rust/crates/mbe/src/lib.rs
2024-01-27 11:02:34 +01:00

352 lines
11 KiB
Rust

//! `mbe` (short for Macro By Example) crate contains code for handling
//! `macro_rules` macros. It uses `TokenTree` (from `tt` package) as the
//! interface, although it contains some code to bridge `SyntaxNode`s and
//! `TokenTree`s as well!
//!
//! The tests for this functionality live in another crate:
//! `hir_def::macro_expansion_tests::mbe`.
#![warn(rust_2018_idioms, unused_lifetimes)]
mod expander;
mod parser;
mod syntax_bridge;
mod to_parser_input;
mod tt_iter;
#[cfg(test)]
mod benchmark;
use stdx::impl_from;
use tt::Span;
use std::fmt;
use crate::{
parser::{MetaTemplate, MetaVarKind, Op},
tt_iter::TtIter,
};
// FIXME: we probably should re-think `token_tree_to_syntax_node` interfaces
pub use ::parser::TopEntryPoint;
pub use tt::{Delimiter, DelimiterKind, Punct};
pub use crate::syntax_bridge::{
parse_exprs_with_sep, parse_to_token_tree, parse_to_token_tree_static_span,
syntax_node_to_token_tree, syntax_node_to_token_tree_modified, token_tree_to_syntax_node,
SpanMapper,
};
pub use crate::syntax_bridge::dummy_test_span_utils::*;
#[derive(Debug, PartialEq, Eq, Clone)]
pub enum ParseError {
UnexpectedToken(Box<str>),
Expected(Box<str>),
InvalidRepeat,
RepetitionEmptyTokenTree,
}
impl ParseError {
fn expected(e: &str) -> ParseError {
ParseError::Expected(e.into())
}
fn unexpected(e: &str) -> ParseError {
ParseError::UnexpectedToken(e.into())
}
}
impl fmt::Display for ParseError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
ParseError::UnexpectedToken(it) => f.write_str(it),
ParseError::Expected(it) => f.write_str(it),
ParseError::InvalidRepeat => f.write_str("invalid repeat"),
ParseError::RepetitionEmptyTokenTree => f.write_str("empty token tree in repetition"),
}
}
}
#[derive(Debug, PartialEq, Eq, Clone, Hash)]
pub enum ExpandError {
BindingError(Box<Box<str>>),
UnresolvedBinding(Box<Box<str>>),
LeftoverTokens,
ConversionError,
LimitExceeded,
NoMatchingRule,
UnexpectedToken,
CountError(CountError),
}
impl_from!(CountError for ExpandError);
impl ExpandError {
fn binding_error(e: impl Into<Box<str>>) -> ExpandError {
ExpandError::BindingError(Box::new(e.into()))
}
}
impl fmt::Display for ExpandError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
ExpandError::NoMatchingRule => f.write_str("no rule matches input tokens"),
ExpandError::UnexpectedToken => f.write_str("unexpected token in input"),
ExpandError::BindingError(e) => f.write_str(e),
ExpandError::UnresolvedBinding(binding) => {
f.write_str("could not find binding ")?;
f.write_str(binding)
}
ExpandError::ConversionError => f.write_str("could not convert tokens"),
ExpandError::LimitExceeded => f.write_str("Expand exceed limit"),
ExpandError::LeftoverTokens => f.write_str("leftover tokens"),
ExpandError::CountError(e) => e.fmt(f),
}
}
}
// FIXME: Showing these errors could be nicer.
#[derive(Debug, PartialEq, Eq, Clone, Hash)]
pub enum CountError {
OutOfBounds,
Misplaced,
}
impl fmt::Display for CountError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
CountError::OutOfBounds => f.write_str("${count} out of bounds"),
CountError::Misplaced => f.write_str("${count} misplaced"),
}
}
}
/// This struct contains AST for a single `macro_rules` definition. What might
/// be very confusing is that AST has almost exactly the same shape as
/// `tt::TokenTree`, but there's a crucial difference: in macro rules, `$ident`
/// and `$()*` have special meaning (see `Var` and `Repeat` data structures)
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct DeclarativeMacro<S> {
rules: Box<[Rule<S>]>,
// This is used for correctly determining the behavior of the pat fragment
// FIXME: This should be tracked by hygiene of the fragment identifier!
is_2021: bool,
err: Option<Box<ParseError>>,
}
#[derive(Clone, Debug, PartialEq, Eq)]
struct Rule<S> {
lhs: MetaTemplate<S>,
rhs: MetaTemplate<S>,
}
impl<S: Span> DeclarativeMacro<S> {
pub fn from_err(err: ParseError, is_2021: bool) -> DeclarativeMacro<S> {
DeclarativeMacro { rules: Box::default(), is_2021, err: Some(Box::new(err)) }
}
/// The old, `macro_rules! m {}` flavor.
pub fn parse_macro_rules(
tt: &tt::Subtree<S>,
is_2021: bool,
// FIXME: Remove this once we drop support for rust 1.76 (defaults to true then)
new_meta_vars: bool,
) -> DeclarativeMacro<S> {
// Note: this parsing can be implemented using mbe machinery itself, by
// matching against `$($lhs:tt => $rhs:tt);*` pattern, but implementing
// manually seems easier.
let mut src = TtIter::new(tt);
let mut rules = Vec::new();
let mut err = None;
while src.len() > 0 {
let rule = match Rule::parse(&mut src, true, new_meta_vars) {
Ok(it) => it,
Err(e) => {
err = Some(Box::new(e));
break;
}
};
rules.push(rule);
if let Err(()) = src.expect_char(';') {
if src.len() > 0 {
err = Some(Box::new(ParseError::expected("expected `;`")));
}
break;
}
}
for Rule { lhs, .. } in &rules {
if let Err(e) = validate(lhs) {
err = Some(Box::new(e));
break;
}
}
DeclarativeMacro { rules: rules.into_boxed_slice(), is_2021, err }
}
/// The new, unstable `macro m {}` flavor.
pub fn parse_macro2(
tt: &tt::Subtree<S>,
is_2021: bool,
// FIXME: Remove this once we drop support for rust 1.76 (defaults to true then)
new_meta_vars: bool,
) -> DeclarativeMacro<S> {
let mut src = TtIter::new(tt);
let mut rules = Vec::new();
let mut err = None;
if tt::DelimiterKind::Brace == tt.delimiter.kind {
cov_mark::hit!(parse_macro_def_rules);
while src.len() > 0 {
let rule = match Rule::parse(&mut src, true, new_meta_vars) {
Ok(it) => it,
Err(e) => {
err = Some(Box::new(e));
break;
}
};
rules.push(rule);
if let Err(()) = src.expect_any_char(&[';', ',']) {
if src.len() > 0 {
err = Some(Box::new(ParseError::expected(
"expected `;` or `,` to delimit rules",
)));
}
break;
}
}
} else {
cov_mark::hit!(parse_macro_def_simple);
match Rule::parse(&mut src, false, new_meta_vars) {
Ok(rule) => {
if src.len() != 0 {
err = Some(Box::new(ParseError::expected("remaining tokens in macro def")));
}
rules.push(rule);
}
Err(e) => {
err = Some(Box::new(e));
}
}
}
for Rule { lhs, .. } in &rules {
if let Err(e) = validate(lhs) {
err = Some(Box::new(e));
break;
}
}
DeclarativeMacro { rules: rules.into_boxed_slice(), is_2021, err }
}
pub fn err(&self) -> Option<&ParseError> {
self.err.as_deref()
}
pub fn expand(
&self,
tt: &tt::Subtree<S>,
marker: impl Fn(&mut S) + Copy,
new_meta_vars: bool,
call_site: S,
) -> ExpandResult<tt::Subtree<S>> {
expander::expand_rules(&self.rules, tt, marker, self.is_2021, new_meta_vars, call_site)
}
}
impl<S: Span> Rule<S> {
fn parse(
src: &mut TtIter<'_, S>,
expect_arrow: bool,
new_meta_vars: bool,
) -> Result<Self, ParseError> {
let lhs = src.expect_subtree().map_err(|()| ParseError::expected("expected subtree"))?;
if expect_arrow {
src.expect_char('=').map_err(|()| ParseError::expected("expected `=`"))?;
src.expect_char('>').map_err(|()| ParseError::expected("expected `>`"))?;
}
let rhs = src.expect_subtree().map_err(|()| ParseError::expected("expected subtree"))?;
let lhs = MetaTemplate::parse_pattern(lhs)?;
let rhs = MetaTemplate::parse_template(rhs, new_meta_vars)?;
Ok(crate::Rule { lhs, rhs })
}
}
fn validate<S: Span>(pattern: &MetaTemplate<S>) -> Result<(), ParseError> {
for op in pattern.iter() {
match op {
Op::Subtree { tokens, .. } => validate(tokens)?,
Op::Repeat { tokens: subtree, separator, .. } => {
// Checks that no repetition which could match an empty token
// https://github.com/rust-lang/rust/blob/a58b1ed44f5e06976de2bdc4d7dc81c36a96934f/src/librustc_expand/mbe/macro_rules.rs#L558
let lsh_is_empty_seq = separator.is_none() && subtree.iter().all(|child_op| {
match *child_op {
// vis is optional
Op::Var { kind: Some(kind), .. } => kind == MetaVarKind::Vis,
Op::Repeat {
kind: parser::RepeatKind::ZeroOrMore | parser::RepeatKind::ZeroOrOne,
..
} => true,
_ => false,
}
});
if lsh_is_empty_seq {
return Err(ParseError::RepetitionEmptyTokenTree);
}
validate(subtree)?
}
_ => (),
}
}
Ok(())
}
pub type ExpandResult<T> = ValueResult<T, ExpandError>;
#[derive(Debug, Clone, Eq, PartialEq)]
pub struct ValueResult<T, E> {
pub value: T,
pub err: Option<E>,
}
impl<T, E> ValueResult<T, E> {
pub fn new(value: T, err: E) -> Self {
Self { value, err: Some(err) }
}
pub fn ok(value: T) -> Self {
Self { value, err: None }
}
pub fn only_err(err: E) -> Self
where
T: Default,
{
Self { value: Default::default(), err: Some(err) }
}
pub fn map<U>(self, f: impl FnOnce(T) -> U) -> ValueResult<U, E> {
ValueResult { value: f(self.value), err: self.err }
}
pub fn map_err<E2>(self, f: impl FnOnce(E) -> E2) -> ValueResult<T, E2> {
ValueResult { value: self.value, err: self.err.map(f) }
}
pub fn result(self) -> Result<T, E> {
self.err.map_or(Ok(self.value), Err)
}
}
impl<T: Default, E> From<Result<T, E>> for ValueResult<T, E> {
fn from(result: Result<T, E>) -> Self {
result.map_or_else(Self::only_err, Self::ok)
}
}