807 lines
28 KiB
Rust

//! Contains basic data about various HIR declarations.
pub mod adt;
use base_db::CrateId;
use hir_expand::{
name::Name, AstId, ExpandResult, HirFileId, InFile, MacroCallId, MacroCallKind, MacroDefKind,
};
use intern::Interned;
use smallvec::SmallVec;
use syntax::{ast, Parse};
use triomphe::Arc;
use crate::{
attr::Attrs,
db::DefDatabase,
expander::{Expander, Mark},
item_tree::{self, AssocItem, FnFlags, ItemTree, ItemTreeId, MacroCall, ModItem, TreeId},
macro_call_as_call_id,
nameres::{
attr_resolution::ResolvedAttr,
diagnostics::DefDiagnostic,
proc_macro::{parse_macro_name_and_helper_attrs, ProcMacroKind},
DefMap, MacroSubNs,
},
path::ImportAlias,
type_ref::{TraitRef, TypeBound, TypeRef},
visibility::RawVisibility,
AssocItemId, AstIdWithPath, ConstId, ConstLoc, ExternCrateId, FunctionId, FunctionLoc,
HasModule, ImplId, Intern, ItemContainerId, ItemLoc, Lookup, Macro2Id, MacroRulesId, ModuleId,
ProcMacroId, StaticId, TraitAliasId, TraitId, TypeAliasId, TypeAliasLoc,
};
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct FunctionData {
pub name: Name,
pub params: Box<[Interned<TypeRef>]>,
pub ret_type: Interned<TypeRef>,
pub attrs: Attrs,
pub visibility: RawVisibility,
pub abi: Option<Interned<str>>,
pub legacy_const_generics_indices: Box<[u32]>,
pub rustc_allow_incoherent_impl: bool,
flags: FnFlags,
}
impl FunctionData {
pub(crate) fn fn_data_query(db: &dyn DefDatabase, func: FunctionId) -> Arc<FunctionData> {
let loc = func.lookup(db);
let krate = loc.container.module(db).krate;
let item_tree = loc.id.item_tree(db);
let func = &item_tree[loc.id.value];
let visibility = if let ItemContainerId::TraitId(trait_id) = loc.container {
trait_vis(db, trait_id)
} else {
item_tree[func.visibility].clone()
};
let crate_graph = db.crate_graph();
let cfg_options = &crate_graph[krate].cfg_options;
let enabled_params = func
.params
.clone()
.filter(|&param| item_tree.attrs(db, krate, param.into()).is_cfg_enabled(cfg_options));
// If last cfg-enabled param is a `...` param, it's a varargs function.
let is_varargs = enabled_params
.clone()
.next_back()
.map_or(false, |param| item_tree[param].type_ref.is_none());
let mut flags = func.flags;
if is_varargs {
flags |= FnFlags::IS_VARARGS;
}
if flags.contains(FnFlags::HAS_SELF_PARAM) {
// If there's a self param in the syntax, but it is cfg'd out, remove the flag.
let is_cfgd_out = match func.params.clone().next() {
Some(param) => {
!item_tree.attrs(db, krate, param.into()).is_cfg_enabled(cfg_options)
}
None => {
stdx::never!("fn HAS_SELF_PARAM but no parameters allocated");
true
}
};
if is_cfgd_out {
cov_mark::hit!(cfgd_out_self_param);
flags.remove(FnFlags::HAS_SELF_PARAM);
}
}
let attrs = item_tree.attrs(db, krate, ModItem::from(loc.id.value).into());
let legacy_const_generics_indices = attrs
.by_key("rustc_legacy_const_generics")
.tt_values()
.next()
.map(parse_rustc_legacy_const_generics)
.unwrap_or_default();
let rustc_allow_incoherent_impl = attrs.by_key("rustc_allow_incoherent_impl").exists();
Arc::new(FunctionData {
name: func.name.clone(),
params: enabled_params
.clone()
.filter_map(|id| item_tree[id].type_ref.clone())
.collect(),
ret_type: func.ret_type.clone(),
attrs: item_tree.attrs(db, krate, ModItem::from(loc.id.value).into()),
visibility,
abi: func.abi.clone(),
legacy_const_generics_indices,
flags,
rustc_allow_incoherent_impl,
})
}
pub fn has_body(&self) -> bool {
self.flags.contains(FnFlags::HAS_BODY)
}
/// True if the first param is `self`. This is relevant to decide whether this
/// can be called as a method.
pub fn has_self_param(&self) -> bool {
self.flags.contains(FnFlags::HAS_SELF_PARAM)
}
pub fn has_default_kw(&self) -> bool {
self.flags.contains(FnFlags::HAS_DEFAULT_KW)
}
pub fn has_const_kw(&self) -> bool {
self.flags.contains(FnFlags::HAS_CONST_KW)
}
pub fn has_async_kw(&self) -> bool {
self.flags.contains(FnFlags::HAS_ASYNC_KW)
}
pub fn has_unsafe_kw(&self) -> bool {
self.flags.contains(FnFlags::HAS_UNSAFE_KW)
}
pub fn is_varargs(&self) -> bool {
self.flags.contains(FnFlags::IS_VARARGS)
}
}
fn parse_rustc_legacy_const_generics(tt: &crate::tt::Subtree) -> Box<[u32]> {
let mut indices = Vec::new();
for args in tt.token_trees.chunks(2) {
match &args[0] {
tt::TokenTree::Leaf(tt::Leaf::Literal(lit)) => match lit.text.parse() {
Ok(index) => indices.push(index),
Err(_) => break,
},
_ => break,
}
if let Some(comma) = args.get(1) {
match comma {
tt::TokenTree::Leaf(tt::Leaf::Punct(punct)) if punct.char == ',' => {}
_ => break,
}
}
}
indices.into_boxed_slice()
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct TypeAliasData {
pub name: Name,
pub type_ref: Option<Interned<TypeRef>>,
pub visibility: RawVisibility,
pub is_extern: bool,
pub rustc_has_incoherent_inherent_impls: bool,
pub rustc_allow_incoherent_impl: bool,
/// Bounds restricting the type alias itself (eg. `type Ty: Bound;` in a trait or impl).
pub bounds: Box<[Interned<TypeBound>]>,
}
impl TypeAliasData {
pub(crate) fn type_alias_data_query(
db: &dyn DefDatabase,
typ: TypeAliasId,
) -> Arc<TypeAliasData> {
let loc = typ.lookup(db);
let item_tree = loc.id.item_tree(db);
let typ = &item_tree[loc.id.value];
let visibility = if let ItemContainerId::TraitId(trait_id) = loc.container {
trait_vis(db, trait_id)
} else {
item_tree[typ.visibility].clone()
};
let attrs = item_tree.attrs(
db,
loc.container.module(db).krate(),
ModItem::from(loc.id.value).into(),
);
let rustc_has_incoherent_inherent_impls =
attrs.by_key("rustc_has_incoherent_inherent_impls").exists();
let rustc_allow_incoherent_impl = attrs.by_key("rustc_allow_incoherent_impl").exists();
Arc::new(TypeAliasData {
name: typ.name.clone(),
type_ref: typ.type_ref.clone(),
visibility,
is_extern: matches!(loc.container, ItemContainerId::ExternBlockId(_)),
rustc_has_incoherent_inherent_impls,
rustc_allow_incoherent_impl,
bounds: typ.bounds.clone(),
})
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct TraitData {
pub name: Name,
pub items: Vec<(Name, AssocItemId)>,
pub is_auto: bool,
pub is_unsafe: bool,
pub rustc_has_incoherent_inherent_impls: bool,
pub skip_array_during_method_dispatch: bool,
pub fundamental: bool,
pub visibility: RawVisibility,
/// Whether the trait has `#[rust_skip_array_during_method_dispatch]`. `hir_ty` will ignore
/// method calls to this trait's methods when the receiver is an array and the crate edition is
/// 2015 or 2018.
// box it as the vec is usually empty anyways
pub attribute_calls: Option<Box<Vec<(AstId<ast::Item>, MacroCallId)>>>,
}
impl TraitData {
pub(crate) fn trait_data_query(db: &dyn DefDatabase, tr: TraitId) -> Arc<TraitData> {
db.trait_data_with_diagnostics(tr).0
}
pub(crate) fn trait_data_with_diagnostics_query(
db: &dyn DefDatabase,
tr: TraitId,
) -> (Arc<TraitData>, Arc<[DefDiagnostic]>) {
let tr_loc @ ItemLoc { container: module_id, id: tree_id } = tr.lookup(db);
let item_tree = tree_id.item_tree(db);
let tr_def = &item_tree[tree_id.value];
let _cx = stdx::panic_context::enter(format!(
"trait_data_query({tr:?} -> {tr_loc:?} -> {tr_def:?})"
));
let name = tr_def.name.clone();
let is_auto = tr_def.is_auto;
let is_unsafe = tr_def.is_unsafe;
let visibility = item_tree[tr_def.visibility].clone();
let attrs = item_tree.attrs(db, module_id.krate(), ModItem::from(tree_id.value).into());
let skip_array_during_method_dispatch =
attrs.by_key("rustc_skip_array_during_method_dispatch").exists();
let rustc_has_incoherent_inherent_impls =
attrs.by_key("rustc_has_incoherent_inherent_impls").exists();
let fundamental = attrs.by_key("fundamental").exists();
let mut collector =
AssocItemCollector::new(db, module_id, tree_id.file_id(), ItemContainerId::TraitId(tr));
collector.collect(&item_tree, tree_id.tree_id(), &tr_def.items);
let (items, attribute_calls, diagnostics) = collector.finish();
(
Arc::new(TraitData {
name,
attribute_calls,
items,
is_auto,
is_unsafe,
visibility,
skip_array_during_method_dispatch,
rustc_has_incoherent_inherent_impls,
fundamental,
}),
diagnostics.into(),
)
}
pub fn associated_types(&self) -> impl Iterator<Item = TypeAliasId> + '_ {
self.items.iter().filter_map(|(_name, item)| match item {
AssocItemId::TypeAliasId(t) => Some(*t),
_ => None,
})
}
pub fn associated_type_by_name(&self, name: &Name) -> Option<TypeAliasId> {
self.items.iter().find_map(|(item_name, item)| match item {
AssocItemId::TypeAliasId(t) if item_name == name => Some(*t),
_ => None,
})
}
pub fn method_by_name(&self, name: &Name) -> Option<FunctionId> {
self.items.iter().find_map(|(item_name, item)| match item {
AssocItemId::FunctionId(t) if item_name == name => Some(*t),
_ => None,
})
}
pub fn attribute_calls(&self) -> impl Iterator<Item = (AstId<ast::Item>, MacroCallId)> + '_ {
self.attribute_calls.iter().flat_map(|it| it.iter()).copied()
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct TraitAliasData {
pub name: Name,
pub visibility: RawVisibility,
}
impl TraitAliasData {
pub(crate) fn trait_alias_query(db: &dyn DefDatabase, id: TraitAliasId) -> Arc<TraitAliasData> {
let loc = id.lookup(db);
let item_tree = loc.id.item_tree(db);
let alias = &item_tree[loc.id.value];
let visibility = item_tree[alias.visibility].clone();
Arc::new(TraitAliasData { name: alias.name.clone(), visibility })
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ImplData {
pub target_trait: Option<Interned<TraitRef>>,
pub self_ty: Interned<TypeRef>,
pub items: Vec<AssocItemId>,
pub is_negative: bool,
pub is_unsafe: bool,
// box it as the vec is usually empty anyways
pub attribute_calls: Option<Box<Vec<(AstId<ast::Item>, MacroCallId)>>>,
}
impl ImplData {
pub(crate) fn impl_data_query(db: &dyn DefDatabase, id: ImplId) -> Arc<ImplData> {
db.impl_data_with_diagnostics(id).0
}
pub(crate) fn impl_data_with_diagnostics_query(
db: &dyn DefDatabase,
id: ImplId,
) -> (Arc<ImplData>, Arc<[DefDiagnostic]>) {
let _p = profile::span("impl_data_with_diagnostics_query");
let ItemLoc { container: module_id, id: tree_id } = id.lookup(db);
let item_tree = tree_id.item_tree(db);
let impl_def = &item_tree[tree_id.value];
let target_trait = impl_def.target_trait.clone();
let self_ty = impl_def.self_ty.clone();
let is_negative = impl_def.is_negative;
let is_unsafe = impl_def.is_unsafe;
let mut collector =
AssocItemCollector::new(db, module_id, tree_id.file_id(), ItemContainerId::ImplId(id));
collector.collect(&item_tree, tree_id.tree_id(), &impl_def.items);
let (items, attribute_calls, diagnostics) = collector.finish();
let items = items.into_iter().map(|(_, item)| item).collect();
(
Arc::new(ImplData {
target_trait,
self_ty,
items,
is_negative,
is_unsafe,
attribute_calls,
}),
diagnostics.into(),
)
}
pub fn attribute_calls(&self) -> impl Iterator<Item = (AstId<ast::Item>, MacroCallId)> + '_ {
self.attribute_calls.iter().flat_map(|it| it.iter()).copied()
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Macro2Data {
pub name: Name,
pub visibility: RawVisibility,
// It's a bit wasteful as currently this is only for builtin `Default` derive macro, but macro2
// are rarely used in practice so I think it's okay for now.
/// Derive helpers, if this is a derive rustc_builtin_macro
pub helpers: Option<Box<[Name]>>,
}
impl Macro2Data {
pub(crate) fn macro2_data_query(db: &dyn DefDatabase, makro: Macro2Id) -> Arc<Macro2Data> {
let loc = makro.lookup(db);
let item_tree = loc.id.item_tree(db);
let makro = &item_tree[loc.id.value];
let helpers = item_tree
.attrs(db, loc.container.krate(), ModItem::from(loc.id.value).into())
.by_key("rustc_builtin_macro")
.tt_values()
.next()
.and_then(|attr| parse_macro_name_and_helper_attrs(&attr.token_trees))
.map(|(_, helpers)| helpers);
Arc::new(Macro2Data {
name: makro.name.clone(),
visibility: item_tree[makro.visibility].clone(),
helpers,
})
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct MacroRulesData {
pub name: Name,
pub macro_export: bool,
}
impl MacroRulesData {
pub(crate) fn macro_rules_data_query(
db: &dyn DefDatabase,
makro: MacroRulesId,
) -> Arc<MacroRulesData> {
let loc = makro.lookup(db);
let item_tree = loc.id.item_tree(db);
let makro = &item_tree[loc.id.value];
let macro_export = item_tree
.attrs(db, loc.container.krate(), ModItem::from(loc.id.value).into())
.by_key("macro_export")
.exists();
Arc::new(MacroRulesData { name: makro.name.clone(), macro_export })
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ProcMacroData {
pub name: Name,
/// Derive helpers, if this is a derive
pub helpers: Option<Box<[Name]>>,
}
impl ProcMacroData {
pub(crate) fn proc_macro_data_query(
db: &dyn DefDatabase,
makro: ProcMacroId,
) -> Arc<ProcMacroData> {
let loc = makro.lookup(db);
let item_tree = loc.id.item_tree(db);
let makro = &item_tree[loc.id.value];
let (name, helpers) = if let Some(def) = item_tree
.attrs(db, loc.container.krate(), ModItem::from(loc.id.value).into())
.parse_proc_macro_decl(&makro.name)
{
(
def.name,
match def.kind {
ProcMacroKind::CustomDerive { helpers } => Some(helpers),
ProcMacroKind::FnLike | ProcMacroKind::Attr => None,
},
)
} else {
// eeeh...
stdx::never!("proc macro declaration is not a proc macro");
(makro.name.clone(), None)
};
Arc::new(ProcMacroData { name, helpers })
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ExternCrateDeclData {
pub name: Name,
pub alias: Option<ImportAlias>,
pub visibility: RawVisibility,
pub crate_id: Option<CrateId>,
}
impl ExternCrateDeclData {
pub(crate) fn extern_crate_decl_data_query(
db: &dyn DefDatabase,
extern_crate: ExternCrateId,
) -> Arc<ExternCrateDeclData> {
let loc = extern_crate.lookup(db);
let item_tree = loc.id.item_tree(db);
let extern_crate = &item_tree[loc.id.value];
let name = extern_crate.name.clone();
let crate_id = if name == hir_expand::name![self] {
Some(loc.container.krate())
} else {
db.crate_def_map(loc.container.krate())
.extern_prelude()
.find(|&(prelude_name, ..)| *prelude_name == name)
.map(|(_, (root, _))| root.krate())
};
Arc::new(Self {
name: extern_crate.name.clone(),
visibility: item_tree[extern_crate.visibility].clone(),
alias: extern_crate.alias.clone(),
crate_id,
})
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ConstData {
/// `None` for `const _: () = ();`
pub name: Option<Name>,
pub type_ref: Interned<TypeRef>,
pub visibility: RawVisibility,
pub rustc_allow_incoherent_impl: bool,
}
impl ConstData {
pub(crate) fn const_data_query(db: &dyn DefDatabase, konst: ConstId) -> Arc<ConstData> {
let loc = konst.lookup(db);
let item_tree = loc.id.item_tree(db);
let konst = &item_tree[loc.id.value];
let visibility = if let ItemContainerId::TraitId(trait_id) = loc.container {
trait_vis(db, trait_id)
} else {
item_tree[konst.visibility].clone()
};
let rustc_allow_incoherent_impl = item_tree
.attrs(db, loc.container.module(db).krate(), ModItem::from(loc.id.value).into())
.by_key("rustc_allow_incoherent_impl")
.exists();
Arc::new(ConstData {
name: konst.name.clone(),
type_ref: konst.type_ref.clone(),
visibility,
rustc_allow_incoherent_impl,
})
}
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct StaticData {
pub name: Name,
pub type_ref: Interned<TypeRef>,
pub visibility: RawVisibility,
pub mutable: bool,
pub is_extern: bool,
}
impl StaticData {
pub(crate) fn static_data_query(db: &dyn DefDatabase, konst: StaticId) -> Arc<StaticData> {
let loc = konst.lookup(db);
let item_tree = loc.id.item_tree(db);
let statik = &item_tree[loc.id.value];
Arc::new(StaticData {
name: statik.name.clone(),
type_ref: statik.type_ref.clone(),
visibility: item_tree[statik.visibility].clone(),
mutable: statik.mutable,
is_extern: matches!(loc.container, ItemContainerId::ExternBlockId(_)),
})
}
}
struct AssocItemCollector<'a> {
db: &'a dyn DefDatabase,
module_id: ModuleId,
def_map: Arc<DefMap>,
diagnostics: Vec<DefDiagnostic>,
container: ItemContainerId,
expander: Expander,
items: Vec<(Name, AssocItemId)>,
attr_calls: Vec<(AstId<ast::Item>, MacroCallId)>,
}
impl<'a> AssocItemCollector<'a> {
fn new(
db: &'a dyn DefDatabase,
module_id: ModuleId,
file_id: HirFileId,
container: ItemContainerId,
) -> Self {
Self {
db,
module_id,
def_map: module_id.def_map(db),
container,
expander: Expander::new(db, file_id, module_id),
items: Vec::new(),
attr_calls: Vec::new(),
diagnostics: Vec::new(),
}
}
fn finish(
self,
) -> (
Vec<(Name, AssocItemId)>,
Option<Box<Vec<(AstId<ast::Item>, MacroCallId)>>>,
Vec<DefDiagnostic>,
) {
(
self.items,
if self.attr_calls.is_empty() { None } else { Some(Box::new(self.attr_calls)) },
self.diagnostics,
)
}
fn collect(&mut self, item_tree: &ItemTree, tree_id: TreeId, assoc_items: &[AssocItem]) {
let container = self.container;
self.items.reserve(assoc_items.len());
'items: for &item in assoc_items {
let attrs = item_tree.attrs(self.db, self.module_id.krate, ModItem::from(item).into());
if !attrs.is_cfg_enabled(self.expander.cfg_options()) {
self.diagnostics.push(DefDiagnostic::unconfigured_code(
self.module_id.local_id,
InFile::new(self.expander.current_file_id(), item.ast_id(item_tree).erase()),
attrs.cfg().unwrap(),
self.expander.cfg_options().clone(),
));
continue;
}
'attrs: for attr in &*attrs {
let ast_id =
AstId::new(self.expander.current_file_id(), item.ast_id(item_tree).upcast());
let ast_id_with_path = AstIdWithPath { path: (*attr.path).clone(), ast_id };
match self.def_map.resolve_attr_macro(
self.db,
self.module_id.local_id,
ast_id_with_path,
attr,
) {
Ok(ResolvedAttr::Macro(call_id)) => {
self.attr_calls.push((ast_id, call_id));
// If proc attribute macro expansion is disabled, skip expanding it here
if !self.db.expand_proc_attr_macros() {
continue 'attrs;
}
let loc = self.db.lookup_intern_macro_call(call_id);
if let MacroDefKind::ProcMacro(exp, ..) = loc.def.kind {
// If there's no expander for the proc macro (e.g. the
// proc macro is ignored, or building the proc macro
// crate failed), skip expansion like we would if it was
// disabled. This is analogous to the handling in
// `DefCollector::collect_macros`.
if exp.is_dummy() {
continue 'attrs;
}
}
let res =
self.expander.enter_expand_id::<ast::MacroItems>(self.db, call_id);
self.collect_macro_items(res, &|| loc.kind.clone());
continue 'items;
}
Ok(_) => (),
Err(_) => {
self.diagnostics.push(DefDiagnostic::unresolved_macro_call(
self.module_id.local_id,
MacroCallKind::Attr {
ast_id,
attr_args: None,
invoc_attr_index: attr.id,
},
attr.path().clone(),
));
}
}
}
self.collect_item(item_tree, tree_id, container, item);
}
}
fn collect_item(
&mut self,
item_tree: &ItemTree,
tree_id: TreeId,
container: ItemContainerId,
item: AssocItem,
) {
match item {
AssocItem::Function(id) => {
let item = &item_tree[id];
let def =
FunctionLoc { container, id: ItemTreeId::new(tree_id, id) }.intern(self.db);
self.items.push((item.name.clone(), def.into()));
}
AssocItem::Const(id) => {
let item = &item_tree[id];
let Some(name) = item.name.clone() else { return };
let def = ConstLoc { container, id: ItemTreeId::new(tree_id, id) }.intern(self.db);
self.items.push((name, def.into()));
}
AssocItem::TypeAlias(id) => {
let item = &item_tree[id];
let def =
TypeAliasLoc { container, id: ItemTreeId::new(tree_id, id) }.intern(self.db);
self.items.push((item.name.clone(), def.into()));
}
AssocItem::MacroCall(call) => {
let file_id = self.expander.current_file_id();
let MacroCall { ast_id, expand_to, call_site, ref path } = item_tree[call];
let module = self.expander.module.local_id;
let resolver = |path| {
self.def_map
.resolve_path(
self.db,
module,
&path,
crate::item_scope::BuiltinShadowMode::Other,
Some(MacroSubNs::Bang),
)
.0
.take_macros()
.map(|it| self.db.macro_def(it))
};
match macro_call_as_call_id(
self.db.upcast(),
&AstIdWithPath::new(file_id, ast_id, Clone::clone(path)),
call_site,
expand_to,
self.expander.module.krate(),
resolver,
) {
Ok(Some(call_id)) => {
let res =
self.expander.enter_expand_id::<ast::MacroItems>(self.db, call_id);
self.collect_macro_items(res, &|| hir_expand::MacroCallKind::FnLike {
ast_id: InFile::new(file_id, ast_id),
expand_to: hir_expand::ExpandTo::Items,
});
}
Ok(None) => (),
Err(_) => {
self.diagnostics.push(DefDiagnostic::unresolved_macro_call(
self.module_id.local_id,
MacroCallKind::FnLike {
ast_id: InFile::new(file_id, ast_id),
expand_to,
},
Clone::clone(path),
));
}
}
}
}
}
fn collect_macro_items(
&mut self,
ExpandResult { value, err }: ExpandResult<Option<(Mark, Parse<ast::MacroItems>)>>,
error_call_kind: &dyn Fn() -> hir_expand::MacroCallKind,
) {
let Some((mark, parse)) = value else { return };
if let Some(err) = err {
let diag = match err {
// why is this reported here?
hir_expand::ExpandError::UnresolvedProcMacro(krate) => {
DefDiagnostic::unresolved_proc_macro(
self.module_id.local_id,
error_call_kind(),
krate,
)
}
_ => DefDiagnostic::macro_error(
self.module_id.local_id,
error_call_kind(),
err.to_string(),
),
};
self.diagnostics.push(diag);
}
if let errors @ [_, ..] = parse.errors() {
self.diagnostics.push(DefDiagnostic::macro_expansion_parse_error(
self.module_id.local_id,
error_call_kind(),
errors.into(),
));
}
let tree_id = item_tree::TreeId::new(self.expander.current_file_id(), None);
let item_tree = tree_id.item_tree(self.db);
let iter: SmallVec<[_; 2]> =
item_tree.top_level_items().iter().filter_map(ModItem::as_assoc_item).collect();
self.collect(&item_tree, tree_id, &iter);
self.expander.exit(mark);
}
}
fn trait_vis(db: &dyn DefDatabase, trait_id: TraitId) -> RawVisibility {
let ItemLoc { id: tree_id, .. } = trait_id.lookup(db);
let item_tree = tree_id.item_tree(db);
let tr_def = &item_tree[tree_id.value];
item_tree[tr_def.visibility].clone()
}