tag_table_node_type_subst, |ebml_w| {
ebml_w.id(id);
ebml_w.tag(c::tag_table_val, |ebml_w| {
ebml_w.emit_tys(ecx, tys.as_slice())
})
})
}
for &fv in tcx.freevars.borrow().find(&id).iter() {
ebml_w.tag(c::tag_table_freevars, |ebml_w| {
ebml_w.id(id);
ebml_w.tag(c::tag_table_val, |ebml_w| {
ebml_w.emit_from_vec(fv.as_slice(), |ebml_w, fv_entry| {
Ok(encode_freevar_entry(ebml_w, *fv_entry))
});
})
})
}
let lid = ast::DefId { krate: ast::LOCAL_CRATE, node: id };
for &tpbt in tcx.tcache.borrow().find(&lid).iter() {
ebml_w.tag(c::tag_table_tcache, |ebml_w| {
ebml_w.id(id);
ebml_w.tag(c::tag_table_val, |ebml_w| {
ebml_w.emit_tpbt(ecx, tpbt.clone());
})
})
}
for &type_param_def in tcx.ty_param_defs.borrow().find(&id).iter() {
ebml_w.tag(c::tag_table_param_defs, |ebml_w| {
ebml_w.id(id);
ebml_w.tag(c::tag_table_val, |ebml_w| {
ebml_w.emit_type_param_def(ecx, type_param_def)
})
})
}
let method_call = MethodCall::expr(id);
for &method in maps.method_map.borrow().find(&method_call).iter() {
ebml_w.tag(c::tag_table_method_map, |ebml_w| {
ebml_w.id(id);
ebml_w.tag(c::tag_table_val, |ebml_w| {
encode_method_callee(ecx, ebml_w, method_call.autoderef, method)
})
})
}
for &dr in maps.vtable_map.borrow().find(&method_call).iter() {
ebml_w.tag(c::tag_table_vtable_map, |ebml_w| {
ebml_w.id(id);
ebml_w.tag(c::tag_table_val, |ebml_w| {
encode_vtable_res_with_key(ecx, ebml_w, method_call.autoderef, *dr);
})
})
}
for adj in tcx.adjustments.borrow().find(&id).iter() {
match ***adj {
ty::AutoDerefRef(adj) => {
for autoderef in range(0, adj.autoderefs) {
let method_call = MethodCall::autoderef(id, autoderef as u32);
for &method in maps.method_map.borrow().find(&method_call).iter() {
ebml_w.tag(c::tag_table_method_map, |ebml_w| {
ebml_w.id(id);
ebml_w.tag(c::tag_table_val, |ebml_w| {
encode_method_callee(ecx, ebml_w, method_call.autoderef, method)
})
})
}
for &dr in maps.vtable_map.borrow().find(&method_call).iter() {
ebml_w.tag(c::tag_table_vtable_map, |ebml_w| {
ebml_w.id(id);
ebml_w.tag(c::tag_table_val, |ebml_w| {
encode_vtable_res_with_key(ecx, ebml_w,
method_call.autoderef, *dr);
})
})
}
}
}
_ => {}
}
ebml_w.tag(c::tag_table_adjustments, |ebml_w| {
ebml_w.id(id);
ebml_w.tag(c::tag_table_val, |ebml_w| {
ebml_w.emit_auto_adjustment(ecx, **adj);
})
})
}
for &cap_vars in maps.capture_map.borrow().find(&id).iter() {
ebml_w.tag(c::tag_table_capture_map, |ebml_w| {
ebml_w.id(id);
ebml_w.tag(c::tag_table_val, |ebml_w| {
ebml_w.emit_from_vec(cap_vars.as_slice(), |ebml_w, cap_var| {
cap_var.encode(ebml_w)
});
})
})
}
}
trait doc_decoder_helpers {
fn as_int(&self) -> int;
fn opt_child(&self, tag: c::astencode_tag) -> Option<Self>;
}
impl<'a> doc_decoder_helpers for ebml::Doc<'a> {
fn as_int(&self) -> int { reader::doc_as_u64(*self) as int }
fn opt_child(&self, tag: c::astencode_tag) -> Option<ebml::Doc<'a>> {
reader::maybe_get_doc(*self, tag as uint)
}
}
trait ebml_decoder_decoder_helpers {
fn read_ty(&mut self, xcx: &ExtendedDecodeContext) -> ty::t;
fn read_tys(&mut self, xcx: &ExtendedDecodeContext) -> Vec<ty::t>;
fn read_type_param_def(&mut self, xcx: &ExtendedDecodeContext)
-> ty::TypeParameterDef;
fn read_ty_param_bounds_and_ty(&mut self, xcx: &ExtendedDecodeContext)
-> ty::ty_param_bounds_and_ty;
fn read_substs(&mut self, xcx: &ExtendedDecodeContext) -> ty::substs;
fn read_auto_adjustment(&mut self, xcx: &ExtendedDecodeContext) -> ty::AutoAdjustment;
fn convert_def_id(&mut self,
xcx: &ExtendedDecodeContext,
source: DefIdSource,
did: ast::DefId)
-> ast::DefId;
// Versions of the type reading functions that don't need the full
// ExtendedDecodeContext.
fn read_ty_noxcx(&mut self,
tcx: &ty::ctxt, cdata: @cstore::crate_metadata) -> ty::t;
fn read_tys_noxcx(&mut self,
tcx: &ty::ctxt,
cdata: @cstore::crate_metadata) -> Vec<ty::t>;
}
impl<'a> ebml_decoder_decoder_helpers for reader::Decoder<'a> {
fn read_ty_noxcx(&mut self,
tcx: &ty::ctxt, cdata: @cstore::crate_metadata) -> ty::t {
self.read_opaque(|_, doc| {
Ok(tydecode::parse_ty_data(
doc.data,
cdata.cnum,
doc.start,
tcx,
|_, id| decoder::translate_def_id(cdata, id)))
}).unwrap()
}
fn read_tys_noxcx(&mut self,
tcx: &ty::ctxt,
cdata: @cstore::crate_metadata) -> Vec<ty::t> {
self.read_to_vec(|this| Ok(this.read_ty_noxcx(tcx, cdata)) )
.unwrap()
.move_iter()
.collect()
}
fn read_ty(&mut self, xcx: &ExtendedDecodeContext) -> ty::t {
// Note: regions types embed local node ids. In principle, we
// should translate these node ids into the new decode
// context. However, we do not bother, because region types
// are not used during trans.
return self.read_opaque(|this, doc| {
debug!("read_ty({})", type_string(doc));
let ty = tydecode::parse_ty_data(
doc.data,
xcx.dcx.cdata.cnum,
doc.start,
xcx.dcx.tcx,
|s, a| this.convert_def_id(xcx, s, a));
Ok(ty)
}).unwrap();
fn type_string(doc: ebml::Doc) -> ~str {
let mut str = ~"";
for i in range(doc.start, doc.end) {
str.push_char(doc.data[i] as char);
}
str
}
}
fn read_tys(&mut self, xcx: &ExtendedDecodeContext) -> Vec<ty::t> {
self.read_to_vec(|this| Ok(this.read_ty(xcx))).unwrap().move_iter().collect()
}
fn read_type_param_def(&mut self, xcx: &ExtendedDecodeContext)
-> ty::TypeParameterDef {
self.read_opaque(|this, doc| {
Ok(tydecode::parse_type_param_def_data(
doc.data,
doc.start,
xcx.dcx.cdata.cnum,
xcx.dcx.tcx,
|s, a| this.convert_def_id(xcx, s, a)))
}).unwrap()
}
fn read_ty_param_bounds_and_ty(&mut self, xcx: &ExtendedDecodeContext)
-> ty::ty_param_bounds_and_ty {
self.read_struct("ty_param_bounds_and_ty", 2, |this| {
Ok(ty::ty_param_bounds_and_ty {
generics: this.read_struct_field("generics", 0, |this| {
this.read_struct("Generics", 2, |this| {
Ok(ty::Generics {
type_param_defs:
this.read_struct_field("type_param_defs",
0,
|this| {
Ok(Rc::new(this.read_to_vec(|this|
Ok(this.read_type_param_def(xcx)))
.unwrap()
.move_iter()
.collect()))
}).unwrap(),
region_param_defs:
this.read_struct_field("region_param_defs",
1,
|this| {
Decodable::decode(this)
}).unwrap()
})
})
}).unwrap(),
ty: this.read_struct_field("ty", 1, |this| {
Ok(this.read_ty(xcx))
}).unwrap()
})
}).unwrap()
}
fn read_substs(&mut self, xcx: &ExtendedDecodeContext) -> ty::substs {
self.read_opaque(|this, doc| {
Ok(tydecode::parse_substs_data(doc.data,
xcx.dcx.cdata.cnum,
doc.start,
xcx.dcx.tcx,
|s, a| this.convert_def_id(xcx, s, a)))
}).unwrap()
}
fn read_auto_adjustment(&mut self, xcx: &ExtendedDecodeContext) -> ty::AutoAdjustment {
self.read_enum("AutoAdjustment", |this| {
let variants = ["AutoAddEnv", "AutoDerefRef", "AutoObject"];
this.read_enum_variant(variants, |this, i| {
Ok(match i {
0 => {
let region: ty::Region =
this.read_enum_variant_arg(0, |this| Decodable::decode(this)).unwrap();
let sigil: ast::Sigil =
this.read_enum_variant_arg(1, |this| Decodable::decode(this)).unwrap();
ty:: AutoAddEnv(region.tr(xcx), sigil)
}
1 => {
let auto_deref_ref: ty::AutoDerefRef =
this.read_enum_variant_arg(0, |this| Decodable::decode(this)).unwrap();
ty::AutoDerefRef(auto_deref_ref.tr(xcx))
}
2 => {
let sigil: ast::Sigil =
this.read_enum_variant_arg(0, |this| Decodable::decode(this)).unwrap();
let region: Option<ty::Region> =
this.read_enum_variant_arg(1, |this| Decodable::decode(this)).unwrap();
let m: ast::Mutability =
this.read_enum_variant_arg(2, |this| Decodable::decode(this)).unwrap();
let b: ty::BuiltinBounds =
this.read_enum_variant_arg(3, |this| Decodable::decode(this)).unwrap();
let def_id: ast::DefId =
this.read_enum_variant_arg(4, |this| Decodable::decode(this)).unwrap();
let substs = this.read_enum_variant_arg(5, |this| Ok(this.read_substs(xcx)))
.unwrap();
let region = match region {
Some(r) => Some(r.tr(xcx)),
None => None
};
ty::AutoObject(sigil, region, m, b, def_id.tr(xcx), substs)
}
_ => fail!("bad enum variant for ty::AutoAdjustment")
})
})
}).unwrap()
}
fn convert_def_id(&mut self,
xcx: &ExtendedDecodeContext,
source: tydecode::DefIdSource,
did: ast::DefId)
-> ast::DefId {
/*!
* Converts a def-id that appears in a type. The correct
* translation will depend on what kind of def-id this is.
* This is a subtle point: type definitions are not
* inlined into the current crate, so if the def-id names
* a nominal type or type alias, then it should be
* translated to refer to the source crate.
*
* However, *type parameters* are cloned along with the function
* they are attached to. So we should translate those def-ids
* to refer to the new, cloned copy of the type parameter.
* We only see references to free type parameters in the body of
* an inlined function. In such cases, we need the def-id to
* be a local id so that the TypeContents code is able to lookup
* the relevant info in the ty_param_defs table.
*
* *Region parameters*, unfortunately, are another kettle of fish.
* In such cases, def_id's can appear in types to distinguish
* shadowed bound regions and so forth. It doesn't actually
* matter so much what we do to these, since regions are erased
* at trans time, but it's good to keep them consistent just in
* case. We translate them with `tr_def_id()` which will map
* the crate numbers back to the original source crate.
*
* It'd be really nice to refactor the type repr to not include
* def-ids so that all these distinctions were unnecessary.
*/
let r = match source {
NominalType | TypeWithId | RegionParameter => xcx.tr_def_id(did),
TypeParameter => xcx.tr_intern_def_id(did)
};
debug!("convert_def_id(source={:?}, did={:?})={:?}", source, did, r);
return r;
}
}
fn decode_side_tables(xcx: &ExtendedDecodeContext,
ast_doc: ebml::Doc) {
let dcx = xcx.dcx;
let tbl_doc = ast_doc.get(c::tag_table as uint);
reader::docs(tbl_doc, |tag, entry_doc| {
let id0 = entry_doc.get(c::tag_table_id as uint).as_int();
let id = xcx.tr_id(id0 as ast::NodeId);
debug!(">> Side table document with tag 0x{:x} \
found for id {} (orig {})",
tag, id, id0);
match c::astencode_tag::from_uint(tag) {
None => {
xcx.dcx.tcx.sess.bug(
format!("unknown tag found in side tables: {:x}", tag));
}
Some(value) => {
let val_doc = entry_doc.get(c::tag_table_val as uint);
let mut val_dsr = reader::Decoder(val_doc);
let val_dsr = &mut val_dsr;
match value {
c::tag_table_def => {
let def = decode_def(xcx, val_doc);
dcx.tcx.def_map.borrow_mut().insert(id, def);
}
c::tag_table_node_type => {
let ty = val_dsr.read_ty(xcx);
debug!("inserting ty for node {:?}: {}",
id, ty_to_str(dcx.tcx, ty));
dcx.tcx.node_types.borrow_mut().insert(id as uint, ty);
}
c::tag_table_node_type_subst => {
let tys = val_dsr.read_tys(xcx);
dcx.tcx.node_type_substs.borrow_mut().insert(id, tys);
}
c::tag_table_freevars => {
let fv_info = @val_dsr.read_to_vec(|val_dsr| {
Ok(@val_dsr.read_freevar_entry(xcx))
}).unwrap().move_iter().collect();
dcx.tcx.freevars.borrow_mut().insert(id, fv_info);
}
c::tag_table_tcache => {
let tpbt = val_dsr.read_ty_param_bounds_and_ty(xcx);
let lid = ast::DefId { krate: ast::LOCAL_CRATE, node: id };
dcx.tcx.tcache.borrow_mut().insert(lid, tpbt);
}
c::tag_table_param_defs => {
let bounds = val_dsr.read_type_param_def(xcx);
dcx.tcx.ty_param_defs.borrow_mut().insert(id, bounds);
}
c::tag_table_method_map => {
let (autoderef, method) = val_dsr.read_method_callee(xcx);
let method_call = MethodCall {
expr_id: id,
autoderef: autoderef
};
dcx.maps.method_map.borrow_mut().insert(method_call, method);
}
c::tag_table_vtable_map => {
let (autoderef, vtable_res) =
val_dsr.read_vtable_res_with_key(xcx.dcx.tcx,
xcx.dcx.cdata);
let vtable_key = MethodCall {
expr_id: id,
autoderef: autoderef
};
dcx.maps.vtable_map.borrow_mut().insert(vtable_key, vtable_res);
}
c::tag_table_adjustments => {
let adj: @ty::AutoAdjustment = @val_dsr.read_auto_adjustment(xcx);
dcx.tcx.adjustments.borrow_mut().insert(id, adj);
}
c::tag_table_capture_map => {
let cvars =
val_dsr.read_to_vec(
|val_dsr| Ok(val_dsr.read_capture_var(xcx)))
.unwrap()
.move_iter()
.collect();
dcx.maps.capture_map.borrow_mut().insert(id, Rc::new(cvars));
}
_ => {
xcx.dcx.tcx.sess.bug(
format!("unknown tag found in side tables: {:x}", tag));
}
}
}
}
debug!(">< Side table doc loaded");
true
});
}
// ______________________________________________________________________
// Testing of astencode_gen
#[cfg(test)]
fn encode_item_ast(ebml_w: &mut Encoder, item: @ast::Item) {
ebml_w.start_tag(c::tag_tree as uint);
(*item).encode(ebml_w);
ebml_w.end_tag();
}
#[cfg(test)]
fn decode_item_ast(par_doc: ebml::Doc) -> @ast::Item {
let chi_doc = par_doc.get(c::tag_tree as uint);
let mut d = reader::Decoder(chi_doc);
@Decodable::decode(&mut d).unwrap()
}
#[cfg(test)]
trait fake_ext_ctxt {
fn cfg(&self) -> ast::CrateConfig;
fn parse_sess<'a>(&'a self) -> &'a parse::ParseSess;
fn call_site(&self) -> Span;
fn ident_of(&self, st: &str) -> ast::Ident;
}
#[cfg(test)]
impl fake_ext_ctxt for parse::ParseSess {
fn cfg(&self) -> ast::CrateConfig {
Vec::new()
}
fn parse_sess<'a>(&'a self) -> &'a parse::ParseSess { self }
fn call_site(&self) -> Span {
codemap::Span {
lo: codemap::BytePos(0),
hi: codemap::BytePos(0),
expn_info: None
}
}
fn ident_of(&self, st: &str) -> ast::Ident {
token::str_to_ident(st)
}
}
#[cfg(test)]
fn mk_ctxt() -> parse::ParseSess {
parse::new_parse_sess()
}
#[cfg(test)]
fn roundtrip(in_item: Option<@ast::Item>) {
use std::io::MemWriter;
let in_item = in_item.unwrap();
let mut wr = MemWriter::new();
{
let mut ebml_w = writer::Encoder(&mut wr);
encode_item_ast(&mut ebml_w, in_item);
}
let ebml_doc = reader::Doc(wr.get_ref());
let out_item = decode_item_ast(ebml_doc);
assert!(in_item == out_item);
}
#[test]
fn test_basic() {
let cx = mk_ctxt();
roundtrip(quote_item!(cx,
fn foo() {}
));
}
#[test]
fn test_smalltalk() {
let cx = mk_ctxt();
roundtrip(quote_item!(cx,
fn foo() -> int { 3 + 4 } // first smalltalk program ever executed.
));
}
#[test]
fn test_more() {
let cx = mk_ctxt();
roundtrip(quote_item!(cx,
fn foo(x: uint, y: uint) -> uint {
let z = x + y;
return z;
}
));
}
#[test]
fn test_simplification() {
let cx = mk_ctxt();
let item = quote_item!(&cx,
fn new_int_alist<B>() -> alist<int, B> {
fn eq_int(a: int, b: int) -> bool { a == b }
return alist {eq_fn: eq_int, data: Vec::new()};
}
).unwrap();
let item_in = e::IIItemRef(item);
let item_out = simplify_ast(item_in);
let item_exp = ast::IIItem(quote_item!(cx,
fn new_int_alist<B>() -> alist<int, B> {
return alist {eq_fn: eq_int, data: Vec::new()};
}
).unwrap());
match (item_out, item_exp) {
(ast::IIItem(item_out), ast::IIItem(item_exp)) => {
assert!(pprust::item_to_str(item_out) == pprust::item_to_str(item_exp));
}
_ => fail!()
}
}