d9874c0885
This is for consistency in naming conventions. - ``std::num::Float::NaN()`` is changed to ``nan()``; - ``std::num::Float.is_NaN()`` is changed to ``is_nan()``; and - ``std::num::strconv::NumStrConv::NaN()`` is changed to ``nan()``. Fixes #9319.
1445 lines
42 KiB
Rust
1445 lines
42 KiB
Rust
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Operations and constants for `float`
|
|
|
|
// Even though this module exports everything defined in it,
|
|
// because it contains re-exports, we also have to explicitly
|
|
// export locally defined things. That's a bit annoying.
|
|
|
|
|
|
// export when m_float == c_double
|
|
|
|
|
|
// PORT this must match in width according to architecture
|
|
|
|
#[allow(missing_doc)];
|
|
#[allow(non_uppercase_statics)];
|
|
|
|
use default::Default;
|
|
use num::{Zero, One, strconv};
|
|
use num::FPCategory;
|
|
use num;
|
|
use prelude::*;
|
|
use to_str;
|
|
|
|
pub static NaN: float = 0.0/0.0;
|
|
|
|
pub static infinity: float = 1.0/0.0;
|
|
|
|
pub static neg_infinity: float = -1.0/0.0;
|
|
|
|
/* Module: consts */
|
|
pub mod consts {
|
|
// FIXME (requires Issue #1433 to fix): replace with mathematical
|
|
// constants from cmath.
|
|
/// Archimedes' constant
|
|
pub static pi: float = 3.14159265358979323846264338327950288;
|
|
|
|
/// pi/2.0
|
|
pub static frac_pi_2: float = 1.57079632679489661923132169163975144;
|
|
|
|
/// pi/4.0
|
|
pub static frac_pi_4: float = 0.785398163397448309615660845819875721;
|
|
|
|
/// 1.0/pi
|
|
pub static frac_1_pi: float = 0.318309886183790671537767526745028724;
|
|
|
|
/// 2.0/pi
|
|
pub static frac_2_pi: float = 0.636619772367581343075535053490057448;
|
|
|
|
/// 2.0/sqrt(pi)
|
|
pub static frac_2_sqrtpi: float = 1.12837916709551257389615890312154517;
|
|
|
|
/// sqrt(2.0)
|
|
pub static sqrt2: float = 1.41421356237309504880168872420969808;
|
|
|
|
/// 1.0/sqrt(2.0)
|
|
pub static frac_1_sqrt2: float = 0.707106781186547524400844362104849039;
|
|
|
|
/// Euler's number
|
|
pub static e: float = 2.71828182845904523536028747135266250;
|
|
|
|
/// log2(e)
|
|
pub static log2_e: float = 1.44269504088896340735992468100189214;
|
|
|
|
/// log10(e)
|
|
pub static log10_e: float = 0.434294481903251827651128918916605082;
|
|
|
|
/// ln(2.0)
|
|
pub static ln_2: float = 0.693147180559945309417232121458176568;
|
|
|
|
/// ln(10.0)
|
|
pub static ln_10: float = 2.30258509299404568401799145468436421;
|
|
}
|
|
|
|
//
|
|
// Section: String Conversions
|
|
//
|
|
|
|
///
|
|
/// Converts a float to a string
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * num - The float value
|
|
///
|
|
#[inline]
|
|
pub fn to_str(num: float) -> ~str {
|
|
let (r, _) = strconv::float_to_str_common(
|
|
num, 10u, true, strconv::SignNeg, strconv::DigAll);
|
|
r
|
|
}
|
|
|
|
///
|
|
/// Converts a float to a string in hexadecimal format
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * num - The float value
|
|
///
|
|
#[inline]
|
|
pub fn to_str_hex(num: float) -> ~str {
|
|
let (r, _) = strconv::float_to_str_common(
|
|
num, 16u, true, strconv::SignNeg, strconv::DigAll);
|
|
r
|
|
}
|
|
|
|
///
|
|
/// Converts a float to a string in a given radix, and a flag indicating
|
|
/// whether it's a special value
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * num - The float value
|
|
/// * radix - The base to use
|
|
///
|
|
#[inline]
|
|
pub fn to_str_radix_special(num: float, radix: uint) -> (~str, bool) {
|
|
strconv::float_to_str_common(num, radix, true,
|
|
strconv::SignNeg, strconv::DigAll)
|
|
}
|
|
|
|
///
|
|
/// Converts a float to a string with exactly the number of
|
|
/// provided significant digits
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * num - The float value
|
|
/// * digits - The number of significant digits
|
|
///
|
|
#[inline]
|
|
pub fn to_str_exact(num: float, digits: uint) -> ~str {
|
|
let (r, _) = strconv::float_to_str_common(
|
|
num, 10u, true, strconv::SignNeg, strconv::DigExact(digits));
|
|
r
|
|
}
|
|
|
|
///
|
|
/// Converts a float to a string with a maximum number of
|
|
/// significant digits
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * num - The float value
|
|
/// * digits - The number of significant digits
|
|
///
|
|
#[inline]
|
|
pub fn to_str_digits(num: float, digits: uint) -> ~str {
|
|
let (r, _) = strconv::float_to_str_common(
|
|
num, 10u, true, strconv::SignNeg, strconv::DigMax(digits));
|
|
r
|
|
}
|
|
|
|
impl to_str::ToStr for float {
|
|
#[inline]
|
|
fn to_str(&self) -> ~str { to_str_digits(*self, 8) }
|
|
}
|
|
|
|
impl num::ToStrRadix for float {
|
|
/// Converts a float to a string in a given radix
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * num - The float value
|
|
/// * radix - The base to use
|
|
///
|
|
/// # Failure
|
|
///
|
|
/// Fails if called on a special value like `inf`, `-inf` or `NaN` due to
|
|
/// possible misinterpretation of the result at higher bases. If those values
|
|
/// are expected, use `to_str_radix_special()` instead.
|
|
#[inline]
|
|
fn to_str_radix(&self, radix: uint) -> ~str {
|
|
let (r, special) = strconv::float_to_str_common(
|
|
*self, radix, true, strconv::SignNeg, strconv::DigAll);
|
|
if special { fail!("number has a special value, \
|
|
try to_str_radix_special() if those are expected") }
|
|
r
|
|
}
|
|
}
|
|
|
|
///
|
|
/// Convert a string in base 16 to a float.
|
|
/// Accepts a optional binary exponent.
|
|
///
|
|
/// This function accepts strings such as
|
|
///
|
|
/// * 'a4.fe'
|
|
/// * '+a4.fe', equivalent to 'a4.fe'
|
|
/// * '-a4.fe'
|
|
/// * '2b.aP128', or equivalently, '2b.ap128'
|
|
/// * '2b.aP-128'
|
|
/// * '.' (understood as 0)
|
|
/// * 'c.'
|
|
/// * '.c', or, equivalently, '0.c'
|
|
/// * '+inf', 'inf', '-inf', 'NaN'
|
|
///
|
|
/// Leading and trailing whitespace represent an error.
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * num - A string
|
|
///
|
|
/// # Return value
|
|
///
|
|
/// `none` if the string did not represent a valid number. Otherwise,
|
|
/// `Some(n)` where `n` is the floating-point number represented by `[num]`.
|
|
///
|
|
#[inline]
|
|
pub fn from_str_hex(num: &str) -> Option<float> {
|
|
strconv::from_str_common(num, 16u, true, true, true,
|
|
strconv::ExpBin, false, false)
|
|
}
|
|
|
|
impl FromStr for float {
|
|
///
|
|
/// Convert a string in base 10 to a float.
|
|
/// Accepts a optional decimal exponent.
|
|
///
|
|
/// This function accepts strings such as
|
|
///
|
|
/// * '3.14'
|
|
/// * '+3.14', equivalent to '3.14'
|
|
/// * '-3.14'
|
|
/// * '2.5E10', or equivalently, '2.5e10'
|
|
/// * '2.5E-10'
|
|
/// * '.' (understood as 0)
|
|
/// * '5.'
|
|
/// * '.5', or, equivalently, '0.5'
|
|
/// * '+inf', 'inf', '-inf', 'NaN'
|
|
///
|
|
/// Leading and trailing whitespace represent an error.
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * num - A string
|
|
///
|
|
/// # Return value
|
|
///
|
|
/// `none` if the string did not represent a valid number. Otherwise,
|
|
/// `Some(n)` where `n` is the floating-point number represented by `num`.
|
|
///
|
|
#[inline]
|
|
fn from_str(val: &str) -> Option<float> {
|
|
strconv::from_str_common(val, 10u, true, true, true,
|
|
strconv::ExpDec, false, false)
|
|
}
|
|
}
|
|
|
|
impl num::FromStrRadix for float {
|
|
///
|
|
/// Convert a string in an given base to a float.
|
|
///
|
|
/// Due to possible conflicts, this function does **not** accept
|
|
/// the special values `inf`, `-inf`, `+inf` and `NaN`, **nor**
|
|
/// does it recognize exponents of any kind.
|
|
///
|
|
/// Leading and trailing whitespace represent an error.
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * num - A string
|
|
/// * radix - The base to use. Must lie in the range [2 .. 36]
|
|
///
|
|
/// # Return value
|
|
///
|
|
/// `none` if the string did not represent a valid number. Otherwise,
|
|
/// `Some(n)` where `n` is the floating-point number represented by `num`.
|
|
///
|
|
#[inline]
|
|
fn from_str_radix(val: &str, radix: uint) -> Option<float> {
|
|
strconv::from_str_common(val, radix, true, true, false,
|
|
strconv::ExpNone, false, false)
|
|
}
|
|
}
|
|
|
|
//
|
|
// Section: Arithmetics
|
|
//
|
|
|
|
///
|
|
/// Compute the exponentiation of an integer by another integer as a float
|
|
///
|
|
/// # Arguments
|
|
///
|
|
/// * x - The base
|
|
/// * pow - The exponent
|
|
///
|
|
/// # Return value
|
|
///
|
|
/// `NaN` if both `x` and `pow` are `0u`, otherwise `x^pow`
|
|
///
|
|
pub fn pow_with_uint(base: uint, pow: uint) -> float {
|
|
if base == 0u {
|
|
if pow == 0u {
|
|
return NaN as float;
|
|
}
|
|
return 0.;
|
|
}
|
|
let mut my_pow = pow;
|
|
let mut total = 1f;
|
|
let mut multiplier = base as float;
|
|
while (my_pow > 0u) {
|
|
if my_pow % 2u == 1u {
|
|
total = total * multiplier;
|
|
}
|
|
my_pow /= 2u;
|
|
multiplier *= multiplier;
|
|
}
|
|
return total;
|
|
}
|
|
|
|
impl Num for float {}
|
|
|
|
#[cfg(not(test))]
|
|
impl Eq for float {
|
|
#[inline]
|
|
fn eq(&self, other: &float) -> bool { (*self) == (*other) }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl ApproxEq<float> for float {
|
|
#[inline]
|
|
fn approx_epsilon() -> float { 1.0e-6 }
|
|
|
|
#[inline]
|
|
fn approx_eq(&self, other: &float) -> bool {
|
|
self.approx_eq_eps(other, &1.0e-6)
|
|
}
|
|
|
|
#[inline]
|
|
fn approx_eq_eps(&self, other: &float, approx_epsilon: &float) -> bool {
|
|
(*self - *other).abs() < *approx_epsilon
|
|
}
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Ord for float {
|
|
#[inline]
|
|
fn lt(&self, other: &float) -> bool { (*self) < (*other) }
|
|
#[inline]
|
|
fn le(&self, other: &float) -> bool { (*self) <= (*other) }
|
|
#[inline]
|
|
fn ge(&self, other: &float) -> bool { (*self) >= (*other) }
|
|
#[inline]
|
|
fn gt(&self, other: &float) -> bool { (*self) > (*other) }
|
|
}
|
|
|
|
impl Orderable for float {
|
|
/// Returns `NaN` if either of the numbers are `NaN`.
|
|
#[inline]
|
|
fn min(&self, other: &float) -> float {
|
|
(*self as f64).min(&(*other as f64)) as float
|
|
}
|
|
|
|
/// Returns `NaN` if either of the numbers are `NaN`.
|
|
#[inline]
|
|
fn max(&self, other: &float) -> float {
|
|
(*self as f64).max(&(*other as f64)) as float
|
|
}
|
|
|
|
/// Returns the number constrained within the range `mn <= self <= mx`.
|
|
/// If any of the numbers are `NaN` then `NaN` is returned.
|
|
#[inline]
|
|
fn clamp(&self, mn: &float, mx: &float) -> float {
|
|
(*self as f64).clamp(&(*mn as f64), &(*mx as f64)) as float
|
|
}
|
|
}
|
|
|
|
impl Default for float {
|
|
#[inline]
|
|
fn default() -> float { 0.0 }
|
|
}
|
|
|
|
impl Zero for float {
|
|
#[inline]
|
|
fn zero() -> float { 0.0 }
|
|
|
|
/// Returns true if the number is equal to either `0.0` or `-0.0`
|
|
#[inline]
|
|
fn is_zero(&self) -> bool { *self == 0.0 || *self == -0.0 }
|
|
}
|
|
|
|
impl One for float {
|
|
#[inline]
|
|
fn one() -> float { 1.0 }
|
|
}
|
|
|
|
impl Round for float {
|
|
/// Round half-way cases toward `neg_infinity`
|
|
#[inline]
|
|
fn floor(&self) -> float { (*self as f64).floor() as float }
|
|
|
|
/// Round half-way cases toward `infinity`
|
|
#[inline]
|
|
fn ceil(&self) -> float { (*self as f64).ceil() as float }
|
|
|
|
/// Round half-way cases away from `0.0`
|
|
#[inline]
|
|
fn round(&self) -> float { (*self as f64).round() as float }
|
|
|
|
/// The integer part of the number (rounds towards `0.0`)
|
|
#[inline]
|
|
fn trunc(&self) -> float { (*self as f64).trunc() as float }
|
|
|
|
///
|
|
/// The fractional part of the number, satisfying:
|
|
///
|
|
/// ~~~ {.rust}
|
|
/// assert!(x == trunc(x) + fract(x))
|
|
/// ~~~
|
|
///
|
|
#[inline]
|
|
fn fract(&self) -> float { *self - self.trunc() }
|
|
}
|
|
|
|
impl Fractional for float {
|
|
/// The reciprocal (multiplicative inverse) of the number
|
|
#[inline]
|
|
fn recip(&self) -> float { 1.0 / *self }
|
|
}
|
|
|
|
impl Algebraic for float {
|
|
#[inline]
|
|
fn pow(&self, n: &float) -> float {
|
|
(*self as f64).pow(&(*n as f64)) as float
|
|
}
|
|
|
|
#[inline]
|
|
fn sqrt(&self) -> float {
|
|
(*self as f64).sqrt() as float
|
|
}
|
|
|
|
#[inline]
|
|
fn rsqrt(&self) -> float {
|
|
(*self as f64).rsqrt() as float
|
|
}
|
|
|
|
#[inline]
|
|
fn cbrt(&self) -> float {
|
|
(*self as f64).cbrt() as float
|
|
}
|
|
|
|
#[inline]
|
|
fn hypot(&self, other: &float) -> float {
|
|
(*self as f64).hypot(&(*other as f64)) as float
|
|
}
|
|
}
|
|
|
|
impl Trigonometric for float {
|
|
#[inline]
|
|
fn sin(&self) -> float {
|
|
(*self as f64).sin() as float
|
|
}
|
|
|
|
#[inline]
|
|
fn cos(&self) -> float {
|
|
(*self as f64).cos() as float
|
|
}
|
|
|
|
#[inline]
|
|
fn tan(&self) -> float {
|
|
(*self as f64).tan() as float
|
|
}
|
|
|
|
#[inline]
|
|
fn asin(&self) -> float {
|
|
(*self as f64).asin() as float
|
|
}
|
|
|
|
#[inline]
|
|
fn acos(&self) -> float {
|
|
(*self as f64).acos() as float
|
|
}
|
|
|
|
#[inline]
|
|
fn atan(&self) -> float {
|
|
(*self as f64).atan() as float
|
|
}
|
|
|
|
#[inline]
|
|
fn atan2(&self, other: &float) -> float {
|
|
(*self as f64).atan2(&(*other as f64)) as float
|
|
}
|
|
|
|
/// Simultaneously computes the sine and cosine of the number
|
|
#[inline]
|
|
fn sin_cos(&self) -> (float, float) {
|
|
match (*self as f64).sin_cos() {
|
|
(s, c) => (s as float, c as float)
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Exponential for float {
|
|
/// Returns the exponential of the number
|
|
#[inline]
|
|
fn exp(&self) -> float {
|
|
(*self as f64).exp() as float
|
|
}
|
|
|
|
/// Returns 2 raised to the power of the number
|
|
#[inline]
|
|
fn exp2(&self) -> float {
|
|
(*self as f64).exp2() as float
|
|
}
|
|
|
|
/// Returns the natural logarithm of the number
|
|
#[inline]
|
|
fn ln(&self) -> float {
|
|
(*self as f64).ln() as float
|
|
}
|
|
|
|
/// Returns the logarithm of the number with respect to an arbitrary base
|
|
#[inline]
|
|
fn log(&self, base: &float) -> float {
|
|
(*self as f64).log(&(*base as f64)) as float
|
|
}
|
|
|
|
/// Returns the base 2 logarithm of the number
|
|
#[inline]
|
|
fn log2(&self) -> float {
|
|
(*self as f64).log2() as float
|
|
}
|
|
|
|
/// Returns the base 10 logarithm of the number
|
|
#[inline]
|
|
fn log10(&self) -> float {
|
|
(*self as f64).log10() as float
|
|
}
|
|
}
|
|
|
|
impl Hyperbolic for float {
|
|
#[inline]
|
|
fn sinh(&self) -> float {
|
|
(*self as f64).sinh() as float
|
|
}
|
|
|
|
#[inline]
|
|
fn cosh(&self) -> float {
|
|
(*self as f64).cosh() as float
|
|
}
|
|
|
|
#[inline]
|
|
fn tanh(&self) -> float {
|
|
(*self as f64).tanh() as float
|
|
}
|
|
|
|
///
|
|
/// Inverse hyperbolic sine
|
|
///
|
|
/// # Returns
|
|
///
|
|
/// - on success, the inverse hyperbolic sine of `self` will be returned
|
|
/// - `self` if `self` is `0.0`, `-0.0`, `infinity`, or `neg_infinity`
|
|
/// - `NaN` if `self` is `NaN`
|
|
///
|
|
#[inline]
|
|
fn asinh(&self) -> float {
|
|
(*self as f64).asinh() as float
|
|
}
|
|
|
|
///
|
|
/// Inverse hyperbolic cosine
|
|
///
|
|
/// # Returns
|
|
///
|
|
/// - on success, the inverse hyperbolic cosine of `self` will be returned
|
|
/// - `infinity` if `self` is `infinity`
|
|
/// - `NaN` if `self` is `NaN` or `self < 1.0` (including `neg_infinity`)
|
|
///
|
|
#[inline]
|
|
fn acosh(&self) -> float {
|
|
(*self as f64).acosh() as float
|
|
}
|
|
|
|
///
|
|
/// Inverse hyperbolic tangent
|
|
///
|
|
/// # Returns
|
|
///
|
|
/// - on success, the inverse hyperbolic tangent of `self` will be returned
|
|
/// - `self` if `self` is `0.0` or `-0.0`
|
|
/// - `infinity` if `self` is `1.0`
|
|
/// - `neg_infinity` if `self` is `-1.0`
|
|
/// - `NaN` if the `self` is `NaN` or outside the domain of `-1.0 <= self <= 1.0`
|
|
/// (including `infinity` and `neg_infinity`)
|
|
///
|
|
#[inline]
|
|
fn atanh(&self) -> float {
|
|
(*self as f64).atanh() as float
|
|
}
|
|
}
|
|
|
|
impl Real for float {
|
|
/// Archimedes' constant
|
|
#[inline]
|
|
fn pi() -> float { 3.14159265358979323846264338327950288 }
|
|
|
|
/// 2.0 * pi
|
|
#[inline]
|
|
fn two_pi() -> float { 6.28318530717958647692528676655900576 }
|
|
|
|
/// pi / 2.0
|
|
#[inline]
|
|
fn frac_pi_2() -> float { 1.57079632679489661923132169163975144 }
|
|
|
|
/// pi / 3.0
|
|
#[inline]
|
|
fn frac_pi_3() -> float { 1.04719755119659774615421446109316763 }
|
|
|
|
/// pi / 4.0
|
|
#[inline]
|
|
fn frac_pi_4() -> float { 0.785398163397448309615660845819875721 }
|
|
|
|
/// pi / 6.0
|
|
#[inline]
|
|
fn frac_pi_6() -> float { 0.52359877559829887307710723054658381 }
|
|
|
|
/// pi / 8.0
|
|
#[inline]
|
|
fn frac_pi_8() -> float { 0.39269908169872415480783042290993786 }
|
|
|
|
/// 1.0 / pi
|
|
#[inline]
|
|
fn frac_1_pi() -> float { 0.318309886183790671537767526745028724 }
|
|
|
|
/// 2.0 / pi
|
|
#[inline]
|
|
fn frac_2_pi() -> float { 0.636619772367581343075535053490057448 }
|
|
|
|
/// 2 .0/ sqrt(pi)
|
|
#[inline]
|
|
fn frac_2_sqrtpi() -> float { 1.12837916709551257389615890312154517 }
|
|
|
|
/// sqrt(2.0)
|
|
#[inline]
|
|
fn sqrt2() -> float { 1.41421356237309504880168872420969808 }
|
|
|
|
/// 1.0 / sqrt(2.0)
|
|
#[inline]
|
|
fn frac_1_sqrt2() -> float { 0.707106781186547524400844362104849039 }
|
|
|
|
/// Euler's number
|
|
#[inline]
|
|
fn e() -> float { 2.71828182845904523536028747135266250 }
|
|
|
|
/// log2(e)
|
|
#[inline]
|
|
fn log2_e() -> float { 1.44269504088896340735992468100189214 }
|
|
|
|
/// log10(e)
|
|
#[inline]
|
|
fn log10_e() -> float { 0.434294481903251827651128918916605082 }
|
|
|
|
/// ln(2.0)
|
|
#[inline]
|
|
fn ln_2() -> float { 0.693147180559945309417232121458176568 }
|
|
|
|
/// ln(10.0)
|
|
#[inline]
|
|
fn ln_10() -> float { 2.30258509299404568401799145468436421 }
|
|
|
|
/// Converts to degrees, assuming the number is in radians
|
|
#[inline]
|
|
fn to_degrees(&self) -> float { (*self as f64).to_degrees() as float }
|
|
|
|
/// Converts to radians, assuming the number is in degrees
|
|
#[inline]
|
|
fn to_radians(&self) -> float { (*self as f64).to_radians() as float }
|
|
}
|
|
|
|
impl RealExt for float {
|
|
#[inline]
|
|
fn lgamma(&self) -> (int, float) {
|
|
let (sign, value) = (*self as f64).lgamma();
|
|
(sign, value as float)
|
|
}
|
|
|
|
#[inline]
|
|
fn tgamma(&self) -> float { (*self as f64).tgamma() as float }
|
|
|
|
#[inline]
|
|
fn j0(&self) -> float { (*self as f64).j0() as float }
|
|
|
|
#[inline]
|
|
fn j1(&self) -> float { (*self as f64).j1() as float }
|
|
|
|
#[inline]
|
|
fn jn(&self, n: int) -> float { (*self as f64).jn(n) as float }
|
|
|
|
#[inline]
|
|
fn y0(&self) -> float { (*self as f64).y0() as float }
|
|
|
|
#[inline]
|
|
fn y1(&self) -> float { (*self as f64).y1() as float }
|
|
|
|
#[inline]
|
|
fn yn(&self, n: int) -> float { (*self as f64).yn(n) as float }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Add<float,float> for float {
|
|
#[inline]
|
|
fn add(&self, other: &float) -> float { *self + *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Sub<float,float> for float {
|
|
#[inline]
|
|
fn sub(&self, other: &float) -> float { *self - *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Mul<float,float> for float {
|
|
#[inline]
|
|
fn mul(&self, other: &float) -> float { *self * *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Div<float,float> for float {
|
|
#[inline]
|
|
fn div(&self, other: &float) -> float { *self / *other }
|
|
}
|
|
|
|
#[cfg(not(test))]
|
|
impl Rem<float,float> for float {
|
|
#[inline]
|
|
fn rem(&self, other: &float) -> float { *self % *other }
|
|
}
|
|
#[cfg(not(test))]
|
|
impl Neg<float> for float {
|
|
#[inline]
|
|
fn neg(&self) -> float { -*self }
|
|
}
|
|
|
|
impl Signed for float {
|
|
/// Computes the absolute value. Returns `NaN` if the number is `NaN`.
|
|
#[inline]
|
|
fn abs(&self) -> float { (*self as f64).abs() as float }
|
|
|
|
///
|
|
/// The positive difference of two numbers. Returns `0.0` if the number is less than or
|
|
/// equal to `other`, otherwise the difference between`self` and `other` is returned.
|
|
///
|
|
#[inline]
|
|
fn abs_sub(&self, other: &float) -> float {
|
|
(*self as f64).abs_sub(&(*other as f64)) as float
|
|
}
|
|
|
|
///
|
|
/// # Returns
|
|
///
|
|
/// - `1.0` if the number is positive, `+0.0` or `infinity`
|
|
/// - `-1.0` if the number is negative, `-0.0` or `neg_infinity`
|
|
/// - `NaN` if the number is NaN
|
|
///
|
|
#[inline]
|
|
fn signum(&self) -> float {
|
|
(*self as f64).signum() as float
|
|
}
|
|
|
|
/// Returns `true` if the number is positive, including `+0.0` and `infinity`
|
|
#[inline]
|
|
fn is_positive(&self) -> bool { *self > 0.0 || (1.0 / *self) == infinity }
|
|
|
|
/// Returns `true` if the number is negative, including `-0.0` and `neg_infinity`
|
|
#[inline]
|
|
fn is_negative(&self) -> bool { *self < 0.0 || (1.0 / *self) == neg_infinity }
|
|
}
|
|
|
|
impl Bounded for float {
|
|
#[inline]
|
|
fn min_value() -> float {
|
|
let x: f64 = Bounded::min_value();
|
|
x as float
|
|
}
|
|
|
|
#[inline]
|
|
fn max_value() -> float {
|
|
let x: f64 = Bounded::max_value();
|
|
x as float
|
|
}
|
|
}
|
|
|
|
impl Primitive for float {
|
|
#[inline]
|
|
fn bits(_: Option<float>) -> uint {
|
|
let bits: uint = Primitive::bits(Some(0f64));
|
|
bits
|
|
}
|
|
|
|
#[inline]
|
|
fn bytes(_: Option<float>) -> uint {
|
|
let bytes: uint = Primitive::bytes(Some(0f64));
|
|
bytes
|
|
}
|
|
}
|
|
|
|
impl Float for float {
|
|
#[inline]
|
|
fn nan() -> float {
|
|
let value: f64 = Float::nan();
|
|
value as float
|
|
}
|
|
|
|
#[inline]
|
|
fn infinity() -> float {
|
|
let value: f64 = Float::infinity();
|
|
value as float
|
|
}
|
|
|
|
#[inline]
|
|
fn neg_infinity() -> float {
|
|
let value: f64 = Float::neg_infinity();
|
|
value as float
|
|
}
|
|
|
|
#[inline]
|
|
fn neg_zero() -> float {
|
|
let value: f64 = Float::neg_zero();
|
|
value as float
|
|
}
|
|
|
|
/// Returns `true` if the number is NaN
|
|
#[inline]
|
|
fn is_nan(&self) -> bool { (*self as f64).is_nan() }
|
|
|
|
/// Returns `true` if the number is infinite
|
|
#[inline]
|
|
fn is_infinite(&self) -> bool { (*self as f64).is_infinite() }
|
|
|
|
/// Returns `true` if the number is neither infinite or NaN
|
|
#[inline]
|
|
fn is_finite(&self) -> bool { (*self as f64).is_finite() }
|
|
|
|
/// Returns `true` if the number is neither zero, infinite, subnormal or NaN
|
|
#[inline]
|
|
fn is_normal(&self) -> bool { (*self as f64).is_normal() }
|
|
|
|
/// Returns the floating point category of the number. If only one property is going to
|
|
/// be tested, it is generally faster to use the specific predicate instead.
|
|
#[inline]
|
|
fn classify(&self) -> FPCategory { (*self as f64).classify() }
|
|
|
|
#[inline]
|
|
fn mantissa_digits(_: Option<float>) -> uint {
|
|
Float::mantissa_digits(Some(0f64))
|
|
}
|
|
|
|
#[inline]
|
|
fn digits(_: Option<float>) -> uint {
|
|
Float::digits(Some(0f64))
|
|
}
|
|
|
|
#[inline]
|
|
fn epsilon() -> float {
|
|
let value: f64 = Float::epsilon();
|
|
value as float
|
|
}
|
|
|
|
#[inline]
|
|
fn min_exp(_: Option<float>) -> int {
|
|
Float::min_exp(Some(0f64))
|
|
}
|
|
|
|
#[inline]
|
|
fn max_exp(_: Option<float>) -> int {
|
|
Float::max_exp(Some(0f64))
|
|
}
|
|
|
|
#[inline]
|
|
fn min_10_exp(_: Option<float>) -> int {
|
|
Float::min_10_exp(Some(0f64))
|
|
}
|
|
|
|
#[inline]
|
|
fn max_10_exp(_: Option<float>) -> int {
|
|
Float::max_10_exp(Some(0f64))
|
|
}
|
|
|
|
/// Constructs a floating point number by multiplying `x` by 2 raised to the power of `exp`
|
|
#[inline]
|
|
fn ldexp(x: float, exp: int) -> float {
|
|
let value: f64 = Float::ldexp(x as f64, exp);
|
|
value as float
|
|
}
|
|
|
|
///
|
|
/// Breaks the number into a normalized fraction and a base-2 exponent, satisfying:
|
|
///
|
|
/// - `self = x * pow(2, exp)`
|
|
/// - `0.5 <= abs(x) < 1.0`
|
|
///
|
|
#[inline]
|
|
fn frexp(&self) -> (float, int) {
|
|
match (*self as f64).frexp() {
|
|
(x, exp) => (x as float, exp)
|
|
}
|
|
}
|
|
|
|
///
|
|
/// Returns the exponential of the number, minus `1`, in a way that is accurate
|
|
/// even if the number is close to zero
|
|
///
|
|
#[inline]
|
|
fn exp_m1(&self) -> float {
|
|
(*self as f64).exp_m1() as float
|
|
}
|
|
|
|
///
|
|
/// Returns the natural logarithm of the number plus `1` (`ln(1+n)`) more accurately
|
|
/// than if the operations were performed separately
|
|
///
|
|
#[inline]
|
|
fn ln_1p(&self) -> float {
|
|
(*self as f64).ln_1p() as float
|
|
}
|
|
|
|
///
|
|
/// Fused multiply-add. Computes `(self * a) + b` with only one rounding error. This
|
|
/// produces a more accurate result with better performance than a separate multiplication
|
|
/// operation followed by an add.
|
|
///
|
|
#[inline]
|
|
fn mul_add(&self, a: float, b: float) -> float {
|
|
(*self as f64).mul_add(a as f64, b as f64) as float
|
|
}
|
|
|
|
/// Returns the next representable floating-point value in the direction of `other`
|
|
#[inline]
|
|
fn next_after(&self, other: float) -> float {
|
|
(*self as f64).next_after(other as f64) as float
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use prelude::*;
|
|
use super::*;
|
|
|
|
use num::*;
|
|
use num;
|
|
use sys;
|
|
|
|
#[test]
|
|
fn test_num() {
|
|
num::test_num(10f, 2f);
|
|
}
|
|
|
|
#[test]
|
|
fn test_min() {
|
|
assert_eq!(1f.min(&2f), 1f);
|
|
assert_eq!(2f.min(&1f), 1f);
|
|
}
|
|
|
|
#[test]
|
|
fn test_max() {
|
|
assert_eq!(1f.max(&2f), 2f);
|
|
assert_eq!(2f.max(&1f), 2f);
|
|
}
|
|
|
|
#[test]
|
|
fn test_clamp() {
|
|
assert_eq!(1f.clamp(&2f, &4f), 2f);
|
|
assert_eq!(8f.clamp(&2f, &4f), 4f);
|
|
assert_eq!(3f.clamp(&2f, &4f), 3f);
|
|
let nan: float = Float::nan();
|
|
assert!(3f.clamp(&nan, &4f).is_nan());
|
|
assert!(3f.clamp(&2f, &nan).is_nan());
|
|
assert!(nan.clamp(&2f, &4f).is_nan());
|
|
}
|
|
|
|
#[test]
|
|
fn test_floor() {
|
|
assert_approx_eq!(1.0f.floor(), 1.0f);
|
|
assert_approx_eq!(1.3f.floor(), 1.0f);
|
|
assert_approx_eq!(1.5f.floor(), 1.0f);
|
|
assert_approx_eq!(1.7f.floor(), 1.0f);
|
|
assert_approx_eq!(0.0f.floor(), 0.0f);
|
|
assert_approx_eq!((-0.0f).floor(), -0.0f);
|
|
assert_approx_eq!((-1.0f).floor(), -1.0f);
|
|
assert_approx_eq!((-1.3f).floor(), -2.0f);
|
|
assert_approx_eq!((-1.5f).floor(), -2.0f);
|
|
assert_approx_eq!((-1.7f).floor(), -2.0f);
|
|
}
|
|
|
|
#[test]
|
|
fn test_ceil() {
|
|
assert_approx_eq!(1.0f.ceil(), 1.0f);
|
|
assert_approx_eq!(1.3f.ceil(), 2.0f);
|
|
assert_approx_eq!(1.5f.ceil(), 2.0f);
|
|
assert_approx_eq!(1.7f.ceil(), 2.0f);
|
|
assert_approx_eq!(0.0f.ceil(), 0.0f);
|
|
assert_approx_eq!((-0.0f).ceil(), -0.0f);
|
|
assert_approx_eq!((-1.0f).ceil(), -1.0f);
|
|
assert_approx_eq!((-1.3f).ceil(), -1.0f);
|
|
assert_approx_eq!((-1.5f).ceil(), -1.0f);
|
|
assert_approx_eq!((-1.7f).ceil(), -1.0f);
|
|
}
|
|
|
|
#[test]
|
|
fn test_round() {
|
|
assert_approx_eq!(1.0f.round(), 1.0f);
|
|
assert_approx_eq!(1.3f.round(), 1.0f);
|
|
assert_approx_eq!(1.5f.round(), 2.0f);
|
|
assert_approx_eq!(1.7f.round(), 2.0f);
|
|
assert_approx_eq!(0.0f.round(), 0.0f);
|
|
assert_approx_eq!((-0.0f).round(), -0.0f);
|
|
assert_approx_eq!((-1.0f).round(), -1.0f);
|
|
assert_approx_eq!((-1.3f).round(), -1.0f);
|
|
assert_approx_eq!((-1.5f).round(), -2.0f);
|
|
assert_approx_eq!((-1.7f).round(), -2.0f);
|
|
}
|
|
|
|
#[test]
|
|
fn test_trunc() {
|
|
assert_approx_eq!(1.0f.trunc(), 1.0f);
|
|
assert_approx_eq!(1.3f.trunc(), 1.0f);
|
|
assert_approx_eq!(1.5f.trunc(), 1.0f);
|
|
assert_approx_eq!(1.7f.trunc(), 1.0f);
|
|
assert_approx_eq!(0.0f.trunc(), 0.0f);
|
|
assert_approx_eq!((-0.0f).trunc(), -0.0f);
|
|
assert_approx_eq!((-1.0f).trunc(), -1.0f);
|
|
assert_approx_eq!((-1.3f).trunc(), -1.0f);
|
|
assert_approx_eq!((-1.5f).trunc(), -1.0f);
|
|
assert_approx_eq!((-1.7f).trunc(), -1.0f);
|
|
}
|
|
|
|
#[test]
|
|
fn test_fract() {
|
|
assert_approx_eq!(1.0f.fract(), 0.0f);
|
|
assert_approx_eq!(1.3f.fract(), 0.3f);
|
|
assert_approx_eq!(1.5f.fract(), 0.5f);
|
|
assert_approx_eq!(1.7f.fract(), 0.7f);
|
|
assert_approx_eq!(0.0f.fract(), 0.0f);
|
|
assert_approx_eq!((-0.0f).fract(), -0.0f);
|
|
assert_approx_eq!((-1.0f).fract(), -0.0f);
|
|
assert_approx_eq!((-1.3f).fract(), -0.3f);
|
|
assert_approx_eq!((-1.5f).fract(), -0.5f);
|
|
assert_approx_eq!((-1.7f).fract(), -0.7f);
|
|
}
|
|
|
|
#[test]
|
|
fn test_asinh() {
|
|
assert_eq!(0.0f.asinh(), 0.0f);
|
|
assert_eq!((-0.0f).asinh(), -0.0f);
|
|
|
|
let inf: float = Float::infinity();
|
|
let neg_inf: float = Float::neg_infinity();
|
|
let nan: float = Float::nan();
|
|
assert_eq!(inf.asinh(), inf);
|
|
assert_eq!(neg_inf.asinh(), neg_inf);
|
|
assert!(nan.asinh().is_nan());
|
|
assert_approx_eq!(2.0f.asinh(), 1.443635475178810342493276740273105f);
|
|
assert_approx_eq!((-2.0f).asinh(), -1.443635475178810342493276740273105f);
|
|
}
|
|
|
|
#[test]
|
|
fn test_acosh() {
|
|
assert_eq!(1.0f.acosh(), 0.0f);
|
|
assert!(0.999f.acosh().is_nan());
|
|
|
|
let inf: float = Float::infinity();
|
|
let neg_inf: float = Float::neg_infinity();
|
|
let nan: float = Float::nan();
|
|
assert_eq!(inf.acosh(), inf);
|
|
assert!(neg_inf.acosh().is_nan());
|
|
assert!(nan.acosh().is_nan());
|
|
assert_approx_eq!(2.0f.acosh(), 1.31695789692481670862504634730796844f);
|
|
assert_approx_eq!(3.0f.acosh(), 1.76274717403908605046521864995958461f);
|
|
}
|
|
|
|
#[test]
|
|
fn test_atanh() {
|
|
assert_eq!(0.0f.atanh(), 0.0f);
|
|
assert_eq!((-0.0f).atanh(), -0.0f);
|
|
|
|
let inf: float = Float::infinity();
|
|
let neg_inf: float = Float::neg_infinity();
|
|
let inf64: f64 = Float::infinity();
|
|
let neg_inf64: f64 = Float::neg_infinity();
|
|
let nan: float = Float::nan();
|
|
assert_eq!(1.0f.atanh(), inf);
|
|
assert_eq!((-1.0f).atanh(), neg_inf);
|
|
assert!(2f64.atanh().atanh().is_nan());
|
|
assert!((-2f64).atanh().atanh().is_nan());
|
|
assert!(inf64.atanh().is_nan());
|
|
assert!(neg_inf64.atanh().is_nan());
|
|
assert!(nan.atanh().is_nan());
|
|
assert_approx_eq!(0.5f.atanh(), 0.54930614433405484569762261846126285f);
|
|
assert_approx_eq!((-0.5f).atanh(), -0.54930614433405484569762261846126285f);
|
|
}
|
|
|
|
#[test]
|
|
fn test_real_consts() {
|
|
let pi: float = Real::pi();
|
|
let two_pi: float = Real::two_pi();
|
|
let frac_pi_2: float = Real::frac_pi_2();
|
|
let frac_pi_3: float = Real::frac_pi_3();
|
|
let frac_pi_4: float = Real::frac_pi_4();
|
|
let frac_pi_6: float = Real::frac_pi_6();
|
|
let frac_pi_8: float = Real::frac_pi_8();
|
|
let frac_1_pi: float = Real::frac_1_pi();
|
|
let frac_2_pi: float = Real::frac_2_pi();
|
|
let frac_2_sqrtpi: float = Real::frac_2_sqrtpi();
|
|
let sqrt2: float = Real::sqrt2();
|
|
let frac_1_sqrt2: float = Real::frac_1_sqrt2();
|
|
let e: float = Real::e();
|
|
let log2_e: float = Real::log2_e();
|
|
let log10_e: float = Real::log10_e();
|
|
let ln_2: float = Real::ln_2();
|
|
let ln_10: float = Real::ln_10();
|
|
|
|
assert_approx_eq!(two_pi, 2f * pi);
|
|
assert_approx_eq!(frac_pi_2, pi / 2f);
|
|
assert_approx_eq!(frac_pi_3, pi / 3f);
|
|
assert_approx_eq!(frac_pi_4, pi / 4f);
|
|
assert_approx_eq!(frac_pi_6, pi / 6f);
|
|
assert_approx_eq!(frac_pi_8, pi / 8f);
|
|
assert_approx_eq!(frac_1_pi, 1f / pi);
|
|
assert_approx_eq!(frac_2_pi, 2f / pi);
|
|
assert_approx_eq!(frac_2_sqrtpi, 2f / pi.sqrt());
|
|
assert_approx_eq!(sqrt2, 2f.sqrt());
|
|
assert_approx_eq!(frac_1_sqrt2, 1f / 2f.sqrt());
|
|
assert_approx_eq!(log2_e, e.log2());
|
|
assert_approx_eq!(log10_e, e.log10());
|
|
assert_approx_eq!(ln_2, 2f.ln());
|
|
assert_approx_eq!(ln_10, 10f.ln());
|
|
}
|
|
|
|
#[test]
|
|
fn test_abs() {
|
|
assert_eq!(infinity.abs(), infinity);
|
|
assert_eq!(1f.abs(), 1f);
|
|
assert_eq!(0f.abs(), 0f);
|
|
assert_eq!((-0f).abs(), 0f);
|
|
assert_eq!((-1f).abs(), 1f);
|
|
assert_eq!(neg_infinity.abs(), infinity);
|
|
assert_eq!((1f/neg_infinity).abs(), 0f);
|
|
assert!(NaN.abs().is_nan());
|
|
}
|
|
|
|
#[test]
|
|
fn test_abs_sub() {
|
|
assert_eq!((-1f).abs_sub(&1f), 0f);
|
|
assert_eq!(1f.abs_sub(&1f), 0f);
|
|
assert_eq!(1f.abs_sub(&0f), 1f);
|
|
assert_eq!(1f.abs_sub(&-1f), 2f);
|
|
assert_eq!(neg_infinity.abs_sub(&0f), 0f);
|
|
assert_eq!(infinity.abs_sub(&1f), infinity);
|
|
assert_eq!(0f.abs_sub(&neg_infinity), infinity);
|
|
assert_eq!(0f.abs_sub(&infinity), 0f);
|
|
}
|
|
|
|
#[test] #[ignore(cfg(windows))] // FIXME #8663
|
|
fn test_abs_sub_nowin() {
|
|
assert!(NaN.abs_sub(&-1f).is_nan());
|
|
assert!(1f.abs_sub(&NaN).is_nan());
|
|
}
|
|
|
|
#[test]
|
|
fn test_signum() {
|
|
assert_eq!(infinity.signum(), 1f);
|
|
assert_eq!(1f.signum(), 1f);
|
|
assert_eq!(0f.signum(), 1f);
|
|
assert_eq!((-0f).signum(), -1f);
|
|
assert_eq!((-1f).signum(), -1f);
|
|
assert_eq!(neg_infinity.signum(), -1f);
|
|
assert_eq!((1f/neg_infinity).signum(), -1f);
|
|
assert!(NaN.signum().is_nan());
|
|
}
|
|
|
|
#[test]
|
|
fn test_is_positive() {
|
|
assert!(infinity.is_positive());
|
|
assert!(1f.is_positive());
|
|
assert!(0f.is_positive());
|
|
assert!(!(-0f).is_positive());
|
|
assert!(!(-1f).is_positive());
|
|
assert!(!neg_infinity.is_positive());
|
|
assert!(!(1f/neg_infinity).is_positive());
|
|
assert!(!NaN.is_positive());
|
|
}
|
|
|
|
#[test]
|
|
fn test_is_negative() {
|
|
assert!(!infinity.is_negative());
|
|
assert!(!1f.is_negative());
|
|
assert!(!0f.is_negative());
|
|
assert!((-0f).is_negative());
|
|
assert!((-1f).is_negative());
|
|
assert!(neg_infinity.is_negative());
|
|
assert!((1f/neg_infinity).is_negative());
|
|
assert!(!NaN.is_negative());
|
|
}
|
|
|
|
#[test]
|
|
fn test_approx_eq() {
|
|
assert!(1.0f.approx_eq(&1f));
|
|
assert!(0.9999999f.approx_eq(&1f));
|
|
assert!(1.000001f.approx_eq_eps(&1f, &1.0e-5));
|
|
assert!(1.0000001f.approx_eq_eps(&1f, &1.0e-6));
|
|
assert!(!1.0000001f.approx_eq_eps(&1f, &1.0e-7));
|
|
}
|
|
|
|
#[test]
|
|
fn test_primitive() {
|
|
let none: Option<float> = None;
|
|
assert_eq!(Primitive::bits(none), sys::size_of::<float>() * 8);
|
|
assert_eq!(Primitive::bytes(none), sys::size_of::<float>());
|
|
}
|
|
|
|
#[test]
|
|
fn test_is_normal() {
|
|
let nan: float = Float::nan();
|
|
let inf: float = Float::infinity();
|
|
let neg_inf: float = Float::neg_infinity();
|
|
let zero: float = Zero::zero();
|
|
let neg_zero: float = Float::neg_zero();
|
|
assert!(!nan.is_normal());
|
|
assert!(!inf.is_normal());
|
|
assert!(!neg_inf.is_normal());
|
|
assert!(!zero.is_normal());
|
|
assert!(!neg_zero.is_normal());
|
|
assert!(1f.is_normal());
|
|
assert!(1e-307f.is_normal());
|
|
assert!(!1e-308f.is_normal());
|
|
}
|
|
|
|
#[test]
|
|
fn test_classify() {
|
|
let nan: float = Float::nan();
|
|
let inf: float = Float::infinity();
|
|
let neg_inf: float = Float::neg_infinity();
|
|
let zero: float = Zero::zero();
|
|
let neg_zero: float = Float::neg_zero();
|
|
assert_eq!(nan.classify(), FPNaN);
|
|
assert_eq!(inf.classify(), FPInfinite);
|
|
assert_eq!(neg_inf.classify(), FPInfinite);
|
|
assert_eq!(zero.classify(), FPZero);
|
|
assert_eq!(neg_zero.classify(), FPZero);
|
|
assert_eq!(1f.classify(), FPNormal);
|
|
assert_eq!(1e-307f.classify(), FPNormal);
|
|
assert_eq!(1e-308f.classify(), FPSubnormal);
|
|
}
|
|
|
|
#[test]
|
|
fn test_ldexp() {
|
|
// We have to use from_str until base-2 exponents
|
|
// are supported in floating-point literals
|
|
let f1: float = from_str_hex("1p-123").unwrap();
|
|
let f2: float = from_str_hex("1p-111").unwrap();
|
|
assert_eq!(Float::ldexp(1f, -123), f1);
|
|
assert_eq!(Float::ldexp(1f, -111), f2);
|
|
|
|
assert_eq!(Float::ldexp(0f, -123), 0f);
|
|
assert_eq!(Float::ldexp(-0f, -123), -0f);
|
|
|
|
let inf: float = Float::infinity();
|
|
let neg_inf: float = Float::neg_infinity();
|
|
let nan: float = Float::nan();
|
|
assert_eq!(Float::ldexp(inf, -123), inf);
|
|
assert_eq!(Float::ldexp(neg_inf, -123), neg_inf);
|
|
assert!(Float::ldexp(nan, -123).is_nan());
|
|
}
|
|
|
|
#[test]
|
|
fn test_frexp() {
|
|
// We have to use from_str until base-2 exponents
|
|
// are supported in floating-point literals
|
|
let f1: float = from_str_hex("1p-123").unwrap();
|
|
let f2: float = from_str_hex("1p-111").unwrap();
|
|
let (x1, exp1) = f1.frexp();
|
|
let (x2, exp2) = f2.frexp();
|
|
assert_eq!((x1, exp1), (0.5f, -122));
|
|
assert_eq!((x2, exp2), (0.5f, -110));
|
|
assert_eq!(Float::ldexp(x1, exp1), f1);
|
|
assert_eq!(Float::ldexp(x2, exp2), f2);
|
|
|
|
assert_eq!(0f.frexp(), (0f, 0));
|
|
assert_eq!((-0f).frexp(), (-0f, 0));
|
|
}
|
|
|
|
#[test] #[ignore(cfg(windows))] // FIXME #8755
|
|
fn test_frexp_nowin() {
|
|
let inf: float = Float::infinity();
|
|
let neg_inf: float = Float::neg_infinity();
|
|
let nan: float = Float::nan();
|
|
assert_eq!(match inf.frexp() { (x, _) => x }, inf);
|
|
assert_eq!(match neg_inf.frexp() { (x, _) => x }, neg_inf);
|
|
assert!(match nan.frexp() { (x, _) => x.is_nan() })
|
|
}
|
|
|
|
#[test]
|
|
pub fn test_to_str_exact_do_decimal() {
|
|
let s = to_str_exact(5.0, 4u);
|
|
assert_eq!(s, ~"5.0000");
|
|
}
|
|
|
|
#[test]
|
|
pub fn test_from_str() {
|
|
assert_eq!(from_str::<float>("3"), Some(3.));
|
|
assert_eq!(from_str::<float>("3.14"), Some(3.14));
|
|
assert_eq!(from_str::<float>("+3.14"), Some(3.14));
|
|
assert_eq!(from_str::<float>("-3.14"), Some(-3.14));
|
|
assert_eq!(from_str::<float>("2.5E10"), Some(25000000000.));
|
|
assert_eq!(from_str::<float>("2.5e10"), Some(25000000000.));
|
|
assert_eq!(from_str::<float>("25000000000.E-10"), Some(2.5));
|
|
assert_eq!(from_str::<float>("."), Some(0.));
|
|
assert_eq!(from_str::<float>(".e1"), Some(0.));
|
|
assert_eq!(from_str::<float>(".e-1"), Some(0.));
|
|
assert_eq!(from_str::<float>("5."), Some(5.));
|
|
assert_eq!(from_str::<float>(".5"), Some(0.5));
|
|
assert_eq!(from_str::<float>("0.5"), Some(0.5));
|
|
assert_eq!(from_str::<float>("-.5"), Some(-0.5));
|
|
assert_eq!(from_str::<float>("-5"), Some(-5.));
|
|
assert_eq!(from_str::<float>("inf"), Some(infinity));
|
|
assert_eq!(from_str::<float>("+inf"), Some(infinity));
|
|
assert_eq!(from_str::<float>("-inf"), Some(neg_infinity));
|
|
// note: NaN != NaN, hence this slightly complex test
|
|
match from_str::<float>("NaN") {
|
|
Some(f) => assert!(f.is_nan()),
|
|
None => fail!()
|
|
}
|
|
// note: -0 == 0, hence these slightly more complex tests
|
|
match from_str::<float>("-0") {
|
|
Some(v) if v.is_zero() => assert!(v.is_negative()),
|
|
_ => fail!()
|
|
}
|
|
match from_str::<float>("0") {
|
|
Some(v) if v.is_zero() => assert!(v.is_positive()),
|
|
_ => fail!()
|
|
}
|
|
|
|
assert!(from_str::<float>("").is_none());
|
|
assert!(from_str::<float>("x").is_none());
|
|
assert!(from_str::<float>(" ").is_none());
|
|
assert!(from_str::<float>(" ").is_none());
|
|
assert!(from_str::<float>("e").is_none());
|
|
assert!(from_str::<float>("E").is_none());
|
|
assert!(from_str::<float>("E1").is_none());
|
|
assert!(from_str::<float>("1e1e1").is_none());
|
|
assert!(from_str::<float>("1e1.1").is_none());
|
|
assert!(from_str::<float>("1e1-1").is_none());
|
|
}
|
|
|
|
#[test]
|
|
pub fn test_from_str_hex() {
|
|
assert_eq!(from_str_hex("a4"), Some(164.));
|
|
assert_eq!(from_str_hex("a4.fe"), Some(164.9921875));
|
|
assert_eq!(from_str_hex("-a4.fe"), Some(-164.9921875));
|
|
assert_eq!(from_str_hex("+a4.fe"), Some(164.9921875));
|
|
assert_eq!(from_str_hex("ff0P4"), Some(0xff00 as float));
|
|
assert_eq!(from_str_hex("ff0p4"), Some(0xff00 as float));
|
|
assert_eq!(from_str_hex("ff0p-4"), Some(0xff as float));
|
|
assert_eq!(from_str_hex("."), Some(0.));
|
|
assert_eq!(from_str_hex(".p1"), Some(0.));
|
|
assert_eq!(from_str_hex(".p-1"), Some(0.));
|
|
assert_eq!(from_str_hex("f."), Some(15.));
|
|
assert_eq!(from_str_hex(".f"), Some(0.9375));
|
|
assert_eq!(from_str_hex("0.f"), Some(0.9375));
|
|
assert_eq!(from_str_hex("-.f"), Some(-0.9375));
|
|
assert_eq!(from_str_hex("-f"), Some(-15.));
|
|
assert_eq!(from_str_hex("inf"), Some(infinity));
|
|
assert_eq!(from_str_hex("+inf"), Some(infinity));
|
|
assert_eq!(from_str_hex("-inf"), Some(neg_infinity));
|
|
// note: NaN != NaN, hence this slightly complex test
|
|
match from_str_hex("NaN") {
|
|
Some(f) => assert!(f.is_nan()),
|
|
None => fail!()
|
|
}
|
|
// note: -0 == 0, hence these slightly more complex tests
|
|
match from_str_hex("-0") {
|
|
Some(v) if v.is_zero() => assert!(v.is_negative()),
|
|
_ => fail!()
|
|
}
|
|
match from_str_hex("0") {
|
|
Some(v) if v.is_zero() => assert!(v.is_positive()),
|
|
_ => fail!()
|
|
}
|
|
assert_eq!(from_str_hex("e"), Some(14.));
|
|
assert_eq!(from_str_hex("E"), Some(14.));
|
|
assert_eq!(from_str_hex("E1"), Some(225.));
|
|
assert_eq!(from_str_hex("1e1e1"), Some(123361.));
|
|
assert_eq!(from_str_hex("1e1.1"), Some(481.0625));
|
|
|
|
assert!(from_str_hex("").is_none());
|
|
assert!(from_str_hex("x").is_none());
|
|
assert!(from_str_hex(" ").is_none());
|
|
assert!(from_str_hex(" ").is_none());
|
|
assert!(from_str_hex("p").is_none());
|
|
assert!(from_str_hex("P").is_none());
|
|
assert!(from_str_hex("P1").is_none());
|
|
assert!(from_str_hex("1p1p1").is_none());
|
|
assert!(from_str_hex("1p1.1").is_none());
|
|
assert!(from_str_hex("1p1-1").is_none());
|
|
}
|
|
|
|
#[test]
|
|
pub fn test_to_str_hex() {
|
|
assert_eq!(to_str_hex(164.), ~"a4");
|
|
assert_eq!(to_str_hex(164.9921875), ~"a4.fe");
|
|
assert_eq!(to_str_hex(-164.9921875), ~"-a4.fe");
|
|
assert_eq!(to_str_hex(0xff00 as float), ~"ff00");
|
|
assert_eq!(to_str_hex(-(0xff00 as float)), ~"-ff00");
|
|
assert_eq!(to_str_hex(0.), ~"0");
|
|
assert_eq!(to_str_hex(15.), ~"f");
|
|
assert_eq!(to_str_hex(-15.), ~"-f");
|
|
assert_eq!(to_str_hex(0.9375), ~"0.f");
|
|
assert_eq!(to_str_hex(-0.9375), ~"-0.f");
|
|
assert_eq!(to_str_hex(infinity), ~"inf");
|
|
assert_eq!(to_str_hex(neg_infinity), ~"-inf");
|
|
assert_eq!(to_str_hex(NaN), ~"NaN");
|
|
assert_eq!(to_str_hex(0.), ~"0");
|
|
assert_eq!(to_str_hex(-0.), ~"-0");
|
|
}
|
|
|
|
#[test]
|
|
pub fn test_to_str_radix() {
|
|
assert_eq!(36.0f.to_str_radix(36u), ~"10");
|
|
assert_eq!(8.125f.to_str_radix(2u), ~"1000.001");
|
|
}
|
|
|
|
#[test]
|
|
pub fn test_from_str_radix() {
|
|
assert_eq!(from_str_radix("10", 36u), Some(36.));
|
|
assert_eq!(from_str_radix("1000.001", 2u), Some(8.125));
|
|
}
|
|
|
|
#[test]
|
|
pub fn test_to_str_inf() {
|
|
assert_eq!(to_str_digits(infinity, 10u), ~"inf");
|
|
assert_eq!(to_str_digits(-infinity, 10u), ~"-inf");
|
|
}
|
|
}
|