rust/src/libcore/vec.rs

1756 lines
46 KiB
Rust

#[doc = "Vectors"];
import option::{some, none};
import uint::next_power_of_two;
import ptr::addr_of;
export init_op;
export is_empty;
export is_not_empty;
export same_length;
export reserve;
export len;
export from_fn;
export from_elem;
export to_mut;
export from_mut;
export head;
export tail;
export tailn;
export init;
export last;
export last_opt;
export slice;
export split;
export splitn;
export rsplit;
export rsplitn;
export shift;
export pop;
export push;
export grow;
export grow_fn;
export grow_set;
export map;
export map2;
export flat_map;
export filter_map;
export filter;
export concat;
export connect;
export foldl;
export foldr;
export any;
export any2;
export all;
export all2;
export contains;
export count;
export find;
export find_between;
export rfind;
export rfind_between;
export position_elem;
export position;
export position_between;
export position_elem;
export rposition;
export rposition_between;
export unzip;
export zip;
export swap;
export reverse;
export reversed;
export iter;
export iter2;
export iteri;
export riter;
export riteri;
export permute;
export windowed;
export as_buf;
export as_mut_buf;
export vec_len;
export unsafe;
export u8;
#[abi = "cdecl"]
native mod rustrt {
fn vec_reserve_shared<T>(t: *sys::type_desc,
&v: [const T],
n: libc::size_t);
fn vec_from_buf_shared<T>(t: *sys::type_desc,
ptr: *T,
count: libc::size_t) -> [T];
}
#[doc = "A function used to initialize the elements of a vector"]
type init_op<T> = fn(uint) -> T;
#[doc = "Returns true if a vector contains no elements"]
pure fn is_empty<T>(v: [const T]) -> bool {
len(v) == 0u
}
#[doc = "Returns true if a vector contains some elements"]
pure fn is_not_empty<T>(v: [const T]) -> bool { ret !is_empty(v); }
#[doc = "Returns true if two vectors have the same length"]
pure fn same_length<T, U>(xs: [const T], ys: [const U]) -> bool {
vec::len(xs) == vec::len(ys)
}
#[doc = "
Reserves capacity for `n` elements in the given vector.
If the capacity for `v` is already equal to or greater than the requested
capacity, then no action is taken.
# Arguments
* v - A vector
* n - The number of elements to reserve space for
"]
fn reserve<T>(&v: [const T], n: uint) {
rustrt::vec_reserve_shared(sys::get_type_desc::<T>(), v, n);
}
#[doc = "Returns the length of a vector"]
#[inline(always)]
pure fn len<T>(&&v: [const T]) -> uint unsafe {
let repr: **unsafe::vec_repr = ::unsafe::reinterpret_cast(addr_of(v));
(**repr).fill / sys::size_of::<T>()
}
#[doc = "
Creates and initializes an immutable vector.
Creates an immutable vector of size `n_elts` and initializes the elements
to the value returned by the function `op`.
"]
fn from_fn<T>(n_elts: uint, op: init_op<T>) -> [T] {
let mut v = [];
reserve(v, n_elts);
let mut i: uint = 0u;
while i < n_elts { v += [op(i)]; i += 1u; }
ret v;
}
#[doc = "
Creates and initializes an immutable vector.
Creates an immutable vector of size `n_elts` and initializes the elements
to the value `t`.
"]
fn from_elem<T: copy>(n_elts: uint, t: T) -> [T] {
let mut v = [];
reserve(v, n_elts);
let mut i: uint = 0u;
while i < n_elts { v += [t]; i += 1u; }
ret v;
}
#[doc = "Produces a mutable vector from an immutable vector."]
fn to_mut<T>(+v: [T]) -> [mutable T] unsafe {
let r = ::unsafe::reinterpret_cast(v);
::unsafe::forget(v);
r
}
#[doc = "Produces an immutable vector from a mutable vector."]
fn from_mut<T>(+v: [mutable T]) -> [T] unsafe {
let r = ::unsafe::reinterpret_cast(v);
::unsafe::forget(v);
r
}
// Accessors
#[doc = "Returns the first element of a vector"]
pure fn head<T: copy>(v: [const T]) -> T { v[0] }
#[doc = "Returns all but the first element of a vector"]
fn tail<T: copy>(v: [const T]) -> [T] {
ret slice(v, 1u, len(v));
}
#[doc = "Returns all but the first `n` elements of a vector"]
fn tailn<T: copy>(v: [const T], n: uint) -> [T] {
slice(v, n, len(v))
}
#[doc = "Returns all but the last elemnt of a vector"]
fn init<T: copy>(v: [const T]) -> [T] {
assert len(v) != 0u;
slice(v, 0u, len(v) - 1u)
}
#[doc = "
Returns the last element of a `v`, failing if the vector is empty.
"]
pure fn last<T: copy>(v: [const T]) -> T {
if len(v) == 0u { fail "last_unsafe: empty vector" }
v[len(v) - 1u]
}
#[doc = "
Returns some(x) where `x` is the last element of a vector `v`,
or none if the vector is empty.
"]
pure fn last_opt<T: copy>(v: [const T]) -> option<T> {
if len(v) == 0u { ret none; }
some(v[len(v) - 1u])
}
#[doc = "Returns a copy of the elements from [`start`..`end`) from `v`."]
fn slice<T: copy>(v: [const T], start: uint, end: uint) -> [T] {
assert (start <= end);
assert (end <= len(v));
let mut result = [];
reserve(result, end - start);
let mut i = start;
while i < end { result += [v[i]]; i += 1u; }
ret result;
}
#[doc = "
Split the vector `v` by applying each element against the predicate `f`.
"]
fn split<T: copy>(v: [const T], f: fn(T) -> bool) -> [[T]] {
let ln = len(v);
if (ln == 0u) { ret [] }
let mut start = 0u;
let mut result = [];
while start < ln {
alt position_between(v, start, ln, f) {
none { break }
some(i) {
push(result, slice(v, start, i));
start = i + 1u;
}
}
}
push(result, slice(v, start, ln));
result
}
#[doc = "
Split the vector `v` by applying each element against the predicate `f` up
to `n` times.
"]
fn splitn<T: copy>(v: [const T], n: uint, f: fn(T) -> bool) -> [[T]] {
let ln = len(v);
if (ln == 0u) { ret [] }
let mut start = 0u;
let mut count = n;
let mut result = [];
while start < ln && count > 0u {
alt position_between(v, start, ln, f) {
none { break }
some(i) {
push(result, slice(v, start, i));
// Make sure to skip the separator.
start = i + 1u;
count -= 1u;
}
}
}
push(result, slice(v, start, ln));
result
}
#[doc = "
Reverse split the vector `v` by applying each element against the predicate
`f`.
"]
fn rsplit<T: copy>(v: [const T], f: fn(T) -> bool) -> [[T]] {
let ln = len(v);
if (ln == 0u) { ret [] }
let mut end = ln;
let mut result = [];
while end > 0u {
alt rposition_between(v, 0u, end, f) {
none { break }
some(i) {
push(result, slice(v, i + 1u, end));
end = i;
}
}
}
push(result, slice(v, 0u, end));
reversed(result)
}
#[doc = "
Reverse split the vector `v` by applying each element against the predicate
`f` up to `n times.
"]
fn rsplitn<T: copy>(v: [const T], n: uint, f: fn(T) -> bool) -> [[T]] {
let ln = len(v);
if (ln == 0u) { ret [] }
let mut end = ln;
let mut count = n;
let mut result = [];
while end > 0u && count > 0u {
alt rposition_between(v, 0u, end, f) {
none { break }
some(i) {
push(result, slice(v, i + 1u, end));
// Make sure to skip the separator.
end = i;
count -= 1u;
}
}
}
push(result, slice(v, 0u, end));
reversed(result)
}
// Mutators
#[doc = "Removes the first element from a vector and return it"]
fn shift<T: copy>(&v: [const T]) -> T {
let ln = len::<T>(v);
assert (ln > 0u);
let e = v[0];
v = slice::<T>(v, 1u, ln);
ret e;
}
#[doc = "Prepend an element to a vector"]
fn unshift<T: copy>(&v: [const T], +t: T) {
v = [const t] + v;
}
#[doc = "Remove the last element from a vector and return it"]
fn pop<T>(&v: [const T]) -> T unsafe {
let ln = len(v);
assert ln > 0u;
let valptr = ptr::mut_addr_of(v[ln - 1u]);
let val <- *valptr;
unsafe::set_len(v, ln - 1u);
val
}
#[doc = "Append an element to a vector"]
fn push<T>(&v: [const T], +initval: T) {
v += [initval];
}
// Appending
#[doc = "
Expands a vector in place, initializing the new elements to a given value
# Arguments
* v - The vector to grow
* n - The number of elements to add
* initval - The value for the new elements
"]
fn grow<T: copy>(&v: [const T], n: uint, initval: T) {
reserve(v, next_power_of_two(len(v) + n));
let mut i: uint = 0u;
while i < n { v += [initval]; i += 1u; }
}
#[doc = "
Expands a vector in place, initializing the new elements to the result of
a function
Function `init_op` is called `n` times with the values [0..`n`)
# Arguments
* v - The vector to grow
* n - The number of elements to add
* init_op - A function to call to retreive each appended element's
value
"]
fn grow_fn<T>(&v: [const T], n: uint, op: init_op<T>) {
reserve(v, next_power_of_two(len(v) + n));
let mut i: uint = 0u;
while i < n { v += [op(i)]; i += 1u; }
}
#[doc = "
Sets the value of a vector element at a given index, growing the vector as
needed
Sets the element at position `index` to `val`. If `index` is past the end
of the vector, expands the vector by replicating `initval` to fill the
intervening space.
"]
fn grow_set<T: copy>(&v: [mutable T], index: uint, initval: T, val: T) {
if index >= len(v) { grow(v, index - len(v) + 1u, initval); }
v[index] = val;
}
// Functional utilities
#[doc = "
Apply a function to each element of a vector and return the results
"]
fn map<T, U>(v: [T], f: fn(T) -> U) -> [U] {
let mut result = [];
reserve(result, len(v));
for elem: T in v { result += [f(elem)]; }
ret result;
}
#[doc = "
Apply a function eo each element of a vector and return a concatenation
of each result vector
"]
fn flat_map<T, U>(v: [T], f: fn(T) -> [U]) -> [U] {
let mut result = [];
for elem: T in v { result += f(elem); }
ret result;
}
#[doc = "
Apply a function to each pair of elements and return the results
"]
fn map2<T: copy, U: copy, V>(v0: [const T], v1: [const U],
f: fn(T, U) -> V) -> [V] {
let v0_len = len(v0);
if v0_len != len(v1) { fail; }
let mut u: [V] = [];
let mut i = 0u;
while i < v0_len { u += [f(copy v0[i], copy v1[i])]; i += 1u; }
ret u;
}
#[doc = "
Apply a function to each element of a vector and return the results
If function `f` returns `none` then that element is excluded from
the resulting vector.
"]
fn filter_map<T, U: copy>(v: [T], f: fn(T) -> option<U>)
-> [U] {
let mut result = [];
for elem: T in v {
alt f(elem) {
none {/* no-op */ }
some(result_elem) { result += [result_elem]; }
}
}
ret result;
}
#[doc = "
Construct a new vector from the elements of a vector for which some predicate
holds.
Apply function `f` to each element of `v` and return a vector containing
only those elements for which `f` returned true.
"]
fn filter<T: copy>(v: [T], f: fn(T) -> bool) -> [T] {
let mut result = [];
for elem: T in v {
if f(elem) { result += [elem]; }
}
ret result;
}
#[doc = "
Concatenate a vector of vectors.
Flattens a vector of vectors of T into a single vector of T.
"]
fn concat<T: copy>(v: [const [const T]]) -> [T] {
let mut r: [T] = [];
for inner: [T] in v { r += inner; }
ret r;
}
#[doc = "
Concatenate a vector of vectors, placing a given separator between each
"]
fn connect<T: copy>(v: [const [const T]], sep: T) -> [T] {
let mut r: [T] = [];
let mut first = true;
for inner: [T] in v {
if first { first = false; } else { push(r, sep); }
r += inner;
}
ret r;
}
#[doc = "Reduce a vector from left to right"]
fn foldl<T: copy, U>(z: T, v: [const U], p: fn(T, U) -> T) -> T {
let mut accum = z;
iter(v) { |elt|
accum = p(accum, elt);
}
ret accum;
}
#[doc = "Reduce a vector from right to left"]
fn foldr<T, U: copy>(v: [const T], z: U, p: fn(T, U) -> U) -> U {
let mut accum = z;
riter(v) { |elt|
accum = p(elt, accum);
}
ret accum;
}
#[doc = "
Return true if a predicate matches any elements
If the vector contains no elements then false is returned.
"]
fn any<T>(v: [T], f: fn(T) -> bool) -> bool {
for elem: T in v { if f(elem) { ret true; } }
ret false;
}
#[doc = "
Return true if a predicate matches any elements in both vectors.
If the vectors contains no elements then false is returned.
"]
fn any2<T, U>(v0: [const T], v1: [U], f: fn(T, U) -> bool) -> bool {
let v0_len = len(v0);
let v1_len = len(v1);
let mut i = 0u;
while i < v0_len && i < v1_len {
if f(v0[i], v1[i]) { ret true; };
i += 1u;
}
ret false;
}
#[doc = "
Return true if a predicate matches all elements
If the vector contains no elements then true is returned.
"]
fn all<T>(v: [T], f: fn(T) -> bool) -> bool {
for elem: T in v { if !f(elem) { ret false; } }
ret true;
}
#[doc = "
Return true if a predicate matches all elements in both vectors.
If the vectors are not the same size then false is returned.
"]
fn all2<T, U>(v0: [const T], v1: [const U], f: fn(T, U) -> bool) -> bool {
let v0_len = len(v0);
if v0_len != len(v1) { ret false; }
let mut i = 0u;
while i < v0_len { if !f(v0[i], v1[i]) { ret false; }; i += 1u; }
ret true;
}
#[doc = "Return true if a vector contains an element with the given value"]
fn contains<T>(v: [const T], x: T) -> bool {
for elt: T in v { if x == elt { ret true; } }
ret false;
}
#[doc = "Returns the number of elements that are equal to a given value"]
fn count<T>(v: [const T], x: T) -> uint {
let mut cnt = 0u;
for elt: T in v { if x == elt { cnt += 1u; } }
ret cnt;
}
#[doc = "
Search for the first element that matches a given predicate
Apply function `f` to each element of `v`, starting from the first.
When function `f` returns true then an option containing the element
is returned. If `f` matches no elements then none is returned.
"]
fn find<T: copy>(v: [const T], f: fn(T) -> bool) -> option<T> {
find_between(v, 0u, len(v), f)
}
#[doc = "
Search for the first element that matches a given predicate within a range
Apply function `f` to each element of `v` within the range [`start`, `end`).
When function `f` returns true then an option containing the element
is returned. If `f` matches no elements then none is returned.
"]
fn find_between<T: copy>(v: [const T], start: uint, end: uint,
f: fn(T) -> bool) -> option<T> {
option::map(position_between(v, start, end, f)) { |i| v[i] }
}
#[doc = "
Search for the last element that matches a given predicate
Apply function `f` to each element of `v` in reverse order. When function `f`
returns true then an option containing the element is returned. If `f`
matches no elements then none is returned.
"]
fn rfind<T: copy>(v: [const T], f: fn(T) -> bool) -> option<T> {
rfind_between(v, 0u, len(v), f)
}
#[doc = "
Search for the last element that matches a given predicate within a range
Apply function `f` to each element of `v` in reverse order within the range
[`start`, `end`). When function `f` returns true then an option containing
the element is returned. If `f` matches no elements then none is returned.
"]
fn rfind_between<T: copy>(v: [const T], start: uint, end: uint,
f: fn(T) -> bool) -> option<T> {
option::map(rposition_between(v, start, end, f)) { |i| v[i] }
}
#[doc = "Find the first index containing a matching value"]
fn position_elem<T>(v: [const T], x: T) -> option<uint> {
position(v) { |y| x == y }
}
#[doc = "
Find the first index matching some predicate
Apply function `f` to each element of `v`. When function `f` returns true
then an option containing the index is returned. If `f` matches no elements
then none is returned.
"]
fn position<T>(v: [const T], f: fn(T) -> bool) -> option<uint> {
position_between(v, 0u, len(v), f)
}
#[doc = "
Find the first index matching some predicate within a range
Apply function `f` to each element of `v` between the range [`start`, `end`).
When function `f` returns true then an option containing the index is
returned. If `f` matches no elements then none is returned.
"]
fn position_between<T>(v: [const T], start: uint, end: uint,
f: fn(T) -> bool) -> option<uint> {
assert start <= end;
assert end <= len(v);
let mut i = start;
while i < end { if f(v[i]) { ret some::<uint>(i); } i += 1u; }
ret none;
}
#[doc = "Find the last index containing a matching value"]
fn rposition_elem<T>(v: [const T], x: T) -> option<uint> {
rposition(v) { |y| x == y }
}
#[doc = "
Find the last index matching some predicate
Apply function `f` to each element of `v` in reverse order. When function
`f` returns true then an option containing the index is returned. If `f`
matches no elements then none is returned.
"]
fn rposition<T>(v: [const T], f: fn(T) -> bool) -> option<uint> {
rposition_between(v, 0u, len(v), f)
}
#[doc = "
Find the last index matching some predicate within a range
Apply function `f` to each element of `v` in reverse order between the range
[`start`, `end`). When function `f` returns true then an option containing
the index is returned. If `f` matches no elements then none is returned.
"]
fn rposition_between<T>(v: [const T], start: uint, end: uint,
f: fn(T) -> bool) -> option<uint> {
assert start <= end;
assert end <= len(v);
let mut i = end;
while i > start {
if f(v[i - 1u]) { ret some::<uint>(i - 1u); }
i -= 1u;
}
ret none;
}
// FIXME: if issue #586 gets implemented, could have a postcondition
// saying the two result lists have the same length -- or, could
// return a nominal record with a constraint saying that, instead of
// returning a tuple (contingent on issue #869)
#[doc = "
Convert a vector of pairs into a pair of vectors
Returns a tuple containing two vectors where the i-th element of the first
vector contains the first element of the i-th tuple of the input vector,
and the i-th element of the second vector contains the second element
of the i-th tuple of the input vector.
"]
fn unzip<T: copy, U: copy>(v: [const (T, U)]) -> ([T], [U]) {
let mut as = [], bs = [];
for (a, b) in v { as += [a]; bs += [b]; }
ret (as, bs);
}
#[doc = "
Convert two vectors to a vector of pairs
Returns a vector of tuples, where the i-th tuple contains contains the
i-th elements from each of the input vectors.
"]
fn zip<T: copy, U: copy>(v: [const T], u: [const U]) -> [(T, U)] {
let mut zipped = [];
let sz = len(v);
let mut i = 0u;
assert sz == len(u);
while i < sz { zipped += [(v[i], u[i])]; i += 1u; }
ret zipped;
}
#[doc = "
Swaps two elements in a vector
# Arguments
* v The input vector
* a - The index of the first element
* b - The index of the second element
"]
fn swap<T>(v: [mutable T], a: uint, b: uint) {
v[a] <-> v[b];
}
#[doc = "Reverse the order of elements in a vector, in place"]
fn reverse<T>(v: [mutable T]) {
let mut i: uint = 0u;
let ln = len::<T>(v);
while i < ln / 2u { v[i] <-> v[ln - i - 1u]; i += 1u; }
}
#[doc = "Returns a vector with the order of elements reversed"]
fn reversed<T: copy>(v: [const T]) -> [T] {
let mut rs: [T] = [];
let mut i = len::<T>(v);
if i == 0u { ret rs; } else { i -= 1u; }
while i != 0u { rs += [v[i]]; i -= 1u; }
rs += [v[0]];
ret rs;
}
#[doc = "
Iterates over a vector
Iterates over vector `v` and, for each element, calls function `f` with the
element's value.
"]
#[inline(always)]
fn iter<T>(v: [const T], f: fn(T)) {
iter_between(v, 0u, vec::len(v), f)
}
/*
Function: iter_between
Iterates over a vector
Iterates over vector `v` and, for each element, calls function `f` with the
element's value.
*/
#[inline(always)]
fn iter_between<T>(v: [const T], start: uint, end: uint, f: fn(T)) {
assert start <= end;
assert end <= vec::len(v);
unsafe {
let mut n = end;
let mut p = ptr::offset(unsafe::to_ptr(v), start);
while n > start {
f(*p);
p = ptr::offset(p, 1u);
n -= 1u;
}
}
}
#[doc = "
Iterates over two vectors simultaneously
# Failure
Both vectors must have the same length
"]
#[inline]
fn iter2<U, T>(v1: [const U], v2: [const T], f: fn(U, T)) {
assert len(v1) == len(v2);
uint::range(0u, len(v1)) {|i|
f(v1[i], v2[i])
}
}
#[doc = "
Iterates over a vector's elements and indexes
Iterates over vector `v` and, for each element, calls function `f` with the
element's value and index.
"]
#[inline(always)]
fn iteri<T>(v: [const T], f: fn(uint, T)) {
let mut i = 0u;
let l = len(v);
while i < l { f(i, v[i]); i += 1u; }
}
#[doc = "
Iterates over a vector in reverse
Iterates over vector `v` and, for each element, calls function `f` with the
element's value.
"]
fn riter<T>(v: [const T], f: fn(T)) {
riteri(v) { |_i, v| f(v) }
}
#[doc ="
Iterates over a vector's elements and indexes in reverse
Iterates over vector `v` and, for each element, calls function `f` with the
element's value and index.
"]
fn riteri<T>(v: [const T], f: fn(uint, T)) {
let mut i = len(v);
while 0u < i {
i -= 1u;
f(i, v[i]);
};
}
#[doc = "
Iterate over all permutations of vector `v`.
Permutations are produced in lexicographic order with respect to the order of
elements in `v` (so if `v` is sorted then the permutations are
lexicographically sorted).
The total number of permutations produced is `len(v)!`. If `v` contains
repeated elements, then some permutations are repeated.
"]
fn permute<T: copy>(v: [T], put: fn([T])) {
let ln = len(v);
if ln == 0u {
put([]);
} else {
let mut i = 0u;
while i < ln {
let elt = v[i];
let rest = slice(v, 0u, i) + slice(v, i+1u, ln);
permute(rest) {|permutation| put([elt] + permutation)}
i += 1u;
}
}
}
fn windowed <TT: copy> (nn: uint, xx: [const TT]) -> [[TT]] {
let mut ww = [];
assert 1u <= nn;
vec::iteri (xx, {|ii, _x|
let len = vec::len(xx);
if ii+nn <= len {
let w = vec::slice ( xx, ii, ii+nn );
vec::push (ww, w);
}
});
ret ww;
}
#[doc = "
Work with the buffer of a vector.
Allows for unsafe manipulation of vector contents, which is useful for native
interop.
"]
fn as_buf<E,T>(v: [const E], f: fn(*E) -> T) -> T unsafe {
let buf = unsafe::to_ptr(v); f(buf)
}
fn as_mut_buf<E,T>(v: [mutable E], f: fn(*mutable E) -> T) -> T unsafe {
let buf = unsafe::to_ptr(v) as *mutable E; f(buf)
}
#[doc = "An extension implementation providing a `len` method"]
impl vec_len<T> for [T] {
#[doc = "Return the length of the vector"]
#[inline(always)]
fn len() -> uint { len(self) }
}
#[doc = "Unsafe operations"]
mod unsafe {
// FIXME: This should have crate visibility
#[doc = "The internal representation of a vector"]
type vec_repr = {mutable fill: uint, mutable alloc: uint, data: u8};
#[doc = "
Constructs a vector from an unsafe pointer to a buffer
# Arguments
* ptr - An unsafe pointer to a buffer of `T`
* elts - The number of elements in the buffer
"]
#[inline(always)]
unsafe fn from_buf<T>(ptr: *T, elts: uint) -> [T] {
ret rustrt::vec_from_buf_shared(sys::get_type_desc::<T>(),
ptr, elts);
}
#[doc = "
Sets the length of a vector
This well explicitly set the size of the vector, without actually
modifing its buffers, so it is up to the caller to ensure that
the vector is actually the specified size.
"]
#[inline(always)]
unsafe fn set_len<T>(&v: [const T], new_len: uint) {
let repr: **vec_repr = ::unsafe::reinterpret_cast(addr_of(v));
(**repr).fill = new_len * sys::size_of::<T>();
}
#[doc = "
Returns an unsafe pointer to the vector's buffer
The caller must ensure that the vector outlives the pointer this
function returns, or else it will end up pointing to garbage.
Modifying the vector may cause its buffer to be reallocated, which
would also make any pointers to it invalid.
"]
#[inline(always)]
unsafe fn to_ptr<T>(v: [const T]) -> *T {
let repr: **vec_repr = ::unsafe::reinterpret_cast(addr_of(v));
ret ::unsafe::reinterpret_cast(addr_of((**repr).data));
}
}
#[doc = "Operations on `[u8]`"]
mod u8 {
export cmp;
export lt, le, eq, ne, ge, gt;
export hash;
#[doc = "Bytewise string comparison"]
pure fn cmp(&&a: [u8], &&b: [u8]) -> int unsafe {
let a_len = len(a);
let b_len = len(b);
let n = uint::min(a_len, b_len) as libc::size_t;
let r = libc::memcmp(unsafe::to_ptr(a) as *libc::c_void,
unsafe::to_ptr(b) as *libc::c_void, n) as int;
if r != 0 { r } else {
if a_len == b_len {
0
} else if a_len < b_len {
-1
} else {
1
}
}
}
#[doc = "Bytewise less than or equal"]
pure fn lt(&&a: [u8], &&b: [u8]) -> bool { cmp(a, b) < 0 }
#[doc = "Bytewise less than or equal"]
pure fn le(&&a: [u8], &&b: [u8]) -> bool { cmp(a, b) <= 0 }
#[doc = "Bytewise equality"]
pure fn eq(&&a: [u8], &&b: [u8]) -> bool unsafe { cmp(a, b) == 0 }
#[doc = "Bytewise inequality"]
pure fn ne(&&a: [u8], &&b: [u8]) -> bool unsafe { cmp(a, b) != 0 }
#[doc ="Bytewise greater than or equal"]
pure fn ge(&&a: [u8], &&b: [u8]) -> bool { cmp(a, b) >= 0 }
#[doc = "Bytewise greater than"]
pure fn gt(&&a: [u8], &&b: [u8]) -> bool { cmp(a, b) > 0 }
#[doc = "String hash function"]
fn hash(&&s: [u8]) -> uint {
// djb hash.
// FIXME: replace with murmur.
let mut u: uint = 5381u;
vec::iter(s, { |c| u *= 33u; u += c as uint; });
ret u;
}
}
#[cfg(test)]
mod tests {
fn square(n: uint) -> uint { ret n * n; }
fn square_ref(&&n: uint) -> uint { ret n * n; }
pure fn is_three(&&n: uint) -> bool { ret n == 3u; }
pure fn is_odd(&&n: uint) -> bool { ret n % 2u == 1u; }
pure fn is_equal(&&x: uint, &&y:uint) -> bool { ret x == y; }
fn square_if_odd(&&n: uint) -> option<uint> {
ret if n % 2u == 1u { some(n * n) } else { none };
}
fn add(&&x: uint, &&y: uint) -> uint { ret x + y; }
#[test]
fn test_unsafe_ptrs() unsafe {
// Test on-stack copy-from-buf.
let a = [1, 2, 3];
let mut ptr = unsafe::to_ptr(a);
let b = unsafe::from_buf(ptr, 3u);
assert (len(b) == 3u);
assert (b[0] == 1);
assert (b[1] == 2);
assert (b[2] == 3);
// Test on-heap copy-from-buf.
let c = [1, 2, 3, 4, 5];
ptr = unsafe::to_ptr(c);
let d = unsafe::from_buf(ptr, 5u);
assert (len(d) == 5u);
assert (d[0] == 1);
assert (d[1] == 2);
assert (d[2] == 3);
assert (d[3] == 4);
assert (d[4] == 5);
}
#[test]
fn test_from_fn() {
// Test on-stack from_fn.
let mut v = from_fn(3u, square);
assert (len(v) == 3u);
assert (v[0] == 0u);
assert (v[1] == 1u);
assert (v[2] == 4u);
// Test on-heap from_fn.
v = from_fn(5u, square);
assert (len(v) == 5u);
assert (v[0] == 0u);
assert (v[1] == 1u);
assert (v[2] == 4u);
assert (v[3] == 9u);
assert (v[4] == 16u);
}
#[test]
fn test_from_elem() {
// Test on-stack from_elem.
let mut v = from_elem(2u, 10u);
assert (len(v) == 2u);
assert (v[0] == 10u);
assert (v[1] == 10u);
// Test on-heap from_elem.
v = from_elem(6u, 20u);
assert (v[0] == 20u);
assert (v[1] == 20u);
assert (v[2] == 20u);
assert (v[3] == 20u);
assert (v[4] == 20u);
assert (v[5] == 20u);
}
#[test]
fn test_is_empty() {
assert (is_empty::<int>([]));
assert (!is_empty([0]));
}
#[test]
fn test_is_not_empty() {
assert (is_not_empty([0]));
assert (!is_not_empty::<int>([]));
}
#[test]
fn test_head() {
let a = [11, 12];
assert (head(a) == 11);
}
#[test]
fn test_tail() {
let mut a = [11];
assert (tail(a) == []);
a = [11, 12];
assert (tail(a) == [12]);
}
#[test]
fn test_last() {
let mut n = last_opt([]);
assert (n == none);
n = last_opt([1, 2, 3]);
assert (n == some(3));
n = last_opt([1, 2, 3, 4, 5]);
assert (n == some(5));
}
#[test]
fn test_slice() {
// Test on-stack -> on-stack slice.
let mut v = slice([1, 2, 3], 1u, 3u);
assert (len(v) == 2u);
assert (v[0] == 2);
assert (v[1] == 3);
// Test on-heap -> on-stack slice.
v = slice([1, 2, 3, 4, 5], 0u, 3u);
assert (len(v) == 3u);
assert (v[0] == 1);
assert (v[1] == 2);
assert (v[2] == 3);
// Test on-heap -> on-heap slice.
v = slice([1, 2, 3, 4, 5, 6], 1u, 6u);
assert (len(v) == 5u);
assert (v[0] == 2);
assert (v[1] == 3);
assert (v[2] == 4);
assert (v[3] == 5);
assert (v[4] == 6);
}
#[test]
fn test_pop() {
// Test on-stack pop.
let mut v = [1, 2, 3];
let mut e = pop(v);
assert (len(v) == 2u);
assert (v[0] == 1);
assert (v[1] == 2);
assert (e == 3);
// Test on-heap pop.
v = [1, 2, 3, 4, 5];
e = pop(v);
assert (len(v) == 4u);
assert (v[0] == 1);
assert (v[1] == 2);
assert (v[2] == 3);
assert (v[3] == 4);
assert (e == 5);
}
#[test]
fn test_push() {
// Test on-stack push().
let mut v = [];
push(v, 1);
assert (len(v) == 1u);
assert (v[0] == 1);
// Test on-heap push().
push(v, 2);
assert (len(v) == 2u);
assert (v[0] == 1);
assert (v[1] == 2);
}
#[test]
fn test_grow() {
// Test on-stack grow().
let mut v = [];
grow(v, 2u, 1);
assert (len(v) == 2u);
assert (v[0] == 1);
assert (v[1] == 1);
// Test on-heap grow().
grow(v, 3u, 2);
assert (len(v) == 5u);
assert (v[0] == 1);
assert (v[1] == 1);
assert (v[2] == 2);
assert (v[3] == 2);
assert (v[4] == 2);
}
#[test]
fn test_grow_fn() {
let mut v = [];
grow_fn(v, 3u, square);
assert (len(v) == 3u);
assert (v[0] == 0u);
assert (v[1] == 1u);
assert (v[2] == 4u);
}
#[test]
fn test_grow_set() {
let mut v = [mutable 1, 2, 3];
grow_set(v, 4u, 4, 5);
assert (len(v) == 5u);
assert (v[0] == 1);
assert (v[1] == 2);
assert (v[2] == 3);
assert (v[3] == 4);
assert (v[4] == 5);
}
#[test]
fn test_map() {
// Test on-stack map.
let mut v = [1u, 2u, 3u];
let mut w = map(v, square_ref);
assert (len(w) == 3u);
assert (w[0] == 1u);
assert (w[1] == 4u);
assert (w[2] == 9u);
// Test on-heap map.
v = [1u, 2u, 3u, 4u, 5u];
w = map(v, square_ref);
assert (len(w) == 5u);
assert (w[0] == 1u);
assert (w[1] == 4u);
assert (w[2] == 9u);
assert (w[3] == 16u);
assert (w[4] == 25u);
}
#[test]
fn test_map2() {
fn times(&&x: int, &&y: int) -> int { ret x * y; }
let f = times;
let v0 = [1, 2, 3, 4, 5];
let v1 = [5, 4, 3, 2, 1];
let u = map2::<int, int, int>(v0, v1, f);
let mut i = 0;
while i < 5 { assert (v0[i] * v1[i] == u[i]); i += 1; }
}
#[test]
fn test_filter_map() {
// Test on-stack filter-map.
let mut v = [1u, 2u, 3u];
let mut w = filter_map(v, square_if_odd);
assert (len(w) == 2u);
assert (w[0] == 1u);
assert (w[1] == 9u);
// Test on-heap filter-map.
v = [1u, 2u, 3u, 4u, 5u];
w = filter_map(v, square_if_odd);
assert (len(w) == 3u);
assert (w[0] == 1u);
assert (w[1] == 9u);
assert (w[2] == 25u);
fn halve(&&i: int) -> option<int> {
if i % 2 == 0 {
ret option::some::<int>(i / 2);
} else { ret option::none::<int>; }
}
fn halve_for_sure(&&i: int) -> int { ret i / 2; }
let all_even: [int] = [0, 2, 8, 6];
let all_odd1: [int] = [1, 7, 3];
let all_odd2: [int] = [];
let mix: [int] = [9, 2, 6, 7, 1, 0, 0, 3];
let mix_dest: [int] = [1, 3, 0, 0];
assert (filter_map(all_even, halve) == map(all_even, halve_for_sure));
assert (filter_map(all_odd1, halve) == []);
assert (filter_map(all_odd2, halve) == []);
assert (filter_map(mix, halve) == mix_dest);
}
#[test]
fn test_filter() {
assert filter([1u, 2u, 3u], is_odd) == [1u, 3u];
assert filter([1u, 2u, 4u, 8u, 16u], is_three) == [];
}
#[test]
fn test_foldl() {
// Test on-stack fold.
let mut v = [1u, 2u, 3u];
let mut sum = foldl(0u, v, add);
assert (sum == 6u);
// Test on-heap fold.
v = [1u, 2u, 3u, 4u, 5u];
sum = foldl(0u, v, add);
assert (sum == 15u);
}
#[test]
fn test_foldl2() {
fn sub(&&a: int, &&b: int) -> int {
a - b
}
let mut v = [1, 2, 3, 4];
let sum = foldl(0, v, sub);
assert sum == -10;
}
#[test]
fn test_foldr() {
fn sub(&&a: int, &&b: int) -> int {
a - b
}
let mut v = [1, 2, 3, 4];
let sum = foldr(v, 0, sub);
assert sum == -2;
}
#[test]
fn test_iter_empty() {
let mut i = 0;
iter::<int>([], { |_v| i += 1 });
assert i == 0;
}
#[test]
fn test_iter_nonempty() {
let mut i = 0;
iter([1, 2, 3], { |v| i += v });
assert i == 6;
}
#[test]
fn test_iteri() {
let mut i = 0;
iteri([1, 2, 3], { |j, v|
if i == 0 { assert v == 1; }
assert j + 1u == v as uint;
i += v;
});
assert i == 6;
}
#[test]
fn test_riter_empty() {
let mut i = 0;
riter::<int>([], { |_v| i += 1 });
assert i == 0;
}
#[test]
fn test_riter_nonempty() {
let mut i = 0;
riter([1, 2, 3], { |v|
if i == 0 { assert v == 3; }
i += v
});
assert i == 6;
}
#[test]
fn test_riteri() {
let mut i = 0;
riteri([0, 1, 2], { |j, v|
if i == 0 { assert v == 2; }
assert j == v as uint;
i += v;
});
assert i == 3;
}
#[test]
fn test_permute() {
let mut results: [[int]];
results = [];
permute([]) {|v| results += [v]; }
assert results == [[]];
results = [];
permute([7]) {|v| results += [v]; }
assert results == [[7]];
results = [];
permute([1,1]) {|v| results += [v]; }
assert results == [[1,1],[1,1]];
results = [];
permute([5,2,0]) {|v| results += [v]; }
assert results == [[5,2,0],[5,0,2],[2,5,0],[2,0,5],[0,5,2],[0,2,5]];
}
#[test]
fn test_any_and_all() {
assert (any([1u, 2u, 3u], is_three));
assert (!any([0u, 1u, 2u], is_three));
assert (any([1u, 2u, 3u, 4u, 5u], is_three));
assert (!any([1u, 2u, 4u, 5u, 6u], is_three));
assert (all([3u, 3u, 3u], is_three));
assert (!all([3u, 3u, 2u], is_three));
assert (all([3u, 3u, 3u, 3u, 3u], is_three));
assert (!all([3u, 3u, 0u, 1u, 2u], is_three));
}
#[test]
fn test_any2_and_all2() {
assert (any2([2u, 4u, 6u], [2u, 4u, 6u], is_equal));
assert (any2([1u, 2u, 3u], [4u, 5u, 3u], is_equal));
assert (!any2([1u, 2u, 3u], [4u, 5u, 6u], is_equal));
assert (any2([2u, 4u, 6u], [2u, 4u], is_equal));
assert (all2([2u, 4u, 6u], [2u, 4u, 6u], is_equal));
assert (!all2([1u, 2u, 3u], [4u, 5u, 3u], is_equal));
assert (!all2([1u, 2u, 3u], [4u, 5u, 6u], is_equal));
assert (!all2([2u, 4u, 6u], [2u, 4u], is_equal));
}
#[test]
fn test_zip_unzip() {
let v1 = [1, 2, 3];
let v2 = [4, 5, 6];
let z1 = zip(v1, v2);
assert ((1, 4) == z1[0]);
assert ((2, 5) == z1[1]);
assert ((3, 6) == z1[2]);
let (left, right) = unzip(z1);
assert ((1, 4) == (left[0], right[0]));
assert ((2, 5) == (left[1], right[1]));
assert ((3, 6) == (left[2], right[2]));
}
#[test]
fn test_position_elem() {
assert position_elem([], 1) == none;
let v1 = [1, 2, 3, 3, 2, 5];
assert position_elem(v1, 1) == some(0u);
assert position_elem(v1, 2) == some(1u);
assert position_elem(v1, 5) == some(5u);
assert position_elem(v1, 4) == none;
}
#[test]
fn test_position() {
fn less_than_three(&&i: int) -> bool { ret i < 3; }
fn is_eighteen(&&i: int) -> bool { ret i == 18; }
assert position([], less_than_three) == none;
let v1 = [5, 4, 3, 2, 1];
assert position(v1, less_than_three) == some(3u);
assert position(v1, is_eighteen) == none;
}
#[test]
fn test_position_between() {
assert position_between([], 0u, 0u, f) == none;
fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' }
let mut v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
assert position_between(v, 0u, 0u, f) == none;
assert position_between(v, 0u, 1u, f) == none;
assert position_between(v, 0u, 2u, f) == some(1u);
assert position_between(v, 0u, 3u, f) == some(1u);
assert position_between(v, 0u, 4u, f) == some(1u);
assert position_between(v, 1u, 1u, f) == none;
assert position_between(v, 1u, 2u, f) == some(1u);
assert position_between(v, 1u, 3u, f) == some(1u);
assert position_between(v, 1u, 4u, f) == some(1u);
assert position_between(v, 2u, 2u, f) == none;
assert position_between(v, 2u, 3u, f) == none;
assert position_between(v, 2u, 4u, f) == some(3u);
assert position_between(v, 3u, 3u, f) == none;
assert position_between(v, 3u, 4u, f) == some(3u);
assert position_between(v, 4u, 4u, f) == none;
}
#[test]
fn test_find() {
assert find([], f) == none;
fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' }
fn g(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'd' }
let mut v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
assert find(v, f) == some((1, 'b'));
assert find(v, g) == none;
}
#[test]
fn test_find_between() {
assert find_between([], 0u, 0u, f) == none;
fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' }
let mut v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
assert find_between(v, 0u, 0u, f) == none;
assert find_between(v, 0u, 1u, f) == none;
assert find_between(v, 0u, 2u, f) == some((1, 'b'));
assert find_between(v, 0u, 3u, f) == some((1, 'b'));
assert find_between(v, 0u, 4u, f) == some((1, 'b'));
assert find_between(v, 1u, 1u, f) == none;
assert find_between(v, 1u, 2u, f) == some((1, 'b'));
assert find_between(v, 1u, 3u, f) == some((1, 'b'));
assert find_between(v, 1u, 4u, f) == some((1, 'b'));
assert find_between(v, 2u, 2u, f) == none;
assert find_between(v, 2u, 3u, f) == none;
assert find_between(v, 2u, 4u, f) == some((3, 'b'));
assert find_between(v, 3u, 3u, f) == none;
assert find_between(v, 3u, 4u, f) == some((3, 'b'));
assert find_between(v, 4u, 4u, f) == none;
}
#[test]
fn test_rposition() {
assert find([], f) == none;
fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' }
fn g(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'd' }
let mut v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
assert position(v, f) == some(1u);
assert position(v, g) == none;
}
#[test]
fn test_rposition_between() {
assert rposition_between([], 0u, 0u, f) == none;
fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' }
let mut v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
assert rposition_between(v, 0u, 0u, f) == none;
assert rposition_between(v, 0u, 1u, f) == none;
assert rposition_between(v, 0u, 2u, f) == some(1u);
assert rposition_between(v, 0u, 3u, f) == some(1u);
assert rposition_between(v, 0u, 4u, f) == some(3u);
assert rposition_between(v, 1u, 1u, f) == none;
assert rposition_between(v, 1u, 2u, f) == some(1u);
assert rposition_between(v, 1u, 3u, f) == some(1u);
assert rposition_between(v, 1u, 4u, f) == some(3u);
assert rposition_between(v, 2u, 2u, f) == none;
assert rposition_between(v, 2u, 3u, f) == none;
assert rposition_between(v, 2u, 4u, f) == some(3u);
assert rposition_between(v, 3u, 3u, f) == none;
assert rposition_between(v, 3u, 4u, f) == some(3u);
assert rposition_between(v, 4u, 4u, f) == none;
}
#[test]
fn test_rfind() {
assert rfind([], f) == none;
fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' }
fn g(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'd' }
let mut v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
assert rfind(v, f) == some((3, 'b'));
assert rfind(v, g) == none;
}
#[test]
fn test_rfind_between() {
assert rfind_between([], 0u, 0u, f) == none;
fn f(xy: (int, char)) -> bool { let (_x, y) = xy; y == 'b' }
let mut v = [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'b')];
assert rfind_between(v, 0u, 0u, f) == none;
assert rfind_between(v, 0u, 1u, f) == none;
assert rfind_between(v, 0u, 2u, f) == some((1, 'b'));
assert rfind_between(v, 0u, 3u, f) == some((1, 'b'));
assert rfind_between(v, 0u, 4u, f) == some((3, 'b'));
assert rfind_between(v, 1u, 1u, f) == none;
assert rfind_between(v, 1u, 2u, f) == some((1, 'b'));
assert rfind_between(v, 1u, 3u, f) == some((1, 'b'));
assert rfind_between(v, 1u, 4u, f) == some((3, 'b'));
assert rfind_between(v, 2u, 2u, f) == none;
assert rfind_between(v, 2u, 3u, f) == none;
assert rfind_between(v, 2u, 4u, f) == some((3, 'b'));
assert rfind_between(v, 3u, 3u, f) == none;
assert rfind_between(v, 3u, 4u, f) == some((3, 'b'));
assert rfind_between(v, 4u, 4u, f) == none;
}
#[test]
fn reverse_and_reversed() {
let v: [mutable int] = [mutable 10, 20];
assert (v[0] == 10);
assert (v[1] == 20);
reverse(v);
assert (v[0] == 20);
assert (v[1] == 10);
let v2 = reversed::<int>([10, 20]);
assert (v2[0] == 20);
assert (v2[1] == 10);
v[0] = 30;
assert (v2[0] == 20);
// Make sure they work with 0-length vectors too.
let v4 = reversed::<int>([]);
assert (v4 == []);
let v3: [mutable int] = [mutable];
reverse::<int>(v3);
}
#[test]
fn reversed_mut() {
let v2 = reversed::<int>([mutable 10, 20]);
assert (v2[0] == 20);
assert (v2[1] == 10);
}
#[test]
fn test_init() {
let v = init([1, 2, 3]);
assert v == [1, 2];
}
#[test]
fn test_split() {
fn f(&&x: int) -> bool { x == 3 }
assert split([], f) == [];
assert split([1, 2], f) == [[1, 2]];
assert split([3, 1, 2], f) == [[], [1, 2]];
assert split([1, 2, 3], f) == [[1, 2], []];
assert split([1, 2, 3, 4, 3, 5], f) == [[1, 2], [4], [5]];
}
#[test]
fn test_splitn() {
fn f(&&x: int) -> bool { x == 3 }
assert splitn([], 1u, f) == [];
assert splitn([1, 2], 1u, f) == [[1, 2]];
assert splitn([3, 1, 2], 1u, f) == [[], [1, 2]];
assert splitn([1, 2, 3], 1u, f) == [[1, 2], []];
assert splitn([1, 2, 3, 4, 3, 5], 1u, f) == [[1, 2], [4, 3, 5]];
}
#[test]
fn test_rsplit() {
fn f(&&x: int) -> bool { x == 3 }
assert rsplit([], f) == [];
assert rsplit([1, 2], f) == [[1, 2]];
assert rsplit([1, 2, 3], f) == [[1, 2], []];
assert rsplit([1, 2, 3, 4, 3, 5], f) == [[1, 2], [4], [5]];
}
#[test]
fn test_rsplitn() {
fn f(&&x: int) -> bool { x == 3 }
assert rsplitn([], 1u, f) == [];
assert rsplitn([1, 2], 1u, f) == [[1, 2]];
assert rsplitn([1, 2, 3], 1u, f) == [[1, 2], []];
assert rsplitn([1, 2, 3, 4, 3, 5], 1u, f) == [[1, 2, 3, 4], [5]];
}
#[test]
#[should_fail]
#[ignore(cfg(target_os = "win32"))]
fn test_init_empty() {
init::<int>([]);
}
#[test]
fn test_concat() {
assert concat([[1], [2,3]]) == [1, 2, 3];
}
#[test]
fn test_connect() {
assert connect([], 0) == [];
assert connect([[1], [2, 3]], 0) == [1, 0, 2, 3];
assert connect([[1], [2], [3]], 0) == [1, 0, 2, 0, 3];
}
#[test]
fn test_windowed () {
assert [[1u,2u,3u],[2u,3u,4u],[3u,4u,5u],[4u,5u,6u]]
== windowed (3u, [1u,2u,3u,4u,5u,6u]);
assert [[1u,2u,3u,4u],[2u,3u,4u,5u],[3u,4u,5u,6u]]
== windowed (4u, [1u,2u,3u,4u,5u,6u]);
assert [] == windowed (7u, [1u,2u,3u,4u,5u,6u]);
}
#[test]
#[should_fail]
#[ignore(cfg(target_os = "win32"))]
fn test_windowed_() {
let _x = windowed (0u, [1u,2u,3u,4u,5u,6u]);
}
#[test]
fn to_mut_no_copy() unsafe {
let x = [1, 2, 3];
let addr = unsafe::to_ptr(x);
let x_mut = to_mut(x);
let addr_mut = unsafe::to_ptr(x_mut);
assert addr == addr_mut;
}
#[test]
fn from_mut_no_copy() unsafe {
let x = [mut 1, 2, 3];
let addr = unsafe::to_ptr(x);
let x_imm = from_mut(x);
let addr_imm = unsafe::to_ptr(x_imm);
assert addr == addr_imm;
}
#[test]
fn test_unshift() {
let mut x = [1, 2, 3];
unshift(x, 0);
assert x == [0, 1, 2, 3];
}
}
// Local Variables:
// mode: rust;
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// End: