rust/src/libstd/num/float.rs
Chris Morgan d9874c0885 Rename the NaN and is_NaN methods to lowercase.
This is for consistency in naming conventions.

- ``std::num::Float::NaN()`` is changed to ``nan()``;
- ``std::num::Float.is_NaN()`` is changed to ``is_nan()``; and
- ``std::num::strconv::NumStrConv::NaN()`` is changed to ``nan()``.

Fixes #9319.
2013-09-19 23:59:51 +10:00

1445 lines
42 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Operations and constants for `float`
// Even though this module exports everything defined in it,
// because it contains re-exports, we also have to explicitly
// export locally defined things. That's a bit annoying.
// export when m_float == c_double
// PORT this must match in width according to architecture
#[allow(missing_doc)];
#[allow(non_uppercase_statics)];
use default::Default;
use num::{Zero, One, strconv};
use num::FPCategory;
use num;
use prelude::*;
use to_str;
pub static NaN: float = 0.0/0.0;
pub static infinity: float = 1.0/0.0;
pub static neg_infinity: float = -1.0/0.0;
/* Module: consts */
pub mod consts {
// FIXME (requires Issue #1433 to fix): replace with mathematical
// constants from cmath.
/// Archimedes' constant
pub static pi: float = 3.14159265358979323846264338327950288;
/// pi/2.0
pub static frac_pi_2: float = 1.57079632679489661923132169163975144;
/// pi/4.0
pub static frac_pi_4: float = 0.785398163397448309615660845819875721;
/// 1.0/pi
pub static frac_1_pi: float = 0.318309886183790671537767526745028724;
/// 2.0/pi
pub static frac_2_pi: float = 0.636619772367581343075535053490057448;
/// 2.0/sqrt(pi)
pub static frac_2_sqrtpi: float = 1.12837916709551257389615890312154517;
/// sqrt(2.0)
pub static sqrt2: float = 1.41421356237309504880168872420969808;
/// 1.0/sqrt(2.0)
pub static frac_1_sqrt2: float = 0.707106781186547524400844362104849039;
/// Euler's number
pub static e: float = 2.71828182845904523536028747135266250;
/// log2(e)
pub static log2_e: float = 1.44269504088896340735992468100189214;
/// log10(e)
pub static log10_e: float = 0.434294481903251827651128918916605082;
/// ln(2.0)
pub static ln_2: float = 0.693147180559945309417232121458176568;
/// ln(10.0)
pub static ln_10: float = 2.30258509299404568401799145468436421;
}
//
// Section: String Conversions
//
///
/// Converts a float to a string
///
/// # Arguments
///
/// * num - The float value
///
#[inline]
pub fn to_str(num: float) -> ~str {
let (r, _) = strconv::float_to_str_common(
num, 10u, true, strconv::SignNeg, strconv::DigAll);
r
}
///
/// Converts a float to a string in hexadecimal format
///
/// # Arguments
///
/// * num - The float value
///
#[inline]
pub fn to_str_hex(num: float) -> ~str {
let (r, _) = strconv::float_to_str_common(
num, 16u, true, strconv::SignNeg, strconv::DigAll);
r
}
///
/// Converts a float to a string in a given radix, and a flag indicating
/// whether it's a special value
///
/// # Arguments
///
/// * num - The float value
/// * radix - The base to use
///
#[inline]
pub fn to_str_radix_special(num: float, radix: uint) -> (~str, bool) {
strconv::float_to_str_common(num, radix, true,
strconv::SignNeg, strconv::DigAll)
}
///
/// Converts a float to a string with exactly the number of
/// provided significant digits
///
/// # Arguments
///
/// * num - The float value
/// * digits - The number of significant digits
///
#[inline]
pub fn to_str_exact(num: float, digits: uint) -> ~str {
let (r, _) = strconv::float_to_str_common(
num, 10u, true, strconv::SignNeg, strconv::DigExact(digits));
r
}
///
/// Converts a float to a string with a maximum number of
/// significant digits
///
/// # Arguments
///
/// * num - The float value
/// * digits - The number of significant digits
///
#[inline]
pub fn to_str_digits(num: float, digits: uint) -> ~str {
let (r, _) = strconv::float_to_str_common(
num, 10u, true, strconv::SignNeg, strconv::DigMax(digits));
r
}
impl to_str::ToStr for float {
#[inline]
fn to_str(&self) -> ~str { to_str_digits(*self, 8) }
}
impl num::ToStrRadix for float {
/// Converts a float to a string in a given radix
///
/// # Arguments
///
/// * num - The float value
/// * radix - The base to use
///
/// # Failure
///
/// Fails if called on a special value like `inf`, `-inf` or `NaN` due to
/// possible misinterpretation of the result at higher bases. If those values
/// are expected, use `to_str_radix_special()` instead.
#[inline]
fn to_str_radix(&self, radix: uint) -> ~str {
let (r, special) = strconv::float_to_str_common(
*self, radix, true, strconv::SignNeg, strconv::DigAll);
if special { fail!("number has a special value, \
try to_str_radix_special() if those are expected") }
r
}
}
///
/// Convert a string in base 16 to a float.
/// Accepts a optional binary exponent.
///
/// This function accepts strings such as
///
/// * 'a4.fe'
/// * '+a4.fe', equivalent to 'a4.fe'
/// * '-a4.fe'
/// * '2b.aP128', or equivalently, '2b.ap128'
/// * '2b.aP-128'
/// * '.' (understood as 0)
/// * 'c.'
/// * '.c', or, equivalently, '0.c'
/// * '+inf', 'inf', '-inf', 'NaN'
///
/// Leading and trailing whitespace represent an error.
///
/// # Arguments
///
/// * num - A string
///
/// # Return value
///
/// `none` if the string did not represent a valid number. Otherwise,
/// `Some(n)` where `n` is the floating-point number represented by `[num]`.
///
#[inline]
pub fn from_str_hex(num: &str) -> Option<float> {
strconv::from_str_common(num, 16u, true, true, true,
strconv::ExpBin, false, false)
}
impl FromStr for float {
///
/// Convert a string in base 10 to a float.
/// Accepts a optional decimal exponent.
///
/// This function accepts strings such as
///
/// * '3.14'
/// * '+3.14', equivalent to '3.14'
/// * '-3.14'
/// * '2.5E10', or equivalently, '2.5e10'
/// * '2.5E-10'
/// * '.' (understood as 0)
/// * '5.'
/// * '.5', or, equivalently, '0.5'
/// * '+inf', 'inf', '-inf', 'NaN'
///
/// Leading and trailing whitespace represent an error.
///
/// # Arguments
///
/// * num - A string
///
/// # Return value
///
/// `none` if the string did not represent a valid number. Otherwise,
/// `Some(n)` where `n` is the floating-point number represented by `num`.
///
#[inline]
fn from_str(val: &str) -> Option<float> {
strconv::from_str_common(val, 10u, true, true, true,
strconv::ExpDec, false, false)
}
}
impl num::FromStrRadix for float {
///
/// Convert a string in an given base to a float.
///
/// Due to possible conflicts, this function does **not** accept
/// the special values `inf`, `-inf`, `+inf` and `NaN`, **nor**
/// does it recognize exponents of any kind.
///
/// Leading and trailing whitespace represent an error.
///
/// # Arguments
///
/// * num - A string
/// * radix - The base to use. Must lie in the range [2 .. 36]
///
/// # Return value
///
/// `none` if the string did not represent a valid number. Otherwise,
/// `Some(n)` where `n` is the floating-point number represented by `num`.
///
#[inline]
fn from_str_radix(val: &str, radix: uint) -> Option<float> {
strconv::from_str_common(val, radix, true, true, false,
strconv::ExpNone, false, false)
}
}
//
// Section: Arithmetics
//
///
/// Compute the exponentiation of an integer by another integer as a float
///
/// # Arguments
///
/// * x - The base
/// * pow - The exponent
///
/// # Return value
///
/// `NaN` if both `x` and `pow` are `0u`, otherwise `x^pow`
///
pub fn pow_with_uint(base: uint, pow: uint) -> float {
if base == 0u {
if pow == 0u {
return NaN as float;
}
return 0.;
}
let mut my_pow = pow;
let mut total = 1f;
let mut multiplier = base as float;
while (my_pow > 0u) {
if my_pow % 2u == 1u {
total = total * multiplier;
}
my_pow /= 2u;
multiplier *= multiplier;
}
return total;
}
impl Num for float {}
#[cfg(not(test))]
impl Eq for float {
#[inline]
fn eq(&self, other: &float) -> bool { (*self) == (*other) }
}
#[cfg(not(test))]
impl ApproxEq<float> for float {
#[inline]
fn approx_epsilon() -> float { 1.0e-6 }
#[inline]
fn approx_eq(&self, other: &float) -> bool {
self.approx_eq_eps(other, &1.0e-6)
}
#[inline]
fn approx_eq_eps(&self, other: &float, approx_epsilon: &float) -> bool {
(*self - *other).abs() < *approx_epsilon
}
}
#[cfg(not(test))]
impl Ord for float {
#[inline]
fn lt(&self, other: &float) -> bool { (*self) < (*other) }
#[inline]
fn le(&self, other: &float) -> bool { (*self) <= (*other) }
#[inline]
fn ge(&self, other: &float) -> bool { (*self) >= (*other) }
#[inline]
fn gt(&self, other: &float) -> bool { (*self) > (*other) }
}
impl Orderable for float {
/// Returns `NaN` if either of the numbers are `NaN`.
#[inline]
fn min(&self, other: &float) -> float {
(*self as f64).min(&(*other as f64)) as float
}
/// Returns `NaN` if either of the numbers are `NaN`.
#[inline]
fn max(&self, other: &float) -> float {
(*self as f64).max(&(*other as f64)) as float
}
/// Returns the number constrained within the range `mn <= self <= mx`.
/// If any of the numbers are `NaN` then `NaN` is returned.
#[inline]
fn clamp(&self, mn: &float, mx: &float) -> float {
(*self as f64).clamp(&(*mn as f64), &(*mx as f64)) as float
}
}
impl Default for float {
#[inline]
fn default() -> float { 0.0 }
}
impl Zero for float {
#[inline]
fn zero() -> float { 0.0 }
/// Returns true if the number is equal to either `0.0` or `-0.0`
#[inline]
fn is_zero(&self) -> bool { *self == 0.0 || *self == -0.0 }
}
impl One for float {
#[inline]
fn one() -> float { 1.0 }
}
impl Round for float {
/// Round half-way cases toward `neg_infinity`
#[inline]
fn floor(&self) -> float { (*self as f64).floor() as float }
/// Round half-way cases toward `infinity`
#[inline]
fn ceil(&self) -> float { (*self as f64).ceil() as float }
/// Round half-way cases away from `0.0`
#[inline]
fn round(&self) -> float { (*self as f64).round() as float }
/// The integer part of the number (rounds towards `0.0`)
#[inline]
fn trunc(&self) -> float { (*self as f64).trunc() as float }
///
/// The fractional part of the number, satisfying:
///
/// ~~~ {.rust}
/// assert!(x == trunc(x) + fract(x))
/// ~~~
///
#[inline]
fn fract(&self) -> float { *self - self.trunc() }
}
impl Fractional for float {
/// The reciprocal (multiplicative inverse) of the number
#[inline]
fn recip(&self) -> float { 1.0 / *self }
}
impl Algebraic for float {
#[inline]
fn pow(&self, n: &float) -> float {
(*self as f64).pow(&(*n as f64)) as float
}
#[inline]
fn sqrt(&self) -> float {
(*self as f64).sqrt() as float
}
#[inline]
fn rsqrt(&self) -> float {
(*self as f64).rsqrt() as float
}
#[inline]
fn cbrt(&self) -> float {
(*self as f64).cbrt() as float
}
#[inline]
fn hypot(&self, other: &float) -> float {
(*self as f64).hypot(&(*other as f64)) as float
}
}
impl Trigonometric for float {
#[inline]
fn sin(&self) -> float {
(*self as f64).sin() as float
}
#[inline]
fn cos(&self) -> float {
(*self as f64).cos() as float
}
#[inline]
fn tan(&self) -> float {
(*self as f64).tan() as float
}
#[inline]
fn asin(&self) -> float {
(*self as f64).asin() as float
}
#[inline]
fn acos(&self) -> float {
(*self as f64).acos() as float
}
#[inline]
fn atan(&self) -> float {
(*self as f64).atan() as float
}
#[inline]
fn atan2(&self, other: &float) -> float {
(*self as f64).atan2(&(*other as f64)) as float
}
/// Simultaneously computes the sine and cosine of the number
#[inline]
fn sin_cos(&self) -> (float, float) {
match (*self as f64).sin_cos() {
(s, c) => (s as float, c as float)
}
}
}
impl Exponential for float {
/// Returns the exponential of the number
#[inline]
fn exp(&self) -> float {
(*self as f64).exp() as float
}
/// Returns 2 raised to the power of the number
#[inline]
fn exp2(&self) -> float {
(*self as f64).exp2() as float
}
/// Returns the natural logarithm of the number
#[inline]
fn ln(&self) -> float {
(*self as f64).ln() as float
}
/// Returns the logarithm of the number with respect to an arbitrary base
#[inline]
fn log(&self, base: &float) -> float {
(*self as f64).log(&(*base as f64)) as float
}
/// Returns the base 2 logarithm of the number
#[inline]
fn log2(&self) -> float {
(*self as f64).log2() as float
}
/// Returns the base 10 logarithm of the number
#[inline]
fn log10(&self) -> float {
(*self as f64).log10() as float
}
}
impl Hyperbolic for float {
#[inline]
fn sinh(&self) -> float {
(*self as f64).sinh() as float
}
#[inline]
fn cosh(&self) -> float {
(*self as f64).cosh() as float
}
#[inline]
fn tanh(&self) -> float {
(*self as f64).tanh() as float
}
///
/// Inverse hyperbolic sine
///
/// # Returns
///
/// - on success, the inverse hyperbolic sine of `self` will be returned
/// - `self` if `self` is `0.0`, `-0.0`, `infinity`, or `neg_infinity`
/// - `NaN` if `self` is `NaN`
///
#[inline]
fn asinh(&self) -> float {
(*self as f64).asinh() as float
}
///
/// Inverse hyperbolic cosine
///
/// # Returns
///
/// - on success, the inverse hyperbolic cosine of `self` will be returned
/// - `infinity` if `self` is `infinity`
/// - `NaN` if `self` is `NaN` or `self < 1.0` (including `neg_infinity`)
///
#[inline]
fn acosh(&self) -> float {
(*self as f64).acosh() as float
}
///
/// Inverse hyperbolic tangent
///
/// # Returns
///
/// - on success, the inverse hyperbolic tangent of `self` will be returned
/// - `self` if `self` is `0.0` or `-0.0`
/// - `infinity` if `self` is `1.0`
/// - `neg_infinity` if `self` is `-1.0`
/// - `NaN` if the `self` is `NaN` or outside the domain of `-1.0 <= self <= 1.0`
/// (including `infinity` and `neg_infinity`)
///
#[inline]
fn atanh(&self) -> float {
(*self as f64).atanh() as float
}
}
impl Real for float {
/// Archimedes' constant
#[inline]
fn pi() -> float { 3.14159265358979323846264338327950288 }
/// 2.0 * pi
#[inline]
fn two_pi() -> float { 6.28318530717958647692528676655900576 }
/// pi / 2.0
#[inline]
fn frac_pi_2() -> float { 1.57079632679489661923132169163975144 }
/// pi / 3.0
#[inline]
fn frac_pi_3() -> float { 1.04719755119659774615421446109316763 }
/// pi / 4.0
#[inline]
fn frac_pi_4() -> float { 0.785398163397448309615660845819875721 }
/// pi / 6.0
#[inline]
fn frac_pi_6() -> float { 0.52359877559829887307710723054658381 }
/// pi / 8.0
#[inline]
fn frac_pi_8() -> float { 0.39269908169872415480783042290993786 }
/// 1.0 / pi
#[inline]
fn frac_1_pi() -> float { 0.318309886183790671537767526745028724 }
/// 2.0 / pi
#[inline]
fn frac_2_pi() -> float { 0.636619772367581343075535053490057448 }
/// 2 .0/ sqrt(pi)
#[inline]
fn frac_2_sqrtpi() -> float { 1.12837916709551257389615890312154517 }
/// sqrt(2.0)
#[inline]
fn sqrt2() -> float { 1.41421356237309504880168872420969808 }
/// 1.0 / sqrt(2.0)
#[inline]
fn frac_1_sqrt2() -> float { 0.707106781186547524400844362104849039 }
/// Euler's number
#[inline]
fn e() -> float { 2.71828182845904523536028747135266250 }
/// log2(e)
#[inline]
fn log2_e() -> float { 1.44269504088896340735992468100189214 }
/// log10(e)
#[inline]
fn log10_e() -> float { 0.434294481903251827651128918916605082 }
/// ln(2.0)
#[inline]
fn ln_2() -> float { 0.693147180559945309417232121458176568 }
/// ln(10.0)
#[inline]
fn ln_10() -> float { 2.30258509299404568401799145468436421 }
/// Converts to degrees, assuming the number is in radians
#[inline]
fn to_degrees(&self) -> float { (*self as f64).to_degrees() as float }
/// Converts to radians, assuming the number is in degrees
#[inline]
fn to_radians(&self) -> float { (*self as f64).to_radians() as float }
}
impl RealExt for float {
#[inline]
fn lgamma(&self) -> (int, float) {
let (sign, value) = (*self as f64).lgamma();
(sign, value as float)
}
#[inline]
fn tgamma(&self) -> float { (*self as f64).tgamma() as float }
#[inline]
fn j0(&self) -> float { (*self as f64).j0() as float }
#[inline]
fn j1(&self) -> float { (*self as f64).j1() as float }
#[inline]
fn jn(&self, n: int) -> float { (*self as f64).jn(n) as float }
#[inline]
fn y0(&self) -> float { (*self as f64).y0() as float }
#[inline]
fn y1(&self) -> float { (*self as f64).y1() as float }
#[inline]
fn yn(&self, n: int) -> float { (*self as f64).yn(n) as float }
}
#[cfg(not(test))]
impl Add<float,float> for float {
#[inline]
fn add(&self, other: &float) -> float { *self + *other }
}
#[cfg(not(test))]
impl Sub<float,float> for float {
#[inline]
fn sub(&self, other: &float) -> float { *self - *other }
}
#[cfg(not(test))]
impl Mul<float,float> for float {
#[inline]
fn mul(&self, other: &float) -> float { *self * *other }
}
#[cfg(not(test))]
impl Div<float,float> for float {
#[inline]
fn div(&self, other: &float) -> float { *self / *other }
}
#[cfg(not(test))]
impl Rem<float,float> for float {
#[inline]
fn rem(&self, other: &float) -> float { *self % *other }
}
#[cfg(not(test))]
impl Neg<float> for float {
#[inline]
fn neg(&self) -> float { -*self }
}
impl Signed for float {
/// Computes the absolute value. Returns `NaN` if the number is `NaN`.
#[inline]
fn abs(&self) -> float { (*self as f64).abs() as float }
///
/// The positive difference of two numbers. Returns `0.0` if the number is less than or
/// equal to `other`, otherwise the difference between`self` and `other` is returned.
///
#[inline]
fn abs_sub(&self, other: &float) -> float {
(*self as f64).abs_sub(&(*other as f64)) as float
}
///
/// # Returns
///
/// - `1.0` if the number is positive, `+0.0` or `infinity`
/// - `-1.0` if the number is negative, `-0.0` or `neg_infinity`
/// - `NaN` if the number is NaN
///
#[inline]
fn signum(&self) -> float {
(*self as f64).signum() as float
}
/// Returns `true` if the number is positive, including `+0.0` and `infinity`
#[inline]
fn is_positive(&self) -> bool { *self > 0.0 || (1.0 / *self) == infinity }
/// Returns `true` if the number is negative, including `-0.0` and `neg_infinity`
#[inline]
fn is_negative(&self) -> bool { *self < 0.0 || (1.0 / *self) == neg_infinity }
}
impl Bounded for float {
#[inline]
fn min_value() -> float {
let x: f64 = Bounded::min_value();
x as float
}
#[inline]
fn max_value() -> float {
let x: f64 = Bounded::max_value();
x as float
}
}
impl Primitive for float {
#[inline]
fn bits(_: Option<float>) -> uint {
let bits: uint = Primitive::bits(Some(0f64));
bits
}
#[inline]
fn bytes(_: Option<float>) -> uint {
let bytes: uint = Primitive::bytes(Some(0f64));
bytes
}
}
impl Float for float {
#[inline]
fn nan() -> float {
let value: f64 = Float::nan();
value as float
}
#[inline]
fn infinity() -> float {
let value: f64 = Float::infinity();
value as float
}
#[inline]
fn neg_infinity() -> float {
let value: f64 = Float::neg_infinity();
value as float
}
#[inline]
fn neg_zero() -> float {
let value: f64 = Float::neg_zero();
value as float
}
/// Returns `true` if the number is NaN
#[inline]
fn is_nan(&self) -> bool { (*self as f64).is_nan() }
/// Returns `true` if the number is infinite
#[inline]
fn is_infinite(&self) -> bool { (*self as f64).is_infinite() }
/// Returns `true` if the number is neither infinite or NaN
#[inline]
fn is_finite(&self) -> bool { (*self as f64).is_finite() }
/// Returns `true` if the number is neither zero, infinite, subnormal or NaN
#[inline]
fn is_normal(&self) -> bool { (*self as f64).is_normal() }
/// Returns the floating point category of the number. If only one property is going to
/// be tested, it is generally faster to use the specific predicate instead.
#[inline]
fn classify(&self) -> FPCategory { (*self as f64).classify() }
#[inline]
fn mantissa_digits(_: Option<float>) -> uint {
Float::mantissa_digits(Some(0f64))
}
#[inline]
fn digits(_: Option<float>) -> uint {
Float::digits(Some(0f64))
}
#[inline]
fn epsilon() -> float {
let value: f64 = Float::epsilon();
value as float
}
#[inline]
fn min_exp(_: Option<float>) -> int {
Float::min_exp(Some(0f64))
}
#[inline]
fn max_exp(_: Option<float>) -> int {
Float::max_exp(Some(0f64))
}
#[inline]
fn min_10_exp(_: Option<float>) -> int {
Float::min_10_exp(Some(0f64))
}
#[inline]
fn max_10_exp(_: Option<float>) -> int {
Float::max_10_exp(Some(0f64))
}
/// Constructs a floating point number by multiplying `x` by 2 raised to the power of `exp`
#[inline]
fn ldexp(x: float, exp: int) -> float {
let value: f64 = Float::ldexp(x as f64, exp);
value as float
}
///
/// Breaks the number into a normalized fraction and a base-2 exponent, satisfying:
///
/// - `self = x * pow(2, exp)`
/// - `0.5 <= abs(x) < 1.0`
///
#[inline]
fn frexp(&self) -> (float, int) {
match (*self as f64).frexp() {
(x, exp) => (x as float, exp)
}
}
///
/// Returns the exponential of the number, minus `1`, in a way that is accurate
/// even if the number is close to zero
///
#[inline]
fn exp_m1(&self) -> float {
(*self as f64).exp_m1() as float
}
///
/// Returns the natural logarithm of the number plus `1` (`ln(1+n)`) more accurately
/// than if the operations were performed separately
///
#[inline]
fn ln_1p(&self) -> float {
(*self as f64).ln_1p() as float
}
///
/// Fused multiply-add. Computes `(self * a) + b` with only one rounding error. This
/// produces a more accurate result with better performance than a separate multiplication
/// operation followed by an add.
///
#[inline]
fn mul_add(&self, a: float, b: float) -> float {
(*self as f64).mul_add(a as f64, b as f64) as float
}
/// Returns the next representable floating-point value in the direction of `other`
#[inline]
fn next_after(&self, other: float) -> float {
(*self as f64).next_after(other as f64) as float
}
}
#[cfg(test)]
mod tests {
use prelude::*;
use super::*;
use num::*;
use num;
use sys;
#[test]
fn test_num() {
num::test_num(10f, 2f);
}
#[test]
fn test_min() {
assert_eq!(1f.min(&2f), 1f);
assert_eq!(2f.min(&1f), 1f);
}
#[test]
fn test_max() {
assert_eq!(1f.max(&2f), 2f);
assert_eq!(2f.max(&1f), 2f);
}
#[test]
fn test_clamp() {
assert_eq!(1f.clamp(&2f, &4f), 2f);
assert_eq!(8f.clamp(&2f, &4f), 4f);
assert_eq!(3f.clamp(&2f, &4f), 3f);
let nan: float = Float::nan();
assert!(3f.clamp(&nan, &4f).is_nan());
assert!(3f.clamp(&2f, &nan).is_nan());
assert!(nan.clamp(&2f, &4f).is_nan());
}
#[test]
fn test_floor() {
assert_approx_eq!(1.0f.floor(), 1.0f);
assert_approx_eq!(1.3f.floor(), 1.0f);
assert_approx_eq!(1.5f.floor(), 1.0f);
assert_approx_eq!(1.7f.floor(), 1.0f);
assert_approx_eq!(0.0f.floor(), 0.0f);
assert_approx_eq!((-0.0f).floor(), -0.0f);
assert_approx_eq!((-1.0f).floor(), -1.0f);
assert_approx_eq!((-1.3f).floor(), -2.0f);
assert_approx_eq!((-1.5f).floor(), -2.0f);
assert_approx_eq!((-1.7f).floor(), -2.0f);
}
#[test]
fn test_ceil() {
assert_approx_eq!(1.0f.ceil(), 1.0f);
assert_approx_eq!(1.3f.ceil(), 2.0f);
assert_approx_eq!(1.5f.ceil(), 2.0f);
assert_approx_eq!(1.7f.ceil(), 2.0f);
assert_approx_eq!(0.0f.ceil(), 0.0f);
assert_approx_eq!((-0.0f).ceil(), -0.0f);
assert_approx_eq!((-1.0f).ceil(), -1.0f);
assert_approx_eq!((-1.3f).ceil(), -1.0f);
assert_approx_eq!((-1.5f).ceil(), -1.0f);
assert_approx_eq!((-1.7f).ceil(), -1.0f);
}
#[test]
fn test_round() {
assert_approx_eq!(1.0f.round(), 1.0f);
assert_approx_eq!(1.3f.round(), 1.0f);
assert_approx_eq!(1.5f.round(), 2.0f);
assert_approx_eq!(1.7f.round(), 2.0f);
assert_approx_eq!(0.0f.round(), 0.0f);
assert_approx_eq!((-0.0f).round(), -0.0f);
assert_approx_eq!((-1.0f).round(), -1.0f);
assert_approx_eq!((-1.3f).round(), -1.0f);
assert_approx_eq!((-1.5f).round(), -2.0f);
assert_approx_eq!((-1.7f).round(), -2.0f);
}
#[test]
fn test_trunc() {
assert_approx_eq!(1.0f.trunc(), 1.0f);
assert_approx_eq!(1.3f.trunc(), 1.0f);
assert_approx_eq!(1.5f.trunc(), 1.0f);
assert_approx_eq!(1.7f.trunc(), 1.0f);
assert_approx_eq!(0.0f.trunc(), 0.0f);
assert_approx_eq!((-0.0f).trunc(), -0.0f);
assert_approx_eq!((-1.0f).trunc(), -1.0f);
assert_approx_eq!((-1.3f).trunc(), -1.0f);
assert_approx_eq!((-1.5f).trunc(), -1.0f);
assert_approx_eq!((-1.7f).trunc(), -1.0f);
}
#[test]
fn test_fract() {
assert_approx_eq!(1.0f.fract(), 0.0f);
assert_approx_eq!(1.3f.fract(), 0.3f);
assert_approx_eq!(1.5f.fract(), 0.5f);
assert_approx_eq!(1.7f.fract(), 0.7f);
assert_approx_eq!(0.0f.fract(), 0.0f);
assert_approx_eq!((-0.0f).fract(), -0.0f);
assert_approx_eq!((-1.0f).fract(), -0.0f);
assert_approx_eq!((-1.3f).fract(), -0.3f);
assert_approx_eq!((-1.5f).fract(), -0.5f);
assert_approx_eq!((-1.7f).fract(), -0.7f);
}
#[test]
fn test_asinh() {
assert_eq!(0.0f.asinh(), 0.0f);
assert_eq!((-0.0f).asinh(), -0.0f);
let inf: float = Float::infinity();
let neg_inf: float = Float::neg_infinity();
let nan: float = Float::nan();
assert_eq!(inf.asinh(), inf);
assert_eq!(neg_inf.asinh(), neg_inf);
assert!(nan.asinh().is_nan());
assert_approx_eq!(2.0f.asinh(), 1.443635475178810342493276740273105f);
assert_approx_eq!((-2.0f).asinh(), -1.443635475178810342493276740273105f);
}
#[test]
fn test_acosh() {
assert_eq!(1.0f.acosh(), 0.0f);
assert!(0.999f.acosh().is_nan());
let inf: float = Float::infinity();
let neg_inf: float = Float::neg_infinity();
let nan: float = Float::nan();
assert_eq!(inf.acosh(), inf);
assert!(neg_inf.acosh().is_nan());
assert!(nan.acosh().is_nan());
assert_approx_eq!(2.0f.acosh(), 1.31695789692481670862504634730796844f);
assert_approx_eq!(3.0f.acosh(), 1.76274717403908605046521864995958461f);
}
#[test]
fn test_atanh() {
assert_eq!(0.0f.atanh(), 0.0f);
assert_eq!((-0.0f).atanh(), -0.0f);
let inf: float = Float::infinity();
let neg_inf: float = Float::neg_infinity();
let inf64: f64 = Float::infinity();
let neg_inf64: f64 = Float::neg_infinity();
let nan: float = Float::nan();
assert_eq!(1.0f.atanh(), inf);
assert_eq!((-1.0f).atanh(), neg_inf);
assert!(2f64.atanh().atanh().is_nan());
assert!((-2f64).atanh().atanh().is_nan());
assert!(inf64.atanh().is_nan());
assert!(neg_inf64.atanh().is_nan());
assert!(nan.atanh().is_nan());
assert_approx_eq!(0.5f.atanh(), 0.54930614433405484569762261846126285f);
assert_approx_eq!((-0.5f).atanh(), -0.54930614433405484569762261846126285f);
}
#[test]
fn test_real_consts() {
let pi: float = Real::pi();
let two_pi: float = Real::two_pi();
let frac_pi_2: float = Real::frac_pi_2();
let frac_pi_3: float = Real::frac_pi_3();
let frac_pi_4: float = Real::frac_pi_4();
let frac_pi_6: float = Real::frac_pi_6();
let frac_pi_8: float = Real::frac_pi_8();
let frac_1_pi: float = Real::frac_1_pi();
let frac_2_pi: float = Real::frac_2_pi();
let frac_2_sqrtpi: float = Real::frac_2_sqrtpi();
let sqrt2: float = Real::sqrt2();
let frac_1_sqrt2: float = Real::frac_1_sqrt2();
let e: float = Real::e();
let log2_e: float = Real::log2_e();
let log10_e: float = Real::log10_e();
let ln_2: float = Real::ln_2();
let ln_10: float = Real::ln_10();
assert_approx_eq!(two_pi, 2f * pi);
assert_approx_eq!(frac_pi_2, pi / 2f);
assert_approx_eq!(frac_pi_3, pi / 3f);
assert_approx_eq!(frac_pi_4, pi / 4f);
assert_approx_eq!(frac_pi_6, pi / 6f);
assert_approx_eq!(frac_pi_8, pi / 8f);
assert_approx_eq!(frac_1_pi, 1f / pi);
assert_approx_eq!(frac_2_pi, 2f / pi);
assert_approx_eq!(frac_2_sqrtpi, 2f / pi.sqrt());
assert_approx_eq!(sqrt2, 2f.sqrt());
assert_approx_eq!(frac_1_sqrt2, 1f / 2f.sqrt());
assert_approx_eq!(log2_e, e.log2());
assert_approx_eq!(log10_e, e.log10());
assert_approx_eq!(ln_2, 2f.ln());
assert_approx_eq!(ln_10, 10f.ln());
}
#[test]
fn test_abs() {
assert_eq!(infinity.abs(), infinity);
assert_eq!(1f.abs(), 1f);
assert_eq!(0f.abs(), 0f);
assert_eq!((-0f).abs(), 0f);
assert_eq!((-1f).abs(), 1f);
assert_eq!(neg_infinity.abs(), infinity);
assert_eq!((1f/neg_infinity).abs(), 0f);
assert!(NaN.abs().is_nan());
}
#[test]
fn test_abs_sub() {
assert_eq!((-1f).abs_sub(&1f), 0f);
assert_eq!(1f.abs_sub(&1f), 0f);
assert_eq!(1f.abs_sub(&0f), 1f);
assert_eq!(1f.abs_sub(&-1f), 2f);
assert_eq!(neg_infinity.abs_sub(&0f), 0f);
assert_eq!(infinity.abs_sub(&1f), infinity);
assert_eq!(0f.abs_sub(&neg_infinity), infinity);
assert_eq!(0f.abs_sub(&infinity), 0f);
}
#[test] #[ignore(cfg(windows))] // FIXME #8663
fn test_abs_sub_nowin() {
assert!(NaN.abs_sub(&-1f).is_nan());
assert!(1f.abs_sub(&NaN).is_nan());
}
#[test]
fn test_signum() {
assert_eq!(infinity.signum(), 1f);
assert_eq!(1f.signum(), 1f);
assert_eq!(0f.signum(), 1f);
assert_eq!((-0f).signum(), -1f);
assert_eq!((-1f).signum(), -1f);
assert_eq!(neg_infinity.signum(), -1f);
assert_eq!((1f/neg_infinity).signum(), -1f);
assert!(NaN.signum().is_nan());
}
#[test]
fn test_is_positive() {
assert!(infinity.is_positive());
assert!(1f.is_positive());
assert!(0f.is_positive());
assert!(!(-0f).is_positive());
assert!(!(-1f).is_positive());
assert!(!neg_infinity.is_positive());
assert!(!(1f/neg_infinity).is_positive());
assert!(!NaN.is_positive());
}
#[test]
fn test_is_negative() {
assert!(!infinity.is_negative());
assert!(!1f.is_negative());
assert!(!0f.is_negative());
assert!((-0f).is_negative());
assert!((-1f).is_negative());
assert!(neg_infinity.is_negative());
assert!((1f/neg_infinity).is_negative());
assert!(!NaN.is_negative());
}
#[test]
fn test_approx_eq() {
assert!(1.0f.approx_eq(&1f));
assert!(0.9999999f.approx_eq(&1f));
assert!(1.000001f.approx_eq_eps(&1f, &1.0e-5));
assert!(1.0000001f.approx_eq_eps(&1f, &1.0e-6));
assert!(!1.0000001f.approx_eq_eps(&1f, &1.0e-7));
}
#[test]
fn test_primitive() {
let none: Option<float> = None;
assert_eq!(Primitive::bits(none), sys::size_of::<float>() * 8);
assert_eq!(Primitive::bytes(none), sys::size_of::<float>());
}
#[test]
fn test_is_normal() {
let nan: float = Float::nan();
let inf: float = Float::infinity();
let neg_inf: float = Float::neg_infinity();
let zero: float = Zero::zero();
let neg_zero: float = Float::neg_zero();
assert!(!nan.is_normal());
assert!(!inf.is_normal());
assert!(!neg_inf.is_normal());
assert!(!zero.is_normal());
assert!(!neg_zero.is_normal());
assert!(1f.is_normal());
assert!(1e-307f.is_normal());
assert!(!1e-308f.is_normal());
}
#[test]
fn test_classify() {
let nan: float = Float::nan();
let inf: float = Float::infinity();
let neg_inf: float = Float::neg_infinity();
let zero: float = Zero::zero();
let neg_zero: float = Float::neg_zero();
assert_eq!(nan.classify(), FPNaN);
assert_eq!(inf.classify(), FPInfinite);
assert_eq!(neg_inf.classify(), FPInfinite);
assert_eq!(zero.classify(), FPZero);
assert_eq!(neg_zero.classify(), FPZero);
assert_eq!(1f.classify(), FPNormal);
assert_eq!(1e-307f.classify(), FPNormal);
assert_eq!(1e-308f.classify(), FPSubnormal);
}
#[test]
fn test_ldexp() {
// We have to use from_str until base-2 exponents
// are supported in floating-point literals
let f1: float = from_str_hex("1p-123").unwrap();
let f2: float = from_str_hex("1p-111").unwrap();
assert_eq!(Float::ldexp(1f, -123), f1);
assert_eq!(Float::ldexp(1f, -111), f2);
assert_eq!(Float::ldexp(0f, -123), 0f);
assert_eq!(Float::ldexp(-0f, -123), -0f);
let inf: float = Float::infinity();
let neg_inf: float = Float::neg_infinity();
let nan: float = Float::nan();
assert_eq!(Float::ldexp(inf, -123), inf);
assert_eq!(Float::ldexp(neg_inf, -123), neg_inf);
assert!(Float::ldexp(nan, -123).is_nan());
}
#[test]
fn test_frexp() {
// We have to use from_str until base-2 exponents
// are supported in floating-point literals
let f1: float = from_str_hex("1p-123").unwrap();
let f2: float = from_str_hex("1p-111").unwrap();
let (x1, exp1) = f1.frexp();
let (x2, exp2) = f2.frexp();
assert_eq!((x1, exp1), (0.5f, -122));
assert_eq!((x2, exp2), (0.5f, -110));
assert_eq!(Float::ldexp(x1, exp1), f1);
assert_eq!(Float::ldexp(x2, exp2), f2);
assert_eq!(0f.frexp(), (0f, 0));
assert_eq!((-0f).frexp(), (-0f, 0));
}
#[test] #[ignore(cfg(windows))] // FIXME #8755
fn test_frexp_nowin() {
let inf: float = Float::infinity();
let neg_inf: float = Float::neg_infinity();
let nan: float = Float::nan();
assert_eq!(match inf.frexp() { (x, _) => x }, inf);
assert_eq!(match neg_inf.frexp() { (x, _) => x }, neg_inf);
assert!(match nan.frexp() { (x, _) => x.is_nan() })
}
#[test]
pub fn test_to_str_exact_do_decimal() {
let s = to_str_exact(5.0, 4u);
assert_eq!(s, ~"5.0000");
}
#[test]
pub fn test_from_str() {
assert_eq!(from_str::<float>("3"), Some(3.));
assert_eq!(from_str::<float>("3.14"), Some(3.14));
assert_eq!(from_str::<float>("+3.14"), Some(3.14));
assert_eq!(from_str::<float>("-3.14"), Some(-3.14));
assert_eq!(from_str::<float>("2.5E10"), Some(25000000000.));
assert_eq!(from_str::<float>("2.5e10"), Some(25000000000.));
assert_eq!(from_str::<float>("25000000000.E-10"), Some(2.5));
assert_eq!(from_str::<float>("."), Some(0.));
assert_eq!(from_str::<float>(".e1"), Some(0.));
assert_eq!(from_str::<float>(".e-1"), Some(0.));
assert_eq!(from_str::<float>("5."), Some(5.));
assert_eq!(from_str::<float>(".5"), Some(0.5));
assert_eq!(from_str::<float>("0.5"), Some(0.5));
assert_eq!(from_str::<float>("-.5"), Some(-0.5));
assert_eq!(from_str::<float>("-5"), Some(-5.));
assert_eq!(from_str::<float>("inf"), Some(infinity));
assert_eq!(from_str::<float>("+inf"), Some(infinity));
assert_eq!(from_str::<float>("-inf"), Some(neg_infinity));
// note: NaN != NaN, hence this slightly complex test
match from_str::<float>("NaN") {
Some(f) => assert!(f.is_nan()),
None => fail!()
}
// note: -0 == 0, hence these slightly more complex tests
match from_str::<float>("-0") {
Some(v) if v.is_zero() => assert!(v.is_negative()),
_ => fail!()
}
match from_str::<float>("0") {
Some(v) if v.is_zero() => assert!(v.is_positive()),
_ => fail!()
}
assert!(from_str::<float>("").is_none());
assert!(from_str::<float>("x").is_none());
assert!(from_str::<float>(" ").is_none());
assert!(from_str::<float>(" ").is_none());
assert!(from_str::<float>("e").is_none());
assert!(from_str::<float>("E").is_none());
assert!(from_str::<float>("E1").is_none());
assert!(from_str::<float>("1e1e1").is_none());
assert!(from_str::<float>("1e1.1").is_none());
assert!(from_str::<float>("1e1-1").is_none());
}
#[test]
pub fn test_from_str_hex() {
assert_eq!(from_str_hex("a4"), Some(164.));
assert_eq!(from_str_hex("a4.fe"), Some(164.9921875));
assert_eq!(from_str_hex("-a4.fe"), Some(-164.9921875));
assert_eq!(from_str_hex("+a4.fe"), Some(164.9921875));
assert_eq!(from_str_hex("ff0P4"), Some(0xff00 as float));
assert_eq!(from_str_hex("ff0p4"), Some(0xff00 as float));
assert_eq!(from_str_hex("ff0p-4"), Some(0xff as float));
assert_eq!(from_str_hex("."), Some(0.));
assert_eq!(from_str_hex(".p1"), Some(0.));
assert_eq!(from_str_hex(".p-1"), Some(0.));
assert_eq!(from_str_hex("f."), Some(15.));
assert_eq!(from_str_hex(".f"), Some(0.9375));
assert_eq!(from_str_hex("0.f"), Some(0.9375));
assert_eq!(from_str_hex("-.f"), Some(-0.9375));
assert_eq!(from_str_hex("-f"), Some(-15.));
assert_eq!(from_str_hex("inf"), Some(infinity));
assert_eq!(from_str_hex("+inf"), Some(infinity));
assert_eq!(from_str_hex("-inf"), Some(neg_infinity));
// note: NaN != NaN, hence this slightly complex test
match from_str_hex("NaN") {
Some(f) => assert!(f.is_nan()),
None => fail!()
}
// note: -0 == 0, hence these slightly more complex tests
match from_str_hex("-0") {
Some(v) if v.is_zero() => assert!(v.is_negative()),
_ => fail!()
}
match from_str_hex("0") {
Some(v) if v.is_zero() => assert!(v.is_positive()),
_ => fail!()
}
assert_eq!(from_str_hex("e"), Some(14.));
assert_eq!(from_str_hex("E"), Some(14.));
assert_eq!(from_str_hex("E1"), Some(225.));
assert_eq!(from_str_hex("1e1e1"), Some(123361.));
assert_eq!(from_str_hex("1e1.1"), Some(481.0625));
assert!(from_str_hex("").is_none());
assert!(from_str_hex("x").is_none());
assert!(from_str_hex(" ").is_none());
assert!(from_str_hex(" ").is_none());
assert!(from_str_hex("p").is_none());
assert!(from_str_hex("P").is_none());
assert!(from_str_hex("P1").is_none());
assert!(from_str_hex("1p1p1").is_none());
assert!(from_str_hex("1p1.1").is_none());
assert!(from_str_hex("1p1-1").is_none());
}
#[test]
pub fn test_to_str_hex() {
assert_eq!(to_str_hex(164.), ~"a4");
assert_eq!(to_str_hex(164.9921875), ~"a4.fe");
assert_eq!(to_str_hex(-164.9921875), ~"-a4.fe");
assert_eq!(to_str_hex(0xff00 as float), ~"ff00");
assert_eq!(to_str_hex(-(0xff00 as float)), ~"-ff00");
assert_eq!(to_str_hex(0.), ~"0");
assert_eq!(to_str_hex(15.), ~"f");
assert_eq!(to_str_hex(-15.), ~"-f");
assert_eq!(to_str_hex(0.9375), ~"0.f");
assert_eq!(to_str_hex(-0.9375), ~"-0.f");
assert_eq!(to_str_hex(infinity), ~"inf");
assert_eq!(to_str_hex(neg_infinity), ~"-inf");
assert_eq!(to_str_hex(NaN), ~"NaN");
assert_eq!(to_str_hex(0.), ~"0");
assert_eq!(to_str_hex(-0.), ~"-0");
}
#[test]
pub fn test_to_str_radix() {
assert_eq!(36.0f.to_str_radix(36u), ~"10");
assert_eq!(8.125f.to_str_radix(2u), ~"1000.001");
}
#[test]
pub fn test_from_str_radix() {
assert_eq!(from_str_radix("10", 36u), Some(36.));
assert_eq!(from_str_radix("1000.001", 2u), Some(8.125));
}
#[test]
pub fn test_to_str_inf() {
assert_eq!(to_str_digits(infinity, 10u), ~"inf");
assert_eq!(to_str_digits(-infinity, 10u), ~"-inf");
}
}