rust/crates/cfg/src/dnf.rs
Jonas Schievink dab8870f5c Reorder items
2020-10-23 12:12:03 +02:00

479 lines
16 KiB
Rust

//! Disjunctive Normal Form construction.
//!
//! Algorithm from <https://www.cs.drexel.edu/~jjohnson/2015-16/fall/CS270/Lectures/3/dnf.pdf>,
//! which would have been much easier to read if it used pattern matching. It's also missing the
//! entire "distribute ANDs over ORs" part, which is not trivial. Oh well.
//!
//! This is currently both messy and inefficient. Feel free to improve, there are unit tests.
use std::fmt;
use rustc_hash::FxHashSet;
use crate::{CfgAtom, CfgDiff, CfgExpr, CfgOptions, InactiveReason};
/// A `#[cfg]` directive in Disjunctive Normal Form (DNF).
pub struct DnfExpr {
conjunctions: Vec<Conjunction>,
}
struct Conjunction {
literals: Vec<Literal>,
}
struct Literal {
negate: bool,
var: Option<CfgAtom>, // None = Invalid
}
impl DnfExpr {
pub fn new(expr: CfgExpr) -> Self {
let builder = Builder { expr: DnfExpr { conjunctions: Vec::new() } };
builder.lower(expr.clone())
}
/// Computes a list of present or absent atoms in `opts` that cause this expression to evaluate
/// to `false`.
///
/// Note that flipping a subset of these atoms might be sufficient to make the whole expression
/// evaluate to `true`. For that, see `compute_enable_hints`.
///
/// Returns `None` when `self` is already true, or contains errors.
pub fn why_inactive(&self, opts: &CfgOptions) -> Option<InactiveReason> {
let mut res = InactiveReason { enabled: Vec::new(), disabled: Vec::new() };
for conj in &self.conjunctions {
let mut conj_is_true = true;
for lit in &conj.literals {
let atom = lit.var.as_ref()?;
let enabled = opts.enabled.contains(atom);
if lit.negate == enabled {
// Literal is false, but needs to be true for this conjunction.
conj_is_true = false;
if enabled {
res.enabled.push(atom.clone());
} else {
res.disabled.push(atom.clone());
}
}
}
if conj_is_true {
// This expression is not actually inactive.
return None;
}
}
res.enabled.sort_unstable();
res.enabled.dedup();
res.disabled.sort_unstable();
res.disabled.dedup();
Some(res)
}
/// Returns `CfgDiff` objects that would enable this directive if applied to `opts`.
pub fn compute_enable_hints<'a>(
&'a self,
opts: &'a CfgOptions,
) -> impl Iterator<Item = CfgDiff> + 'a {
// A cfg is enabled if any of `self.conjunctions` evaluate to `true`.
self.conjunctions.iter().filter_map(move |conj| {
let mut enable = FxHashSet::default();
let mut disable = FxHashSet::default();
for lit in &conj.literals {
let atom = lit.var.as_ref()?;
let enabled = opts.enabled.contains(atom);
if lit.negate && enabled {
disable.insert(atom.clone());
}
if !lit.negate && !enabled {
enable.insert(atom.clone());
}
}
// Check that this actually makes `conj` true.
for lit in &conj.literals {
let atom = lit.var.as_ref()?;
let enabled = enable.contains(atom)
|| (opts.enabled.contains(atom) && !disable.contains(atom));
if enabled == lit.negate {
return None;
}
}
if enable.is_empty() && disable.is_empty() {
return None;
}
let mut diff = CfgDiff {
enable: enable.into_iter().collect(),
disable: disable.into_iter().collect(),
};
// Undo the FxHashMap randomization for consistent output.
diff.enable.sort_unstable();
diff.disable.sort_unstable();
Some(diff)
})
}
}
impl fmt::Display for DnfExpr {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.conjunctions.len() != 1 {
write!(f, "any(")?;
}
for (i, conj) in self.conjunctions.iter().enumerate() {
if i != 0 {
f.write_str(", ")?;
}
write!(f, "{}", conj)?;
}
if self.conjunctions.len() != 1 {
write!(f, ")")?;
}
Ok(())
}
}
impl Conjunction {
fn new(parts: Vec<CfgExpr>) -> Self {
let mut literals = Vec::new();
for part in parts {
match part {
CfgExpr::Invalid | CfgExpr::Atom(_) | CfgExpr::Not(_) => {
literals.push(Literal::new(part));
}
CfgExpr::All(conj) => {
// Flatten.
literals.extend(Conjunction::new(conj).literals);
}
CfgExpr::Any(_) => unreachable!("disjunction in conjunction"),
}
}
Self { literals }
}
}
impl fmt::Display for Conjunction {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.literals.len() != 1 {
write!(f, "all(")?;
}
for (i, lit) in self.literals.iter().enumerate() {
if i != 0 {
f.write_str(", ")?;
}
write!(f, "{}", lit)?;
}
if self.literals.len() != 1 {
write!(f, ")")?;
}
Ok(())
}
}
impl Literal {
fn new(expr: CfgExpr) -> Self {
match expr {
CfgExpr::Invalid => Self { negate: false, var: None },
CfgExpr::Atom(atom) => Self { negate: false, var: Some(atom) },
CfgExpr::Not(expr) => match *expr {
CfgExpr::Invalid => Self { negate: true, var: None },
CfgExpr::Atom(atom) => Self { negate: true, var: Some(atom) },
_ => unreachable!("non-atom {:?}", expr),
},
CfgExpr::Any(_) | CfgExpr::All(_) => unreachable!("non-literal {:?}", expr),
}
}
}
impl fmt::Display for Literal {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
if self.negate {
write!(f, "not(")?;
}
match &self.var {
Some(var) => write!(f, "{}", var)?,
None => f.write_str("<invalid>")?,
}
if self.negate {
write!(f, ")")?;
}
Ok(())
}
}
struct Builder {
expr: DnfExpr,
}
impl Builder {
fn lower(mut self, expr: CfgExpr) -> DnfExpr {
let expr = make_nnf(expr);
let expr = make_dnf(expr);
match expr {
CfgExpr::Invalid | CfgExpr::Atom(_) | CfgExpr::Not(_) => {
self.expr.conjunctions.push(Conjunction::new(vec![expr]));
}
CfgExpr::All(conj) => {
self.expr.conjunctions.push(Conjunction::new(conj));
}
CfgExpr::Any(mut disj) => {
disj.reverse();
while let Some(conj) = disj.pop() {
match conj {
CfgExpr::Invalid | CfgExpr::Atom(_) | CfgExpr::All(_) | CfgExpr::Not(_) => {
self.expr.conjunctions.push(Conjunction::new(vec![conj]));
}
CfgExpr::Any(inner_disj) => {
// Flatten.
disj.extend(inner_disj.into_iter().rev());
}
}
}
}
}
self.expr
}
}
fn make_dnf(expr: CfgExpr) -> CfgExpr {
match expr {
CfgExpr::Invalid | CfgExpr::Atom(_) | CfgExpr::Not(_) => expr,
CfgExpr::Any(e) => CfgExpr::Any(e.into_iter().map(|expr| make_dnf(expr)).collect()),
CfgExpr::All(e) => {
let e = e.into_iter().map(|expr| make_nnf(expr)).collect::<Vec<_>>();
CfgExpr::Any(distribute_conj(&e))
}
}
}
/// Turns a conjunction of expressions into a disjunction of expressions.
fn distribute_conj(conj: &[CfgExpr]) -> Vec<CfgExpr> {
fn go(out: &mut Vec<CfgExpr>, with: &mut Vec<CfgExpr>, rest: &[CfgExpr]) {
match rest {
[head, tail @ ..] => match head {
CfgExpr::Any(disj) => {
for part in disj {
with.push(part.clone());
go(out, with, tail);
with.pop();
}
}
_ => {
with.push(head.clone());
go(out, with, tail);
with.pop();
}
},
_ => {
// Turn accumulated parts into a new conjunction.
out.push(CfgExpr::All(with.clone()));
}
}
}
let mut out = Vec::new();
let mut with = Vec::new();
go(&mut out, &mut with, conj);
out
}
fn make_nnf(expr: CfgExpr) -> CfgExpr {
match expr {
CfgExpr::Invalid | CfgExpr::Atom(_) => expr,
CfgExpr::Any(expr) => CfgExpr::Any(expr.into_iter().map(|expr| make_nnf(expr)).collect()),
CfgExpr::All(expr) => CfgExpr::All(expr.into_iter().map(|expr| make_nnf(expr)).collect()),
CfgExpr::Not(operand) => match *operand {
CfgExpr::Invalid | CfgExpr::Atom(_) => CfgExpr::Not(operand.clone()), // Original negated expr
CfgExpr::Not(expr) => {
// Remove double negation.
make_nnf(*expr)
}
// Convert negated conjunction/disjunction using DeMorgan's Law.
CfgExpr::Any(inner) => CfgExpr::All(
inner.into_iter().map(|expr| make_nnf(CfgExpr::Not(Box::new(expr)))).collect(),
),
CfgExpr::All(inner) => CfgExpr::Any(
inner.into_iter().map(|expr| make_nnf(CfgExpr::Not(Box::new(expr)))).collect(),
),
},
}
}
#[cfg(test)]
mod test {
use expect_test::{expect, Expect};
use mbe::ast_to_token_tree;
use syntax::{ast, AstNode};
use super::*;
fn check_dnf(input: &str, expect: Expect) {
let (tt, _) = {
let source_file = ast::SourceFile::parse(input).ok().unwrap();
let tt = source_file.syntax().descendants().find_map(ast::TokenTree::cast).unwrap();
ast_to_token_tree(&tt).unwrap()
};
let cfg = CfgExpr::parse(&tt);
let actual = format!("#![cfg({})]", DnfExpr::new(cfg));
expect.assert_eq(&actual);
}
fn check_why_inactive(input: &str, opts: &CfgOptions, expect: Expect) {
let (tt, _) = {
let source_file = ast::SourceFile::parse(input).ok().unwrap();
let tt = source_file.syntax().descendants().find_map(ast::TokenTree::cast).unwrap();
ast_to_token_tree(&tt).unwrap()
};
let cfg = CfgExpr::parse(&tt);
let dnf = DnfExpr::new(cfg);
let why_inactive = dnf.why_inactive(opts).unwrap().to_string();
expect.assert_eq(&why_inactive);
}
#[track_caller]
fn check_enable_hints(input: &str, opts: &CfgOptions, expected_hints: &[&str]) {
let (tt, _) = {
let source_file = ast::SourceFile::parse(input).ok().unwrap();
let tt = source_file.syntax().descendants().find_map(ast::TokenTree::cast).unwrap();
ast_to_token_tree(&tt).unwrap()
};
let cfg = CfgExpr::parse(&tt);
let dnf = DnfExpr::new(cfg);
let hints = dnf.compute_enable_hints(opts).map(|diff| diff.to_string()).collect::<Vec<_>>();
assert_eq!(hints, expected_hints);
}
#[test]
fn smoke() {
check_dnf("#![cfg(test)]", expect![[r#"#![cfg(test)]"#]]);
check_dnf("#![cfg(not(test))]", expect![[r#"#![cfg(not(test))]"#]]);
check_dnf("#![cfg(not(not(test)))]", expect![[r#"#![cfg(test)]"#]]);
check_dnf("#![cfg(all(a, b))]", expect![[r#"#![cfg(all(a, b))]"#]]);
check_dnf("#![cfg(any(a, b))]", expect![[r#"#![cfg(any(a, b))]"#]]);
check_dnf("#![cfg(not(a))]", expect![[r#"#![cfg(not(a))]"#]]);
}
#[test]
fn distribute() {
check_dnf("#![cfg(all(any(a, b), c))]", expect![[r#"#![cfg(any(all(a, c), all(b, c)))]"#]]);
check_dnf("#![cfg(all(c, any(a, b)))]", expect![[r#"#![cfg(any(all(c, a), all(c, b)))]"#]]);
check_dnf(
"#![cfg(all(any(a, b), any(c, d)))]",
expect![[r#"#![cfg(any(all(a, c), all(a, d), all(b, c), all(b, d)))]"#]],
);
check_dnf(
"#![cfg(all(any(a, b, c), any(d, e, f), g))]",
expect![[
r#"#![cfg(any(all(a, d, g), all(a, e, g), all(a, f, g), all(b, d, g), all(b, e, g), all(b, f, g), all(c, d, g), all(c, e, g), all(c, f, g)))]"#
]],
);
}
#[test]
fn demorgan() {
check_dnf("#![cfg(not(all(a, b)))]", expect![[r#"#![cfg(any(not(a), not(b)))]"#]]);
check_dnf("#![cfg(not(any(a, b)))]", expect![[r#"#![cfg(all(not(a), not(b)))]"#]]);
check_dnf("#![cfg(not(all(not(a), b)))]", expect![[r#"#![cfg(any(a, not(b)))]"#]]);
check_dnf("#![cfg(not(any(a, not(b))))]", expect![[r#"#![cfg(all(not(a), b))]"#]]);
}
#[test]
fn nested() {
check_dnf(
"#![cfg(all(any(a), not(all(any(b)))))]",
expect![[r#"#![cfg(all(a, not(b)))]"#]],
);
check_dnf("#![cfg(any(any(a, b)))]", expect![[r#"#![cfg(any(a, b))]"#]]);
check_dnf("#![cfg(not(any(any(a, b))))]", expect![[r#"#![cfg(all(not(a), not(b)))]"#]]);
check_dnf("#![cfg(all(all(a, b)))]", expect![[r#"#![cfg(all(a, b))]"#]]);
check_dnf("#![cfg(not(all(all(a, b))))]", expect![[r#"#![cfg(any(not(a), not(b)))]"#]]);
}
#[test]
fn hints() {
let mut opts = CfgOptions::default();
check_enable_hints("#![cfg(test)]", &opts, &["enable test"]);
check_enable_hints("#![cfg(not(test))]", &opts, &[]);
check_enable_hints("#![cfg(any(a, b))]", &opts, &["enable a", "enable b"]);
check_enable_hints("#![cfg(any(b, a))]", &opts, &["enable b", "enable a"]);
check_enable_hints("#![cfg(all(a, b))]", &opts, &["enable a and b"]);
opts.insert_atom("test".into());
check_enable_hints("#![cfg(test)]", &opts, &[]);
check_enable_hints("#![cfg(not(test))]", &opts, &["disable test"]);
}
/// Tests that we don't suggest hints for cfgs that express an inconsistent formula.
#[test]
fn hints_impossible() {
let mut opts = CfgOptions::default();
check_enable_hints("#![cfg(all(test, not(test)))]", &opts, &[]);
opts.insert_atom("test".into());
check_enable_hints("#![cfg(all(test, not(test)))]", &opts, &[]);
}
#[test]
fn why_inactive() {
let mut opts = CfgOptions::default();
opts.insert_atom("test".into());
opts.insert_atom("test2".into());
check_why_inactive("#![cfg(a)]", &opts, expect![["a is disabled"]]);
check_why_inactive("#![cfg(not(test))]", &opts, expect![["test is enabled"]]);
check_why_inactive(
"#![cfg(all(not(test), not(test2)))]",
&opts,
expect![["test and test2 are enabled"]],
);
check_why_inactive("#![cfg(all(a, b))]", &opts, expect![["a and b are disabled"]]);
check_why_inactive(
"#![cfg(all(not(test), a))]",
&opts,
expect![["test is enabled and a is disabled"]],
);
check_why_inactive(
"#![cfg(all(not(test), test2, a))]",
&opts,
expect![["test is enabled and a is disabled"]],
);
check_why_inactive(
"#![cfg(all(not(test), not(test2), a))]",
&opts,
expect![["test and test2 are enabled and a is disabled"]],
);
}
}