da50f7c288
This is a standard "clean out libstd" commit which removes all 1.5-and-before deprecated functionality as it's now all been deprecated for at least one entire cycle.
622 lines
20 KiB
Rust
622 lines
20 KiB
Rust
// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
use ascii;
|
|
use borrow::{Cow, ToOwned, Borrow};
|
|
use boxed::Box;
|
|
use convert::{Into, From};
|
|
use cmp::{PartialEq, Eq, PartialOrd, Ord, Ordering};
|
|
use error::Error;
|
|
use fmt::{self, Write};
|
|
use io;
|
|
use iter::Iterator;
|
|
use libc;
|
|
use mem;
|
|
use ops::Deref;
|
|
use option::Option::{self, Some, None};
|
|
use os::raw::c_char;
|
|
use result::Result::{self, Ok, Err};
|
|
use slice;
|
|
use str::{self, Utf8Error};
|
|
use string::String;
|
|
use vec::Vec;
|
|
|
|
/// A type representing an owned C-compatible string
|
|
///
|
|
/// This type serves the primary purpose of being able to safely generate a
|
|
/// C-compatible string from a Rust byte slice or vector. An instance of this
|
|
/// type is a static guarantee that the underlying bytes contain no interior 0
|
|
/// bytes and the final byte is 0.
|
|
///
|
|
/// A `CString` is created from either a byte slice or a byte vector. After
|
|
/// being created, a `CString` predominately inherits all of its methods from
|
|
/// the `Deref` implementation to `[c_char]`. Note that the underlying array
|
|
/// is represented as an array of `c_char` as opposed to `u8`. A `u8` slice
|
|
/// can be obtained with the `as_bytes` method. Slices produced from a `CString`
|
|
/// do *not* contain the trailing nul terminator unless otherwise specified.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```no_run
|
|
/// # fn main() {
|
|
/// use std::ffi::CString;
|
|
/// use std::os::raw::c_char;
|
|
///
|
|
/// extern {
|
|
/// fn my_printer(s: *const c_char);
|
|
/// }
|
|
///
|
|
/// let c_to_print = CString::new("Hello, world!").unwrap();
|
|
/// unsafe {
|
|
/// my_printer(c_to_print.as_ptr());
|
|
/// }
|
|
/// # }
|
|
/// ```
|
|
#[derive(PartialEq, PartialOrd, Eq, Ord, Hash, Clone)]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub struct CString {
|
|
inner: Box<[u8]>,
|
|
}
|
|
|
|
/// Representation of a borrowed C string.
|
|
///
|
|
/// This dynamically sized type is only safely constructed via a borrowed
|
|
/// version of an instance of `CString`. This type can be constructed from a raw
|
|
/// C string as well and represents a C string borrowed from another location.
|
|
///
|
|
/// Note that this structure is **not** `repr(C)` and is not recommended to be
|
|
/// placed in the signatures of FFI functions. Instead safe wrappers of FFI
|
|
/// functions may leverage the unsafe `from_ptr` constructor to provide a safe
|
|
/// interface to other consumers.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Inspecting a foreign C string
|
|
///
|
|
/// ```no_run
|
|
/// use std::ffi::CStr;
|
|
/// use std::os::raw::c_char;
|
|
///
|
|
/// extern { fn my_string() -> *const c_char; }
|
|
///
|
|
/// fn main() {
|
|
/// unsafe {
|
|
/// let slice = CStr::from_ptr(my_string());
|
|
/// println!("string length: {}", slice.to_bytes().len());
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// Passing a Rust-originating C string
|
|
///
|
|
/// ```no_run
|
|
/// use std::ffi::{CString, CStr};
|
|
/// use std::os::raw::c_char;
|
|
///
|
|
/// fn work(data: &CStr) {
|
|
/// extern { fn work_with(data: *const c_char); }
|
|
///
|
|
/// unsafe { work_with(data.as_ptr()) }
|
|
/// }
|
|
///
|
|
/// fn main() {
|
|
/// let s = CString::new("data data data data").unwrap();
|
|
/// work(&s);
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// Converting a foreign C string into a Rust `String`
|
|
///
|
|
/// ```no_run
|
|
/// use std::ffi::CStr;
|
|
/// use std::os::raw::c_char;
|
|
///
|
|
/// extern { fn my_string() -> *const c_char; }
|
|
///
|
|
/// fn my_string_safe() -> String {
|
|
/// unsafe {
|
|
/// CStr::from_ptr(my_string()).to_string_lossy().into_owned()
|
|
/// }
|
|
/// }
|
|
///
|
|
/// fn main() {
|
|
/// println!("string: {}", my_string_safe());
|
|
/// }
|
|
/// ```
|
|
#[derive(Hash)]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub struct CStr {
|
|
// FIXME: this should not be represented with a DST slice but rather with
|
|
// just a raw `c_char` along with some form of marker to make
|
|
// this an unsized type. Essentially `sizeof(&CStr)` should be the
|
|
// same as `sizeof(&c_char)` but `CStr` should be an unsized type.
|
|
inner: [c_char]
|
|
}
|
|
|
|
/// An error returned from `CString::new` to indicate that a nul byte was found
|
|
/// in the vector provided.
|
|
#[derive(Clone, PartialEq, Debug)]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub struct NulError(usize, Vec<u8>);
|
|
|
|
/// An error returned from `CString::into_string` to indicate that a UTF-8 error
|
|
/// was encountered during the conversion.
|
|
#[derive(Clone, PartialEq, Debug)]
|
|
#[unstable(feature = "cstring_into", reason = "recently added", issue = "29157")]
|
|
pub struct IntoStringError {
|
|
inner: CString,
|
|
error: Utf8Error,
|
|
}
|
|
|
|
impl CString {
|
|
/// Creates a new C-compatible string from a container of bytes.
|
|
///
|
|
/// This method will consume the provided data and use the underlying bytes
|
|
/// to construct a new string, ensuring that there is a trailing 0 byte.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```no_run
|
|
/// use std::ffi::CString;
|
|
/// use std::os::raw::c_char;
|
|
///
|
|
/// extern { fn puts(s: *const c_char); }
|
|
///
|
|
/// fn main() {
|
|
/// let to_print = CString::new("Hello!").unwrap();
|
|
/// unsafe {
|
|
/// puts(to_print.as_ptr());
|
|
/// }
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// # Errors
|
|
///
|
|
/// This function will return an error if the bytes yielded contain an
|
|
/// internal 0 byte. The error returned will contain the bytes as well as
|
|
/// the position of the nul byte.
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub fn new<T: Into<Vec<u8>>>(t: T) -> Result<CString, NulError> {
|
|
Self::_new(t.into())
|
|
}
|
|
|
|
fn _new(bytes: Vec<u8>) -> Result<CString, NulError> {
|
|
match bytes.iter().position(|x| *x == 0) {
|
|
Some(i) => Err(NulError(i, bytes)),
|
|
None => Ok(unsafe { CString::from_vec_unchecked(bytes) }),
|
|
}
|
|
}
|
|
|
|
/// Creates a C-compatible string from a byte vector without checking for
|
|
/// interior 0 bytes.
|
|
///
|
|
/// This method is equivalent to `new` except that no runtime assertion
|
|
/// is made that `v` contains no 0 bytes, and it requires an actual
|
|
/// byte vector, not anything that can be converted to one with Into.
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub unsafe fn from_vec_unchecked(mut v: Vec<u8>) -> CString {
|
|
v.push(0);
|
|
CString { inner: v.into_boxed_slice() }
|
|
}
|
|
|
|
/// Retakes ownership of a CString that was transferred to C.
|
|
///
|
|
/// The only appropriate argument is a pointer obtained by calling
|
|
/// `into_raw`. The length of the string will be recalculated
|
|
/// using the pointer.
|
|
#[stable(feature = "cstr_memory", since = "1.4.0")]
|
|
pub unsafe fn from_raw(ptr: *mut c_char) -> CString {
|
|
let len = libc::strlen(ptr) + 1; // Including the NUL byte
|
|
let slice = slice::from_raw_parts(ptr, len as usize);
|
|
CString { inner: mem::transmute(slice) }
|
|
}
|
|
|
|
/// Transfers ownership of the string to a C caller.
|
|
///
|
|
/// The pointer must be returned to Rust and reconstituted using
|
|
/// `from_raw` to be properly deallocated. Specifically, one
|
|
/// should *not* use the standard C `free` function to deallocate
|
|
/// this string.
|
|
///
|
|
/// Failure to call `from_raw` will lead to a memory leak.
|
|
#[stable(feature = "cstr_memory", since = "1.4.0")]
|
|
pub fn into_raw(self) -> *mut c_char {
|
|
Box::into_raw(self.inner) as *mut c_char
|
|
}
|
|
|
|
/// Converts the `CString` into a `String` if it contains valid Unicode data.
|
|
///
|
|
/// On failure, ownership of the original `CString` is returned.
|
|
#[unstable(feature = "cstring_into", reason = "recently added", issue = "29157")]
|
|
pub fn into_string(self) -> Result<String, IntoStringError> {
|
|
String::from_utf8(self.into_bytes())
|
|
.map_err(|e| IntoStringError {
|
|
error: e.utf8_error(),
|
|
inner: unsafe { CString::from_vec_unchecked(e.into_bytes()) },
|
|
})
|
|
}
|
|
|
|
/// Returns the underlying byte buffer.
|
|
///
|
|
/// The returned buffer does **not** contain the trailing nul separator and
|
|
/// it is guaranteed to not have any interior nul bytes.
|
|
#[unstable(feature = "cstring_into", reason = "recently added", issue = "29157")]
|
|
pub fn into_bytes(self) -> Vec<u8> {
|
|
// FIXME: Once this method becomes stable, add an `impl Into<Vec<u8>> for CString`
|
|
let mut vec = self.inner.into_vec();
|
|
let _nul = vec.pop();
|
|
debug_assert_eq!(_nul, Some(0u8));
|
|
vec
|
|
}
|
|
|
|
/// Equivalent to the `into_bytes` function except that the returned vector
|
|
/// includes the trailing nul byte.
|
|
#[unstable(feature = "cstring_into", reason = "recently added", issue = "29157")]
|
|
pub fn into_bytes_with_nul(self) -> Vec<u8> {
|
|
self.inner.into_vec()
|
|
}
|
|
|
|
/// Returns the contents of this `CString` as a slice of bytes.
|
|
///
|
|
/// The returned slice does **not** contain the trailing nul separator and
|
|
/// it is guaranteed to not have any interior nul bytes.
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub fn as_bytes(&self) -> &[u8] {
|
|
&self.inner[..self.inner.len() - 1]
|
|
}
|
|
|
|
/// Equivalent to the `as_bytes` function except that the returned slice
|
|
/// includes the trailing nul byte.
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub fn as_bytes_with_nul(&self) -> &[u8] {
|
|
&self.inner
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl Deref for CString {
|
|
type Target = CStr;
|
|
|
|
fn deref(&self) -> &CStr {
|
|
unsafe { mem::transmute(self.as_bytes_with_nul()) }
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl fmt::Debug for CString {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
fmt::Debug::fmt(&**self, f)
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "cstr_debug", since = "1.3.0")]
|
|
impl fmt::Debug for CStr {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
try!(write!(f, "\""));
|
|
for byte in self.to_bytes().iter().flat_map(|&b| ascii::escape_default(b)) {
|
|
try!(f.write_char(byte as char));
|
|
}
|
|
write!(f, "\"")
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "cstr_borrow", since = "1.3.0")]
|
|
impl Borrow<CStr> for CString {
|
|
fn borrow(&self) -> &CStr { self }
|
|
}
|
|
|
|
impl NulError {
|
|
/// Returns the position of the nul byte in the slice that was provided to
|
|
/// `CString::new`.
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub fn nul_position(&self) -> usize { self.0 }
|
|
|
|
/// Consumes this error, returning the underlying vector of bytes which
|
|
/// generated the error in the first place.
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub fn into_vec(self) -> Vec<u8> { self.1 }
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl Error for NulError {
|
|
fn description(&self) -> &str { "nul byte found in data" }
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl fmt::Display for NulError {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(f, "nul byte found in provided data at position: {}", self.0)
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl From<NulError> for io::Error {
|
|
fn from(_: NulError) -> io::Error {
|
|
io::Error::new(io::ErrorKind::InvalidInput,
|
|
"data provided contains a nul byte")
|
|
}
|
|
}
|
|
|
|
impl IntoStringError {
|
|
/// Consumes this error, returning original `CString` which generated the
|
|
/// error.
|
|
#[unstable(feature = "cstring_into", reason = "recently added", issue = "29157")]
|
|
pub fn into_cstring(self) -> CString {
|
|
self.inner
|
|
}
|
|
|
|
/// Access the underlying UTF-8 error that was the cause of this error.
|
|
#[unstable(feature = "cstring_into", reason = "recently added", issue = "29157")]
|
|
pub fn utf8_error(&self) -> Utf8Error {
|
|
self.error
|
|
}
|
|
}
|
|
|
|
#[unstable(feature = "cstring_into", reason = "recently added", issue = "29157")]
|
|
impl Error for IntoStringError {
|
|
fn description(&self) -> &str {
|
|
Error::description(&self.error)
|
|
}
|
|
}
|
|
|
|
#[unstable(feature = "cstring_into", reason = "recently added", issue = "29157")]
|
|
impl fmt::Display for IntoStringError {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
fmt::Display::fmt(&self.error, f)
|
|
}
|
|
}
|
|
|
|
impl CStr {
|
|
/// Casts a raw C string to a safe C string wrapper.
|
|
///
|
|
/// This function will cast the provided `ptr` to the `CStr` wrapper which
|
|
/// allows inspection and interoperation of non-owned C strings. This method
|
|
/// is unsafe for a number of reasons:
|
|
///
|
|
/// * There is no guarantee to the validity of `ptr`
|
|
/// * The returned lifetime is not guaranteed to be the actual lifetime of
|
|
/// `ptr`
|
|
/// * There is no guarantee that the memory pointed to by `ptr` contains a
|
|
/// valid nul terminator byte at the end of the string.
|
|
///
|
|
/// > **Note**: This operation is intended to be a 0-cost cast but it is
|
|
/// > currently implemented with an up-front calculation of the length of
|
|
/// > the string. This is not guaranteed to always be the case.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```no_run
|
|
/// # fn main() {
|
|
/// use std::ffi::CStr;
|
|
/// use std::os::raw::c_char;
|
|
/// use std::str;
|
|
///
|
|
/// extern {
|
|
/// fn my_string() -> *const c_char;
|
|
/// }
|
|
///
|
|
/// unsafe {
|
|
/// let slice = CStr::from_ptr(my_string());
|
|
/// println!("string returned: {}",
|
|
/// str::from_utf8(slice.to_bytes()).unwrap());
|
|
/// }
|
|
/// # }
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub unsafe fn from_ptr<'a>(ptr: *const c_char) -> &'a CStr {
|
|
let len = libc::strlen(ptr);
|
|
mem::transmute(slice::from_raw_parts(ptr, len as usize + 1))
|
|
}
|
|
|
|
/// Returns the inner pointer to this C string.
|
|
///
|
|
/// The returned pointer will be valid for as long as `self` is and points
|
|
/// to a contiguous region of memory terminated with a 0 byte to represent
|
|
/// the end of the string.
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub fn as_ptr(&self) -> *const c_char {
|
|
self.inner.as_ptr()
|
|
}
|
|
|
|
/// Converts this C string to a byte slice.
|
|
///
|
|
/// This function will calculate the length of this string (which normally
|
|
/// requires a linear amount of work to be done) and then return the
|
|
/// resulting slice of `u8` elements.
|
|
///
|
|
/// The returned slice will **not** contain the trailing nul that this C
|
|
/// string has.
|
|
///
|
|
/// > **Note**: This method is currently implemented as a 0-cost cast, but
|
|
/// > it is planned to alter its definition in the future to perform the
|
|
/// > length calculation whenever this method is called.
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub fn to_bytes(&self) -> &[u8] {
|
|
let bytes = self.to_bytes_with_nul();
|
|
&bytes[..bytes.len() - 1]
|
|
}
|
|
|
|
/// Converts this C string to a byte slice containing the trailing 0 byte.
|
|
///
|
|
/// This function is the equivalent of `to_bytes` except that it will retain
|
|
/// the trailing nul instead of chopping it off.
|
|
///
|
|
/// > **Note**: This method is currently implemented as a 0-cost cast, but
|
|
/// > it is planned to alter its definition in the future to perform the
|
|
/// > length calculation whenever this method is called.
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub fn to_bytes_with_nul(&self) -> &[u8] {
|
|
unsafe { mem::transmute(&self.inner) }
|
|
}
|
|
|
|
/// Yields a `&str` slice if the `CStr` contains valid UTF-8.
|
|
///
|
|
/// This function will calculate the length of this string and check for
|
|
/// UTF-8 validity, and then return the `&str` if it's valid.
|
|
///
|
|
/// > **Note**: This method is currently implemented to check for validity
|
|
/// > after a 0-cost cast, but it is planned to alter its definition in the
|
|
/// > future to perform the length calculation in addition to the UTF-8
|
|
/// > check whenever this method is called.
|
|
#[stable(feature = "cstr_to_str", since = "1.4.0")]
|
|
pub fn to_str(&self) -> Result<&str, str::Utf8Error> {
|
|
// NB: When CStr is changed to perform the length check in .to_bytes()
|
|
// instead of in from_ptr(), it may be worth considering if this should
|
|
// be rewritten to do the UTF-8 check inline with the length calculation
|
|
// instead of doing it afterwards.
|
|
str::from_utf8(self.to_bytes())
|
|
}
|
|
|
|
/// Converts a `CStr` into a `Cow<str>`.
|
|
///
|
|
/// This function will calculate the length of this string (which normally
|
|
/// requires a linear amount of work to be done) and then return the
|
|
/// resulting slice as a `Cow<str>`, replacing any invalid UTF-8 sequences
|
|
/// with `U+FFFD REPLACEMENT CHARACTER`.
|
|
///
|
|
/// > **Note**: This method is currently implemented to check for validity
|
|
/// > after a 0-cost cast, but it is planned to alter its definition in the
|
|
/// > future to perform the length calculation in addition to the UTF-8
|
|
/// > check whenever this method is called.
|
|
#[stable(feature = "cstr_to_str", since = "1.4.0")]
|
|
pub fn to_string_lossy(&self) -> Cow<str> {
|
|
String::from_utf8_lossy(self.to_bytes())
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl PartialEq for CStr {
|
|
fn eq(&self, other: &CStr) -> bool {
|
|
self.to_bytes().eq(other.to_bytes())
|
|
}
|
|
}
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl Eq for CStr {}
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl PartialOrd for CStr {
|
|
fn partial_cmp(&self, other: &CStr) -> Option<Ordering> {
|
|
self.to_bytes().partial_cmp(&other.to_bytes())
|
|
}
|
|
}
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl Ord for CStr {
|
|
fn cmp(&self, other: &CStr) -> Ordering {
|
|
self.to_bytes().cmp(&other.to_bytes())
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "cstr_borrow", since = "1.3.0")]
|
|
impl ToOwned for CStr {
|
|
type Owned = CString;
|
|
|
|
fn to_owned(&self) -> CString {
|
|
unsafe { CString::from_vec_unchecked(self.to_bytes().to_vec()) }
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use prelude::v1::*;
|
|
use super::*;
|
|
use os::raw::c_char;
|
|
use borrow::Cow::{Borrowed, Owned};
|
|
use hash::{SipHasher, Hash, Hasher};
|
|
|
|
#[test]
|
|
fn c_to_rust() {
|
|
let data = b"123\0";
|
|
let ptr = data.as_ptr() as *const c_char;
|
|
unsafe {
|
|
assert_eq!(CStr::from_ptr(ptr).to_bytes(), b"123");
|
|
assert_eq!(CStr::from_ptr(ptr).to_bytes_with_nul(), b"123\0");
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn simple() {
|
|
let s = CString::new("1234").unwrap();
|
|
assert_eq!(s.as_bytes(), b"1234");
|
|
assert_eq!(s.as_bytes_with_nul(), b"1234\0");
|
|
}
|
|
|
|
#[test]
|
|
fn build_with_zero1() {
|
|
assert!(CString::new(&b"\0"[..]).is_err());
|
|
}
|
|
#[test]
|
|
fn build_with_zero2() {
|
|
assert!(CString::new(vec![0]).is_err());
|
|
}
|
|
|
|
#[test]
|
|
fn build_with_zero3() {
|
|
unsafe {
|
|
let s = CString::from_vec_unchecked(vec![0]);
|
|
assert_eq!(s.as_bytes(), b"\0");
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn formatted() {
|
|
let s = CString::new(&b"abc\x01\x02\n\xE2\x80\xA6\xFF"[..]).unwrap();
|
|
assert_eq!(format!("{:?}", s), r#""abc\x01\x02\n\xe2\x80\xa6\xff""#);
|
|
}
|
|
|
|
#[test]
|
|
fn borrowed() {
|
|
unsafe {
|
|
let s = CStr::from_ptr(b"12\0".as_ptr() as *const _);
|
|
assert_eq!(s.to_bytes(), b"12");
|
|
assert_eq!(s.to_bytes_with_nul(), b"12\0");
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn to_str() {
|
|
let data = b"123\xE2\x80\xA6\0";
|
|
let ptr = data.as_ptr() as *const c_char;
|
|
unsafe {
|
|
assert_eq!(CStr::from_ptr(ptr).to_str(), Ok("123…"));
|
|
assert_eq!(CStr::from_ptr(ptr).to_string_lossy(), Borrowed("123…"));
|
|
}
|
|
let data = b"123\xE2\0";
|
|
let ptr = data.as_ptr() as *const c_char;
|
|
unsafe {
|
|
assert!(CStr::from_ptr(ptr).to_str().is_err());
|
|
assert_eq!(CStr::from_ptr(ptr).to_string_lossy(), Owned::<str>(format!("123\u{FFFD}")));
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn to_owned() {
|
|
let data = b"123\0";
|
|
let ptr = data.as_ptr() as *const c_char;
|
|
|
|
let owned = unsafe { CStr::from_ptr(ptr).to_owned() };
|
|
assert_eq!(owned.as_bytes_with_nul(), data);
|
|
}
|
|
|
|
#[test]
|
|
fn equal_hash() {
|
|
let data = b"123\xE2\xFA\xA6\0";
|
|
let ptr = data.as_ptr() as *const c_char;
|
|
let cstr: &'static CStr = unsafe { CStr::from_ptr(ptr) };
|
|
|
|
let mut s = SipHasher::new_with_keys(0, 0);
|
|
cstr.hash(&mut s);
|
|
let cstr_hash = s.finish();
|
|
let mut s = SipHasher::new_with_keys(0, 0);
|
|
CString::new(&data[..data.len() - 1]).unwrap().hash(&mut s);
|
|
let cstring_hash = s.finish();
|
|
|
|
assert_eq!(cstr_hash, cstring_hash);
|
|
}
|
|
}
|