rust/src/rustc/middle/const_eval.rs

365 lines
11 KiB
Rust

import syntax::{ast,ast_util,visit};
import ast::*;
//
// This pass classifies expressions by their constant-ness.
//
// Constant-ness comes in 3 flavours:
//
// - Integer-constants: can be evaluated by the frontend all the way down
// to their actual value. They are used in a few places (enum
// discriminants, switch arms) and are a subset of
// general-constants. They cover all the integer and integer-ish
// literals (nil, bool, int, uint, char, iNN, uNN) and all integer
// operators and copies applied to them.
//
// - General-constants: can be evaluated by LLVM but not necessarily by
// the frontend; usually due to reliance on target-specific stuff such
// as "where in memory the value goes" or "what floating point mode the
// target uses". This _includes_ integer-constants, plus the following
// constructors:
//
// fixed-size vectors and strings: []/_ and ""/_
// vector and string slices: &[] and &""
// tuples: (,)
// records: {...}
// enums: foo(...)
// floating point literals and operators
// & and * pointers
// copies of general constants
//
// (in theory, probably not at first: if/alt on integer-const
// conditions / descriminants)
//
// - Non-constants: everything else.
//
enum constness {
integral_const,
general_const,
non_const
}
fn join(a: constness, b: constness) -> constness {
alt (a,b) {
(integral_const, integral_const) { integral_const }
(integral_const, general_const)
| (general_const, integral_const)
| (general_const, general_const) { general_const }
_ { non_const }
}
}
fn join_all(cs: &[constness]) -> constness {
vec::foldl(integral_const, cs, join)
}
fn classify(e: @expr,
def_map: resolve3::DefMap,
tcx: ty::ctxt) -> constness {
let did = ast_util::local_def(e.id);
alt tcx.ccache.find(did) {
some(x) { x }
none {
let cn =
alt e.node {
ast::expr_lit(lit) {
alt lit.node {
ast::lit_str(*) |
ast::lit_float(*) { general_const }
_ { integral_const }
}
}
ast::expr_copy(inner) |
ast::expr_unary(_, inner) {
classify(inner, def_map, tcx)
}
ast::expr_binary(_, a, b) {
join(classify(a, def_map, tcx),
classify(b, def_map, tcx))
}
ast::expr_tup(es) |
ast::expr_vec(es, ast::m_imm) {
join_all(vec::map(es, |e| classify(e, def_map, tcx)))
}
ast::expr_vstore(e, vstore) {
alt vstore {
ast::vstore_fixed(_) |
ast::vstore_slice(_) { classify(e, def_map, tcx) }
ast::vstore_uniq |
ast::vstore_box { non_const }
}
}
ast::expr_rec(fs, none) {
let cs = do vec::map(fs) |f| {
if f.node.mutbl == ast::m_imm {
classify(f.node.expr, def_map, tcx)
} else {
non_const
}
};
join_all(cs)
}
ast::expr_cast(base, _) {
let ty = ty::expr_ty(tcx, e);
let base = classify(base, def_map, tcx);
if ty::type_is_integral(ty) {
join(integral_const, base)
} else if ty::type_is_fp(ty) {
join(general_const, base)
} else {
non_const
}
}
ast::expr_field(base, _, _) {
classify(base, def_map, tcx)
}
ast::expr_index(base, idx) {
join(classify(base, def_map, tcx),
classify(idx, def_map, tcx))
}
ast::expr_addr_of(ast::m_imm, base) {
classify(base, def_map, tcx)
}
// FIXME: #1272, we can probably do something CCI-ish
// surrounding nonlocal constants. But we don't yet.
ast::expr_path(_) {
alt def_map.find(e.id) {
some(ast::def_const(def_id)) {
if ast_util::is_local(def_id) {
let ty = ty::expr_ty(tcx, e);
if ty::type_is_integral(ty) {
integral_const
} else {
general_const
}
} else {
non_const
}
}
some(_) {
non_const
}
none {
tcx.sess.span_bug(e.span,
~"unknown path when \
classifying constants");
}
}
}
_ { non_const }
};
tcx.ccache.insert(did, cn);
cn
}
}
}
fn process_crate(crate: @ast::crate,
def_map: resolve3::DefMap,
tcx: ty::ctxt) {
let v = visit::mk_simple_visitor(@{
visit_expr_post: |e| { classify(e, def_map, tcx); }
with *visit::default_simple_visitor()
});
visit::visit_crate(*crate, (), v);
tcx.sess.abort_if_errors();
}
// FIXME (#33): this doesn't handle big integer/float literals correctly
// (nor does the rest of our literal handling).
enum const_val {
const_float(f64),
const_int(i64),
const_uint(u64),
const_str(~str),
}
// FIXME: issue #1417
fn eval_const_expr(tcx: middle::ty::ctxt, e: @expr) -> const_val {
import middle::ty;
fn fromb(b: bool) -> const_val { const_int(b as i64) }
alt check e.node {
expr_unary(neg, inner) {
alt check eval_const_expr(tcx, inner) {
const_float(f) { const_float(-f) }
const_int(i) { const_int(-i) }
const_uint(i) { const_uint(-i) }
}
}
expr_unary(not, inner) {
alt check eval_const_expr(tcx, inner) {
const_int(i) { const_int(!i) }
const_uint(i) { const_uint(!i) }
}
}
expr_binary(op, a, b) {
alt check (eval_const_expr(tcx, a), eval_const_expr(tcx, b)) {
(const_float(a), const_float(b)) {
alt check op {
add { const_float(a + b) } subtract { const_float(a - b) }
mul { const_float(a * b) } div { const_float(a / b) }
rem { const_float(a % b) } eq { fromb(a == b) }
lt { fromb(a < b) } le { fromb(a <= b) } ne { fromb(a != b) }
ge { fromb(a >= b) } gt { fromb(a > b) }
}
}
(const_int(a), const_int(b)) {
alt check op {
add { const_int(a + b) } subtract { const_int(a - b) }
mul { const_int(a * b) } div { const_int(a / b) }
rem { const_int(a % b) } and | bitand { const_int(a & b) }
or | bitor { const_int(a | b) } bitxor { const_int(a ^ b) }
shl { const_int(a << b) } shr { const_int(a >> b) }
eq { fromb(a == b) } lt { fromb(a < b) }
le { fromb(a <= b) } ne { fromb(a != b) }
ge { fromb(a >= b) } gt { fromb(a > b) }
}
}
(const_uint(a), const_uint(b)) {
alt check op {
add { const_uint(a + b) } subtract { const_uint(a - b) }
mul { const_uint(a * b) } div { const_uint(a / b) }
rem { const_uint(a % b) } and | bitand { const_uint(a & b) }
or | bitor { const_uint(a | b) } bitxor { const_uint(a ^ b) }
shl { const_uint(a << b) } shr { const_uint(a >> b) }
eq { fromb(a == b) } lt { fromb(a < b) }
le { fromb(a <= b) } ne { fromb(a != b) }
ge { fromb(a >= b) } gt { fromb(a > b) }
}
}
// shifts can have any integral type as their rhs
(const_int(a), const_uint(b)) {
alt check op {
shl { const_int(a << b) } shr { const_int(a >> b) }
}
}
(const_uint(a), const_int(b)) {
alt check op {
shl { const_uint(a << b) } shr { const_uint(a >> b) }
}
}
}
}
expr_cast(base, _) {
let ety = ty::expr_ty(tcx, e);
let base = eval_const_expr(tcx, base);
alt check ty::get(ety).struct {
ty::ty_float(_) {
alt check base {
const_uint(u) { const_float(u as f64) }
const_int(i) { const_float(i as f64) }
const_float(_) { base }
}
}
ty::ty_uint(_) {
alt check base {
const_uint(_) { base }
const_int(i) { const_uint(i as u64) }
const_float(f) { const_uint(f as u64) }
}
}
ty::ty_int(_) | ty::ty_bool {
alt check base {
const_uint(u) { const_int(u as i64) }
const_int(_) { base }
const_float(f) { const_int(f as i64) }
}
}
}
}
expr_lit(lit) { lit_to_const(lit) }
// If we have a vstore, just keep going; it has to be a string
expr_vstore(e, _) { eval_const_expr(tcx, e) }
}
}
fn lit_to_const(lit: @lit) -> const_val {
alt lit.node {
lit_str(s) { const_str(*s) }
lit_int(n, _) { const_int(n) }
lit_uint(n, _) { const_uint(n) }
lit_int_unsuffixed(n) { const_int(n) }
lit_float(n, _) { const_float(option::get(float::from_str(*n)) as f64) }
lit_nil { const_int(0i64) }
lit_bool(b) { const_int(b as i64) }
}
}
fn compare_const_vals(a: const_val, b: const_val) -> int {
alt (a, b) {
(const_int(a), const_int(b)) {
if a == b {
0
} else if a < b {
-1
} else {
1
}
}
(const_uint(a), const_uint(b)) {
if a == b {
0
} else if a < b {
-1
} else {
1
}
}
(const_float(a), const_float(b)) {
if a == b {
0
} else if a < b {
-1
} else {
1
}
}
(const_str(a), const_str(b)) {
if a == b {
0
} else if a < b {
-1
} else {
1
}
}
_ {
fail ~"compare_const_vals: ill-typed comparison";
}
}
}
fn compare_lit_exprs(tcx: middle::ty::ctxt, a: @expr, b: @expr) -> int {
compare_const_vals(eval_const_expr(tcx, a), eval_const_expr(tcx, b))
}
fn lit_expr_eq(tcx: middle::ty::ctxt, a: @expr, b: @expr) -> bool {
compare_lit_exprs(tcx, a, b) == 0
}
fn lit_eq(a: @lit, b: @lit) -> bool {
compare_const_vals(lit_to_const(a), lit_to_const(b)) == 0
}
// Local Variables:
// mode: rust
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// End: