da0703973a
This commit moves Mutable, Map, MutableMap, Set, and MutableSet from `core::collections` to the `collections` crate at the top-level. Additionally, this removes the `deque` module and moves the `Deque` trait to only being available at the top-level of the collections crate. All functionality continues to be reexported through `std::collections`. [breaking-change]
2536 lines
74 KiB
Rust
2536 lines
74 KiB
Rust
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
|
||
// file at the top-level directory of this distribution and at
|
||
// http://rust-lang.org/COPYRIGHT.
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
||
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
||
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
||
// option. This file may not be copied, modified, or distributed
|
||
// except according to those terms.
|
||
|
||
/*!
|
||
|
||
Utilities for vector manipulation
|
||
|
||
The `vec` module contains useful code to help work with vector values.
|
||
Vectors are Rust's list type. Vectors contain zero or more values of
|
||
homogeneous types:
|
||
|
||
```rust
|
||
let int_vector = [1,2,3];
|
||
let str_vector = ["one", "two", "three"];
|
||
```
|
||
|
||
This is a big module, but for a high-level overview:
|
||
|
||
## Structs
|
||
|
||
Several structs that are useful for vectors, such as `Items`, which
|
||
represents iteration over a vector.
|
||
|
||
## Traits
|
||
|
||
A number of traits add methods that allow you to accomplish tasks with vectors.
|
||
|
||
Traits defined for the `&[T]` type (a vector slice), have methods that can be
|
||
called on either owned vectors, denoted `~[T]`, or on vector slices themselves.
|
||
These traits include `ImmutableVector`, and `MutableVector` for the `&mut [T]`
|
||
case.
|
||
|
||
An example is the method `.slice(a, b)` that returns an immutable "view" into
|
||
a vector or a vector slice from the index interval `[a, b)`:
|
||
|
||
```rust
|
||
let numbers = [0, 1, 2];
|
||
let last_numbers = numbers.slice(1, 3);
|
||
// last_numbers is now &[1, 2]
|
||
```
|
||
|
||
Traits defined for the `~[T]` type, like `OwnedVector`, can only be called
|
||
on such vectors. These methods deal with adding elements or otherwise changing
|
||
the allocation of the vector.
|
||
|
||
An example is the method `.push(element)` that will add an element at the end
|
||
of the vector:
|
||
|
||
```rust
|
||
let mut numbers = vec![0, 1, 2];
|
||
numbers.push(7);
|
||
// numbers is now vec![0, 1, 2, 7];
|
||
```
|
||
|
||
## Implementations of other traits
|
||
|
||
Vectors are a very useful type, and so there's several implementations of
|
||
traits from other modules. Some notable examples:
|
||
|
||
* `Clone`
|
||
* `Eq`, `Ord`, `Eq`, `Ord` -- vectors can be compared,
|
||
if the element type defines the corresponding trait.
|
||
|
||
## Iteration
|
||
|
||
The method `iter()` returns an iteration value for a vector or a vector slice.
|
||
The iterator yields references to the vector's elements, so if the element
|
||
type of the vector is `int`, the element type of the iterator is `&int`.
|
||
|
||
```rust
|
||
let numbers = [0, 1, 2];
|
||
for &x in numbers.iter() {
|
||
println!("{} is a number!", x);
|
||
}
|
||
```
|
||
|
||
* `.mut_iter()` returns an iterator that allows modifying each value.
|
||
* `.move_iter()` converts an owned vector into an iterator that
|
||
moves out a value from the vector each iteration.
|
||
* Further iterators exist that split, chunk or permute the vector.
|
||
|
||
## Function definitions
|
||
|
||
There are a number of free functions that create or take vectors, for example:
|
||
|
||
* Creating a vector, like `from_elem` and `from_fn`
|
||
* Creating a vector with a given size: `with_capacity`
|
||
* Modifying a vector and returning it, like `append`
|
||
* Operations on paired elements, like `unzip`.
|
||
|
||
*/
|
||
|
||
#![doc(primitive = "slice")]
|
||
|
||
use core::prelude::*;
|
||
|
||
use alloc::heap::{allocate, deallocate};
|
||
use core::cmp;
|
||
use core::finally::try_finally;
|
||
use core::mem::size_of;
|
||
use core::mem::transmute;
|
||
use core::mem;
|
||
use core::ptr;
|
||
use core::iter::{range_step, MultiplicativeIterator};
|
||
|
||
use Collection;
|
||
use vec::Vec;
|
||
|
||
pub use core::slice::{ref_slice, mut_ref_slice, Splits, Windows};
|
||
pub use core::slice::{Chunks, Vector, ImmutableVector, ImmutableEqVector};
|
||
pub use core::slice::{ImmutableOrdVector, MutableVector, Items, MutItems};
|
||
pub use core::slice::{MutSplits, MutChunks};
|
||
pub use core::slice::{bytes, MutableCloneableVector};
|
||
|
||
// Functional utilities
|
||
|
||
#[allow(missing_doc)]
|
||
pub trait VectorVector<T> {
|
||
// FIXME #5898: calling these .concat and .connect conflicts with
|
||
// StrVector::con{cat,nect}, since they have generic contents.
|
||
/// Flattens a vector of vectors of T into a single vector of T.
|
||
fn concat_vec(&self) -> Vec<T>;
|
||
|
||
/// Concatenate a vector of vectors, placing a given separator between each.
|
||
fn connect_vec(&self, sep: &T) -> Vec<T>;
|
||
}
|
||
|
||
impl<'a, T: Clone, V: Vector<T>> VectorVector<T> for &'a [V] {
|
||
fn concat_vec(&self) -> Vec<T> {
|
||
let size = self.iter().fold(0u, |acc, v| acc + v.as_slice().len());
|
||
let mut result = Vec::with_capacity(size);
|
||
for v in self.iter() {
|
||
result.push_all(v.as_slice())
|
||
}
|
||
result
|
||
}
|
||
|
||
fn connect_vec(&self, sep: &T) -> Vec<T> {
|
||
let size = self.iter().fold(0u, |acc, v| acc + v.as_slice().len());
|
||
let mut result = Vec::with_capacity(size + self.len());
|
||
let mut first = true;
|
||
for v in self.iter() {
|
||
if first { first = false } else { result.push(sep.clone()) }
|
||
result.push_all(v.as_slice())
|
||
}
|
||
result
|
||
}
|
||
}
|
||
|
||
/// An Iterator that yields the element swaps needed to produce
|
||
/// a sequence of all possible permutations for an indexed sequence of
|
||
/// elements. Each permutation is only a single swap apart.
|
||
///
|
||
/// The Steinhaus–Johnson–Trotter algorithm is used.
|
||
///
|
||
/// Generates even and odd permutations alternately.
|
||
///
|
||
/// The last generated swap is always (0, 1), and it returns the
|
||
/// sequence to its initial order.
|
||
pub struct ElementSwaps {
|
||
sdir: Vec<SizeDirection>,
|
||
/// If true, emit the last swap that returns the sequence to initial state
|
||
emit_reset: bool,
|
||
swaps_made : uint,
|
||
}
|
||
|
||
impl ElementSwaps {
|
||
/// Create an `ElementSwaps` iterator for a sequence of `length` elements
|
||
pub fn new(length: uint) -> ElementSwaps {
|
||
// Initialize `sdir` with a direction that position should move in
|
||
// (all negative at the beginning) and the `size` of the
|
||
// element (equal to the original index).
|
||
ElementSwaps{
|
||
emit_reset: true,
|
||
sdir: range(0, length).map(|i| SizeDirection{ size: i, dir: Neg }).collect(),
|
||
swaps_made: 0
|
||
}
|
||
}
|
||
}
|
||
|
||
enum Direction { Pos, Neg }
|
||
|
||
/// An Index and Direction together
|
||
struct SizeDirection {
|
||
size: uint,
|
||
dir: Direction,
|
||
}
|
||
|
||
impl Iterator<(uint, uint)> for ElementSwaps {
|
||
#[inline]
|
||
fn next(&mut self) -> Option<(uint, uint)> {
|
||
fn new_pos(i: uint, s: Direction) -> uint {
|
||
i + match s { Pos => 1, Neg => -1 }
|
||
}
|
||
|
||
// Find the index of the largest mobile element:
|
||
// The direction should point into the vector, and the
|
||
// swap should be with a smaller `size` element.
|
||
let max = self.sdir.iter().map(|&x| x).enumerate()
|
||
.filter(|&(i, sd)|
|
||
new_pos(i, sd.dir) < self.sdir.len() &&
|
||
self.sdir.get(new_pos(i, sd.dir)).size < sd.size)
|
||
.max_by(|&(_, sd)| sd.size);
|
||
match max {
|
||
Some((i, sd)) => {
|
||
let j = new_pos(i, sd.dir);
|
||
self.sdir.as_mut_slice().swap(i, j);
|
||
|
||
// Swap the direction of each larger SizeDirection
|
||
for x in self.sdir.mut_iter() {
|
||
if x.size > sd.size {
|
||
x.dir = match x.dir { Pos => Neg, Neg => Pos };
|
||
}
|
||
}
|
||
self.swaps_made += 1;
|
||
Some((i, j))
|
||
},
|
||
None => if self.emit_reset {
|
||
self.emit_reset = false;
|
||
if self.sdir.len() > 1 {
|
||
// The last swap
|
||
self.swaps_made += 1;
|
||
Some((0, 1))
|
||
} else {
|
||
// Vector is of the form [] or [x], and the only permutation is itself
|
||
self.swaps_made += 1;
|
||
Some((0,0))
|
||
}
|
||
} else { None }
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (uint, Option<uint>) {
|
||
// For a vector of size n, there are exactly n! permutations.
|
||
let n = range(2, self.sdir.len() + 1).product();
|
||
(n - self.swaps_made, Some(n - self.swaps_made))
|
||
}
|
||
}
|
||
|
||
/// An Iterator that uses `ElementSwaps` to iterate through
|
||
/// all possible permutations of a vector.
|
||
///
|
||
/// The first iteration yields a clone of the vector as it is,
|
||
/// then each successive element is the vector with one
|
||
/// swap applied.
|
||
///
|
||
/// Generates even and odd permutations alternately.
|
||
pub struct Permutations<T> {
|
||
swaps: ElementSwaps,
|
||
v: ~[T],
|
||
}
|
||
|
||
impl<T: Clone> Iterator<~[T]> for Permutations<T> {
|
||
#[inline]
|
||
fn next(&mut self) -> Option<~[T]> {
|
||
match self.swaps.next() {
|
||
None => None,
|
||
Some((0,0)) => Some(self.v.clone()),
|
||
Some((a, b)) => {
|
||
let elt = self.v.clone();
|
||
self.v.swap(a, b);
|
||
Some(elt)
|
||
}
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (uint, Option<uint>) {
|
||
self.swaps.size_hint()
|
||
}
|
||
}
|
||
|
||
/// Extension methods for vector slices with cloneable elements
|
||
pub trait CloneableVector<T> {
|
||
/// Copy `self` into a new owned vector
|
||
fn to_owned(&self) -> ~[T];
|
||
|
||
/// Convert `self` into an owned vector, not making a copy if possible.
|
||
fn into_owned(self) -> ~[T];
|
||
}
|
||
|
||
/// Extension methods for vector slices
|
||
impl<'a, T: Clone> CloneableVector<T> for &'a [T] {
|
||
/// Returns a copy of `v`.
|
||
#[inline]
|
||
fn to_owned(&self) -> ~[T] {
|
||
use RawVec = core::raw::Vec;
|
||
use core::num::{CheckedAdd, CheckedMul};
|
||
use core::ptr;
|
||
|
||
let len = self.len();
|
||
let data_size = len.checked_mul(&mem::size_of::<T>());
|
||
let data_size = data_size.expect("overflow in to_owned()");
|
||
let size = mem::size_of::<RawVec<()>>().checked_add(&data_size);
|
||
let size = size.expect("overflow in to_owned()");
|
||
|
||
unsafe {
|
||
// this should pass the real required alignment
|
||
let ret = allocate(size, 8) as *mut RawVec<()>;
|
||
|
||
let a_size = mem::size_of::<T>();
|
||
let a_size = if a_size == 0 {1} else {a_size};
|
||
(*ret).fill = len * a_size;
|
||
(*ret).alloc = len * a_size;
|
||
|
||
// Be careful with the following loop. We want it to be optimized
|
||
// to a memcpy (or something similarly fast) when T is Copy. LLVM
|
||
// is easily confused, so any extra operations during the loop can
|
||
// prevent this optimization.
|
||
let mut i = 0;
|
||
let p = &mut (*ret).data as *mut _ as *mut T;
|
||
try_finally(
|
||
&mut i, (),
|
||
|i, ()| while *i < len {
|
||
ptr::write(
|
||
&mut(*p.offset(*i as int)),
|
||
self.unsafe_ref(*i).clone());
|
||
*i += 1;
|
||
},
|
||
|i| if *i < len {
|
||
// we must be failing, clean up after ourselves
|
||
for j in range(0, *i as int) {
|
||
ptr::read(&*p.offset(j));
|
||
}
|
||
// FIXME: #13994 (should pass align and size here)
|
||
deallocate(ret as *mut u8, 0, 8);
|
||
});
|
||
mem::transmute(ret)
|
||
}
|
||
}
|
||
|
||
#[inline(always)]
|
||
fn into_owned(self) -> ~[T] { self.to_owned() }
|
||
}
|
||
|
||
/// Extension methods for owned vectors
|
||
impl<T: Clone> CloneableVector<T> for ~[T] {
|
||
#[inline]
|
||
fn to_owned(&self) -> ~[T] { self.clone() }
|
||
|
||
#[inline(always)]
|
||
fn into_owned(self) -> ~[T] { self }
|
||
}
|
||
|
||
/// Extension methods for vectors containing `Clone` elements.
|
||
pub trait ImmutableCloneableVector<T> {
|
||
/// Partitions the vector into two vectors `(A,B)`, where all
|
||
/// elements of `A` satisfy `f` and all elements of `B` do not.
|
||
fn partitioned(&self, f: |&T| -> bool) -> (Vec<T>, Vec<T>);
|
||
|
||
/// Create an iterator that yields every possible permutation of the
|
||
/// vector in succession.
|
||
fn permutations(self) -> Permutations<T>;
|
||
}
|
||
|
||
impl<'a,T:Clone> ImmutableCloneableVector<T> for &'a [T] {
|
||
#[inline]
|
||
fn partitioned(&self, f: |&T| -> bool) -> (Vec<T>, Vec<T>) {
|
||
let mut lefts = Vec::new();
|
||
let mut rights = Vec::new();
|
||
|
||
for elt in self.iter() {
|
||
if f(elt) {
|
||
lefts.push((*elt).clone());
|
||
} else {
|
||
rights.push((*elt).clone());
|
||
}
|
||
}
|
||
|
||
(lefts, rights)
|
||
}
|
||
|
||
fn permutations(self) -> Permutations<T> {
|
||
Permutations{
|
||
swaps: ElementSwaps::new(self.len()),
|
||
v: self.to_owned(),
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
/// Extension methods for owned vectors.
|
||
pub trait OwnedVector<T> {
|
||
/// Creates a consuming iterator, that is, one that moves each
|
||
/// value out of the vector (from start to end). The vector cannot
|
||
/// be used after calling this.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```rust
|
||
/// let v = ~["a".to_string(), "b".to_string()];
|
||
/// for s in v.move_iter() {
|
||
/// // s has type ~str, not &~str
|
||
/// println!("{}", s);
|
||
/// }
|
||
/// ```
|
||
fn move_iter(self) -> MoveItems<T>;
|
||
|
||
/**
|
||
* Partitions the vector into two vectors `(A,B)`, where all
|
||
* elements of `A` satisfy `f` and all elements of `B` do not.
|
||
*/
|
||
fn partition(self, f: |&T| -> bool) -> (Vec<T>, Vec<T>);
|
||
}
|
||
|
||
impl<T> OwnedVector<T> for ~[T] {
|
||
#[inline]
|
||
fn move_iter(self) -> MoveItems<T> {
|
||
unsafe {
|
||
let iter = transmute(self.iter());
|
||
let ptr = transmute(self);
|
||
MoveItems { allocation: ptr, iter: iter }
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn partition(self, f: |&T| -> bool) -> (Vec<T>, Vec<T>) {
|
||
let mut lefts = Vec::new();
|
||
let mut rights = Vec::new();
|
||
|
||
for elt in self.move_iter() {
|
||
if f(&elt) {
|
||
lefts.push(elt);
|
||
} else {
|
||
rights.push(elt);
|
||
}
|
||
}
|
||
|
||
(lefts, rights)
|
||
}
|
||
}
|
||
|
||
fn insertion_sort<T>(v: &mut [T], compare: |&T, &T| -> Ordering) {
|
||
let len = v.len() as int;
|
||
let buf_v = v.as_mut_ptr();
|
||
|
||
// 1 <= i < len;
|
||
for i in range(1, len) {
|
||
// j satisfies: 0 <= j <= i;
|
||
let mut j = i;
|
||
unsafe {
|
||
// `i` is in bounds.
|
||
let read_ptr = buf_v.offset(i) as *T;
|
||
|
||
// find where to insert, we need to do strict <,
|
||
// rather than <=, to maintain stability.
|
||
|
||
// 0 <= j - 1 < len, so .offset(j - 1) is in bounds.
|
||
while j > 0 &&
|
||
compare(&*read_ptr, &*buf_v.offset(j - 1)) == Less {
|
||
j -= 1;
|
||
}
|
||
|
||
// shift everything to the right, to make space to
|
||
// insert this value.
|
||
|
||
// j + 1 could be `len` (for the last `i`), but in
|
||
// that case, `i == j` so we don't copy. The
|
||
// `.offset(j)` is always in bounds.
|
||
|
||
if i != j {
|
||
let tmp = ptr::read(read_ptr);
|
||
ptr::copy_memory(buf_v.offset(j + 1),
|
||
&*buf_v.offset(j),
|
||
(i - j) as uint);
|
||
ptr::copy_nonoverlapping_memory(buf_v.offset(j),
|
||
&tmp as *T,
|
||
1);
|
||
mem::forget(tmp);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
fn merge_sort<T>(v: &mut [T], compare: |&T, &T| -> Ordering) {
|
||
// warning: this wildly uses unsafe.
|
||
static BASE_INSERTION: uint = 32;
|
||
static LARGE_INSERTION: uint = 16;
|
||
|
||
// FIXME #12092: smaller insertion runs seems to make sorting
|
||
// vectors of large elements a little faster on some platforms,
|
||
// but hasn't been tested/tuned extensively
|
||
let insertion = if size_of::<T>() <= 16 {
|
||
BASE_INSERTION
|
||
} else {
|
||
LARGE_INSERTION
|
||
};
|
||
|
||
let len = v.len();
|
||
|
||
// short vectors get sorted in-place via insertion sort to avoid allocations
|
||
if len <= insertion {
|
||
insertion_sort(v, compare);
|
||
return;
|
||
}
|
||
|
||
// allocate some memory to use as scratch memory, we keep the
|
||
// length 0 so we can keep shallow copies of the contents of `v`
|
||
// without risking the dtors running on an object twice if
|
||
// `compare` fails.
|
||
let mut working_space = Vec::with_capacity(2 * len);
|
||
// these both are buffers of length `len`.
|
||
let mut buf_dat = working_space.as_mut_ptr();
|
||
let mut buf_tmp = unsafe {buf_dat.offset(len as int)};
|
||
|
||
// length `len`.
|
||
let buf_v = v.as_ptr();
|
||
|
||
// step 1. sort short runs with insertion sort. This takes the
|
||
// values from `v` and sorts them into `buf_dat`, leaving that
|
||
// with sorted runs of length INSERTION.
|
||
|
||
// We could hardcode the sorting comparisons here, and we could
|
||
// manipulate/step the pointers themselves, rather than repeatedly
|
||
// .offset-ing.
|
||
for start in range_step(0, len, insertion) {
|
||
// start <= i < len;
|
||
for i in range(start, cmp::min(start + insertion, len)) {
|
||
// j satisfies: start <= j <= i;
|
||
let mut j = i as int;
|
||
unsafe {
|
||
// `i` is in bounds.
|
||
let read_ptr = buf_v.offset(i as int);
|
||
|
||
// find where to insert, we need to do strict <,
|
||
// rather than <=, to maintain stability.
|
||
|
||
// start <= j - 1 < len, so .offset(j - 1) is in
|
||
// bounds.
|
||
while j > start as int &&
|
||
compare(&*read_ptr, &*buf_dat.offset(j - 1)) == Less {
|
||
j -= 1;
|
||
}
|
||
|
||
// shift everything to the right, to make space to
|
||
// insert this value.
|
||
|
||
// j + 1 could be `len` (for the last `i`), but in
|
||
// that case, `i == j` so we don't copy. The
|
||
// `.offset(j)` is always in bounds.
|
||
ptr::copy_memory(buf_dat.offset(j + 1),
|
||
&*buf_dat.offset(j),
|
||
i - j as uint);
|
||
ptr::copy_nonoverlapping_memory(buf_dat.offset(j), read_ptr, 1);
|
||
}
|
||
}
|
||
}
|
||
|
||
// step 2. merge the sorted runs.
|
||
let mut width = insertion;
|
||
while width < len {
|
||
// merge the sorted runs of length `width` in `buf_dat` two at
|
||
// a time, placing the result in `buf_tmp`.
|
||
|
||
// 0 <= start <= len.
|
||
for start in range_step(0, len, 2 * width) {
|
||
// manipulate pointers directly for speed (rather than
|
||
// using a `for` loop with `range` and `.offset` inside
|
||
// that loop).
|
||
unsafe {
|
||
// the end of the first run & start of the
|
||
// second. Offset of `len` is defined, since this is
|
||
// precisely one byte past the end of the object.
|
||
let right_start = buf_dat.offset(cmp::min(start + width, len) as int);
|
||
// end of the second. Similar reasoning to the above re safety.
|
||
let right_end_idx = cmp::min(start + 2 * width, len);
|
||
let right_end = buf_dat.offset(right_end_idx as int);
|
||
|
||
// the pointers to the elements under consideration
|
||
// from the two runs.
|
||
|
||
// both of these are in bounds.
|
||
let mut left = buf_dat.offset(start as int);
|
||
let mut right = right_start;
|
||
|
||
// where we're putting the results, it is a run of
|
||
// length `2*width`, so we step it once for each step
|
||
// of either `left` or `right`. `buf_tmp` has length
|
||
// `len`, so these are in bounds.
|
||
let mut out = buf_tmp.offset(start as int);
|
||
let out_end = buf_tmp.offset(right_end_idx as int);
|
||
|
||
while out < out_end {
|
||
// Either the left or the right run are exhausted,
|
||
// so just copy the remainder from the other run
|
||
// and move on; this gives a huge speed-up (order
|
||
// of 25%) for mostly sorted vectors (the best
|
||
// case).
|
||
if left == right_start {
|
||
// the number remaining in this run.
|
||
let elems = (right_end as uint - right as uint) / mem::size_of::<T>();
|
||
ptr::copy_nonoverlapping_memory(out, &*right, elems);
|
||
break;
|
||
} else if right == right_end {
|
||
let elems = (right_start as uint - left as uint) / mem::size_of::<T>();
|
||
ptr::copy_nonoverlapping_memory(out, &*left, elems);
|
||
break;
|
||
}
|
||
|
||
// check which side is smaller, and that's the
|
||
// next element for the new run.
|
||
|
||
// `left < right_start` and `right < right_end`,
|
||
// so these are valid.
|
||
let to_copy = if compare(&*left, &*right) == Greater {
|
||
step(&mut right)
|
||
} else {
|
||
step(&mut left)
|
||
};
|
||
ptr::copy_nonoverlapping_memory(out, &*to_copy, 1);
|
||
step(&mut out);
|
||
}
|
||
}
|
||
}
|
||
|
||
mem::swap(&mut buf_dat, &mut buf_tmp);
|
||
|
||
width *= 2;
|
||
}
|
||
|
||
// write the result to `v` in one go, so that there are never two copies
|
||
// of the same object in `v`.
|
||
unsafe {
|
||
ptr::copy_nonoverlapping_memory(v.as_mut_ptr(), &*buf_dat, len);
|
||
}
|
||
|
||
// increment the pointer, returning the old pointer.
|
||
#[inline(always)]
|
||
unsafe fn step<T>(ptr: &mut *mut T) -> *mut T {
|
||
let old = *ptr;
|
||
*ptr = ptr.offset(1);
|
||
old
|
||
}
|
||
}
|
||
|
||
/// Extension methods for vectors such that their elements are
|
||
/// mutable.
|
||
pub trait MutableVectorAllocating<'a, T> {
|
||
/// Sort the vector, in place, using `compare` to compare
|
||
/// elements.
|
||
///
|
||
/// This sort is `O(n log n)` worst-case and stable, but allocates
|
||
/// approximately `2 * n`, where `n` is the length of `self`.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```rust
|
||
/// let mut v = [5i, 4, 1, 3, 2];
|
||
/// v.sort_by(|a, b| a.cmp(b));
|
||
/// assert!(v == [1, 2, 3, 4, 5]);
|
||
///
|
||
/// // reverse sorting
|
||
/// v.sort_by(|a, b| b.cmp(a));
|
||
/// assert!(v == [5, 4, 3, 2, 1]);
|
||
/// ```
|
||
fn sort_by(self, compare: |&T, &T| -> Ordering);
|
||
|
||
/**
|
||
* Consumes `src` and moves as many elements as it can into `self`
|
||
* from the range [start,end).
|
||
*
|
||
* Returns the number of elements copied (the shorter of self.len()
|
||
* and end - start).
|
||
*
|
||
* # Arguments
|
||
*
|
||
* * src - A mutable vector of `T`
|
||
* * start - The index into `src` to start copying from
|
||
* * end - The index into `str` to stop copying from
|
||
*/
|
||
fn move_from(self, src: ~[T], start: uint, end: uint) -> uint;
|
||
}
|
||
|
||
impl<'a,T> MutableVectorAllocating<'a, T> for &'a mut [T] {
|
||
#[inline]
|
||
fn sort_by(self, compare: |&T, &T| -> Ordering) {
|
||
merge_sort(self, compare)
|
||
}
|
||
|
||
#[inline]
|
||
fn move_from(self, mut src: ~[T], start: uint, end: uint) -> uint {
|
||
for (a, b) in self.mut_iter().zip(src.mut_slice(start, end).mut_iter()) {
|
||
mem::swap(a, b);
|
||
}
|
||
cmp::min(self.len(), end-start)
|
||
}
|
||
}
|
||
|
||
/// Methods for mutable vectors with orderable elements, such as
|
||
/// in-place sorting.
|
||
pub trait MutableOrdVector<T> {
|
||
/// Sort the vector, in place.
|
||
///
|
||
/// This is equivalent to `self.sort_by(|a, b| a.cmp(b))`.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```rust
|
||
/// let mut v = [-5, 4, 1, -3, 2];
|
||
///
|
||
/// v.sort();
|
||
/// assert!(v == [-5, -3, 1, 2, 4]);
|
||
/// ```
|
||
fn sort(self);
|
||
|
||
/// Mutates the slice to the next lexicographic permutation.
|
||
///
|
||
/// Returns `true` if successful, `false` if the slice is at the last-ordered permutation.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```rust
|
||
/// let v = &mut [0, 1, 2];
|
||
/// v.next_permutation();
|
||
/// assert_eq!(v, &mut [0, 2, 1]);
|
||
/// v.next_permutation();
|
||
/// assert_eq!(v, &mut [1, 0, 2]);
|
||
/// ```
|
||
fn next_permutation(self) -> bool;
|
||
|
||
/// Mutates the slice to the previous lexicographic permutation.
|
||
///
|
||
/// Returns `true` if successful, `false` if the slice is at the first-ordered permutation.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```rust
|
||
/// let v = &mut [1, 0, 2];
|
||
/// v.prev_permutation();
|
||
/// assert_eq!(v, &mut [0, 2, 1]);
|
||
/// v.prev_permutation();
|
||
/// assert_eq!(v, &mut [0, 1, 2]);
|
||
/// ```
|
||
fn prev_permutation(self) -> bool;
|
||
}
|
||
|
||
impl<'a, T: Ord> MutableOrdVector<T> for &'a mut [T] {
|
||
#[inline]
|
||
fn sort(self) {
|
||
self.sort_by(|a,b| a.cmp(b))
|
||
}
|
||
|
||
fn next_permutation(self) -> bool {
|
||
// These cases only have 1 permutation each, so we can't do anything.
|
||
if self.len() < 2 { return false; }
|
||
|
||
// Step 1: Identify the longest, rightmost weakly decreasing part of the vector
|
||
let mut i = self.len() - 1;
|
||
while i > 0 && self[i-1] >= self[i] {
|
||
i -= 1;
|
||
}
|
||
|
||
// If that is the entire vector, this is the last-ordered permutation.
|
||
if i == 0 {
|
||
return false;
|
||
}
|
||
|
||
// Step 2: Find the rightmost element larger than the pivot (i-1)
|
||
let mut j = self.len() - 1;
|
||
while j >= i && self[j] <= self[i-1] {
|
||
j -= 1;
|
||
}
|
||
|
||
// Step 3: Swap that element with the pivot
|
||
self.swap(j, i-1);
|
||
|
||
// Step 4: Reverse the (previously) weakly decreasing part
|
||
self.mut_slice_from(i).reverse();
|
||
|
||
true
|
||
}
|
||
|
||
fn prev_permutation(self) -> bool {
|
||
// These cases only have 1 permutation each, so we can't do anything.
|
||
if self.len() < 2 { return false; }
|
||
|
||
// Step 1: Identify the longest, rightmost weakly increasing part of the vector
|
||
let mut i = self.len() - 1;
|
||
while i > 0 && self[i-1] <= self[i] {
|
||
i -= 1;
|
||
}
|
||
|
||
// If that is the entire vector, this is the first-ordered permutation.
|
||
if i == 0 {
|
||
return false;
|
||
}
|
||
|
||
// Step 2: Reverse the weakly increasing part
|
||
self.mut_slice_from(i).reverse();
|
||
|
||
// Step 3: Find the rightmost element equal to or bigger than the pivot (i-1)
|
||
let mut j = self.len() - 1;
|
||
while j >= i && self[j-1] < self[i-1] {
|
||
j -= 1;
|
||
}
|
||
|
||
// Step 4: Swap that element with the pivot
|
||
self.swap(i-1, j);
|
||
|
||
true
|
||
}
|
||
}
|
||
|
||
/// Unsafe operations
|
||
pub mod raw {
|
||
pub use core::slice::raw::{buf_as_slice, mut_buf_as_slice};
|
||
pub use core::slice::raw::{shift_ptr, pop_ptr};
|
||
}
|
||
|
||
/// An iterator that moves out of a vector.
|
||
pub struct MoveItems<T> {
|
||
allocation: *mut u8, // the block of memory allocated for the vector
|
||
iter: Items<'static, T>
|
||
}
|
||
|
||
impl<T> Iterator<T> for MoveItems<T> {
|
||
#[inline]
|
||
fn next(&mut self) -> Option<T> {
|
||
unsafe {
|
||
self.iter.next().map(|x| ptr::read(x))
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (uint, Option<uint>) {
|
||
self.iter.size_hint()
|
||
}
|
||
}
|
||
|
||
impl<T> DoubleEndedIterator<T> for MoveItems<T> {
|
||
#[inline]
|
||
fn next_back(&mut self) -> Option<T> {
|
||
unsafe {
|
||
self.iter.next_back().map(|x| ptr::read(x))
|
||
}
|
||
}
|
||
}
|
||
|
||
#[unsafe_destructor]
|
||
impl<T> Drop for MoveItems<T> {
|
||
fn drop(&mut self) {
|
||
// destroy the remaining elements
|
||
for _x in *self {}
|
||
unsafe {
|
||
// FIXME: #13994 (should pass align and size here)
|
||
deallocate(self.allocation, 0, 8)
|
||
}
|
||
}
|
||
}
|
||
|
||
#[cfg(test)]
|
||
mod tests {
|
||
use std::cell::Cell;
|
||
use std::default::Default;
|
||
use std::mem;
|
||
use std::prelude::*;
|
||
use std::rand::{Rng, task_rng};
|
||
use std::rc::Rc;
|
||
use std::rt;
|
||
use slice::*;
|
||
|
||
use Mutable;
|
||
use vec::Vec;
|
||
|
||
fn square(n: uint) -> uint { n * n }
|
||
|
||
fn is_odd(n: &uint) -> bool { *n % 2u == 1u }
|
||
|
||
#[test]
|
||
fn test_from_fn() {
|
||
// Test on-stack from_fn.
|
||
let mut v = Vec::from_fn(3u, square);
|
||
{
|
||
let v = v.as_slice();
|
||
assert_eq!(v.len(), 3u);
|
||
assert_eq!(v[0], 0u);
|
||
assert_eq!(v[1], 1u);
|
||
assert_eq!(v[2], 4u);
|
||
}
|
||
|
||
// Test on-heap from_fn.
|
||
v = Vec::from_fn(5u, square);
|
||
{
|
||
let v = v.as_slice();
|
||
assert_eq!(v.len(), 5u);
|
||
assert_eq!(v[0], 0u);
|
||
assert_eq!(v[1], 1u);
|
||
assert_eq!(v[2], 4u);
|
||
assert_eq!(v[3], 9u);
|
||
assert_eq!(v[4], 16u);
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn test_from_elem() {
|
||
// Test on-stack from_elem.
|
||
let mut v = Vec::from_elem(2u, 10u);
|
||
{
|
||
let v = v.as_slice();
|
||
assert_eq!(v.len(), 2u);
|
||
assert_eq!(v[0], 10u);
|
||
assert_eq!(v[1], 10u);
|
||
}
|
||
|
||
// Test on-heap from_elem.
|
||
v = Vec::from_elem(6u, 20u);
|
||
{
|
||
let v = v.as_slice();
|
||
assert_eq!(v[0], 20u);
|
||
assert_eq!(v[1], 20u);
|
||
assert_eq!(v[2], 20u);
|
||
assert_eq!(v[3], 20u);
|
||
assert_eq!(v[4], 20u);
|
||
assert_eq!(v[5], 20u);
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn test_is_empty() {
|
||
let xs: [int, ..0] = [];
|
||
assert!(xs.is_empty());
|
||
assert!(![0].is_empty());
|
||
}
|
||
|
||
#[test]
|
||
fn test_len_divzero() {
|
||
type Z = [i8, ..0];
|
||
let v0 : &[Z] = &[];
|
||
let v1 : &[Z] = &[[]];
|
||
let v2 : &[Z] = &[[], []];
|
||
assert_eq!(mem::size_of::<Z>(), 0);
|
||
assert_eq!(v0.len(), 0);
|
||
assert_eq!(v1.len(), 1);
|
||
assert_eq!(v2.len(), 2);
|
||
}
|
||
|
||
#[test]
|
||
fn test_get() {
|
||
let mut a = box [11];
|
||
assert_eq!(a.get(1), None);
|
||
a = box [11, 12];
|
||
assert_eq!(a.get(1).unwrap(), &12);
|
||
a = box [11, 12, 13];
|
||
assert_eq!(a.get(1).unwrap(), &12);
|
||
}
|
||
|
||
#[test]
|
||
fn test_head() {
|
||
let mut a = box [];
|
||
assert_eq!(a.head(), None);
|
||
a = box [11];
|
||
assert_eq!(a.head().unwrap(), &11);
|
||
a = box [11, 12];
|
||
assert_eq!(a.head().unwrap(), &11);
|
||
}
|
||
|
||
#[test]
|
||
fn test_tail() {
|
||
let mut a = box [11];
|
||
assert_eq!(a.tail(), &[]);
|
||
a = box [11, 12];
|
||
assert_eq!(a.tail(), &[12]);
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_tail_empty() {
|
||
let a: ~[int] = box [];
|
||
a.tail();
|
||
}
|
||
|
||
#[test]
|
||
fn test_tailn() {
|
||
let mut a = box [11, 12, 13];
|
||
assert_eq!(a.tailn(0), &[11, 12, 13]);
|
||
a = box [11, 12, 13];
|
||
assert_eq!(a.tailn(2), &[13]);
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_tailn_empty() {
|
||
let a: ~[int] = box [];
|
||
a.tailn(2);
|
||
}
|
||
|
||
#[test]
|
||
fn test_init() {
|
||
let mut a = box [11];
|
||
assert_eq!(a.init(), &[]);
|
||
a = box [11, 12];
|
||
assert_eq!(a.init(), &[11]);
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_init_empty() {
|
||
let a: ~[int] = box [];
|
||
a.init();
|
||
}
|
||
|
||
#[test]
|
||
fn test_initn() {
|
||
let mut a = box [11, 12, 13];
|
||
assert_eq!(a.initn(0), &[11, 12, 13]);
|
||
a = box [11, 12, 13];
|
||
assert_eq!(a.initn(2), &[11]);
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_initn_empty() {
|
||
let a: ~[int] = box [];
|
||
a.initn(2);
|
||
}
|
||
|
||
#[test]
|
||
fn test_last() {
|
||
let mut a = box [];
|
||
assert_eq!(a.last(), None);
|
||
a = box [11];
|
||
assert_eq!(a.last().unwrap(), &11);
|
||
a = box [11, 12];
|
||
assert_eq!(a.last().unwrap(), &12);
|
||
}
|
||
|
||
#[test]
|
||
fn test_slice() {
|
||
// Test fixed length vector.
|
||
let vec_fixed = [1, 2, 3, 4];
|
||
let v_a = vec_fixed.slice(1u, vec_fixed.len()).to_owned();
|
||
assert_eq!(v_a.len(), 3u);
|
||
assert_eq!(v_a[0], 2);
|
||
assert_eq!(v_a[1], 3);
|
||
assert_eq!(v_a[2], 4);
|
||
|
||
// Test on stack.
|
||
let vec_stack = &[1, 2, 3];
|
||
let v_b = vec_stack.slice(1u, 3u).to_owned();
|
||
assert_eq!(v_b.len(), 2u);
|
||
assert_eq!(v_b[0], 2);
|
||
assert_eq!(v_b[1], 3);
|
||
|
||
// Test `Box<[T]>`
|
||
let vec_unique = box [1, 2, 3, 4, 5, 6];
|
||
let v_d = vec_unique.slice(1u, 6u).to_owned();
|
||
assert_eq!(v_d.len(), 5u);
|
||
assert_eq!(v_d[0], 2);
|
||
assert_eq!(v_d[1], 3);
|
||
assert_eq!(v_d[2], 4);
|
||
assert_eq!(v_d[3], 5);
|
||
assert_eq!(v_d[4], 6);
|
||
}
|
||
|
||
#[test]
|
||
fn test_slice_from() {
|
||
let vec = &[1, 2, 3, 4];
|
||
assert_eq!(vec.slice_from(0), vec);
|
||
assert_eq!(vec.slice_from(2), &[3, 4]);
|
||
assert_eq!(vec.slice_from(4), &[]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_slice_to() {
|
||
let vec = &[1, 2, 3, 4];
|
||
assert_eq!(vec.slice_to(4), vec);
|
||
assert_eq!(vec.slice_to(2), &[1, 2]);
|
||
assert_eq!(vec.slice_to(0), &[]);
|
||
}
|
||
|
||
|
||
#[test]
|
||
fn test_pop() {
|
||
let mut v = vec![5];
|
||
let e = v.pop();
|
||
assert_eq!(v.len(), 0);
|
||
assert_eq!(e, Some(5));
|
||
let f = v.pop();
|
||
assert_eq!(f, None);
|
||
let g = v.pop();
|
||
assert_eq!(g, None);
|
||
}
|
||
|
||
#[test]
|
||
fn test_swap_remove() {
|
||
let mut v = vec![1, 2, 3, 4, 5];
|
||
let mut e = v.swap_remove(0);
|
||
assert_eq!(e, Some(1));
|
||
assert_eq!(v, vec![5, 2, 3, 4]);
|
||
e = v.swap_remove(3);
|
||
assert_eq!(e, Some(4));
|
||
assert_eq!(v, vec![5, 2, 3]);
|
||
|
||
e = v.swap_remove(3);
|
||
assert_eq!(e, None);
|
||
assert_eq!(v, vec![5, 2, 3]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_swap_remove_noncopyable() {
|
||
// Tests that we don't accidentally run destructors twice.
|
||
let mut v = vec![rt::exclusive::Exclusive::new(()),
|
||
rt::exclusive::Exclusive::new(()),
|
||
rt::exclusive::Exclusive::new(())];
|
||
let mut _e = v.swap_remove(0);
|
||
assert_eq!(v.len(), 2);
|
||
_e = v.swap_remove(1);
|
||
assert_eq!(v.len(), 1);
|
||
_e = v.swap_remove(0);
|
||
assert_eq!(v.len(), 0);
|
||
}
|
||
|
||
#[test]
|
||
fn test_push() {
|
||
// Test on-stack push().
|
||
let mut v = vec![];
|
||
v.push(1);
|
||
assert_eq!(v.len(), 1u);
|
||
assert_eq!(v.as_slice()[0], 1);
|
||
|
||
// Test on-heap push().
|
||
v.push(2);
|
||
assert_eq!(v.len(), 2u);
|
||
assert_eq!(v.as_slice()[0], 1);
|
||
assert_eq!(v.as_slice()[1], 2);
|
||
}
|
||
|
||
#[test]
|
||
fn test_grow() {
|
||
// Test on-stack grow().
|
||
let mut v = vec![];
|
||
v.grow(2u, &1);
|
||
{
|
||
let v = v.as_slice();
|
||
assert_eq!(v.len(), 2u);
|
||
assert_eq!(v[0], 1);
|
||
assert_eq!(v[1], 1);
|
||
}
|
||
|
||
// Test on-heap grow().
|
||
v.grow(3u, &2);
|
||
{
|
||
let v = v.as_slice();
|
||
assert_eq!(v.len(), 5u);
|
||
assert_eq!(v[0], 1);
|
||
assert_eq!(v[1], 1);
|
||
assert_eq!(v[2], 2);
|
||
assert_eq!(v[3], 2);
|
||
assert_eq!(v[4], 2);
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn test_grow_fn() {
|
||
let mut v = vec![];
|
||
v.grow_fn(3u, square);
|
||
let v = v.as_slice();
|
||
assert_eq!(v.len(), 3u);
|
||
assert_eq!(v[0], 0u);
|
||
assert_eq!(v[1], 1u);
|
||
assert_eq!(v[2], 4u);
|
||
}
|
||
|
||
#[test]
|
||
fn test_grow_set() {
|
||
let mut v = vec![1, 2, 3];
|
||
v.grow_set(4u, &4, 5);
|
||
let v = v.as_slice();
|
||
assert_eq!(v.len(), 5u);
|
||
assert_eq!(v[0], 1);
|
||
assert_eq!(v[1], 2);
|
||
assert_eq!(v[2], 3);
|
||
assert_eq!(v[3], 4);
|
||
assert_eq!(v[4], 5);
|
||
}
|
||
|
||
#[test]
|
||
fn test_truncate() {
|
||
let mut v = vec![box 6,box 5,box 4];
|
||
v.truncate(1);
|
||
let v = v.as_slice();
|
||
assert_eq!(v.len(), 1);
|
||
assert_eq!(*(v[0]), 6);
|
||
// If the unsafe block didn't drop things properly, we blow up here.
|
||
}
|
||
|
||
#[test]
|
||
fn test_clear() {
|
||
let mut v = vec![box 6,box 5,box 4];
|
||
v.clear();
|
||
assert_eq!(v.len(), 0);
|
||
// If the unsafe block didn't drop things properly, we blow up here.
|
||
}
|
||
|
||
#[test]
|
||
fn test_dedup() {
|
||
fn case(a: Vec<uint>, b: Vec<uint>) {
|
||
let mut v = a;
|
||
v.dedup();
|
||
assert_eq!(v, b);
|
||
}
|
||
case(vec![], vec![]);
|
||
case(vec![1], vec![1]);
|
||
case(vec![1,1], vec![1]);
|
||
case(vec![1,2,3], vec![1,2,3]);
|
||
case(vec![1,1,2,3], vec![1,2,3]);
|
||
case(vec![1,2,2,3], vec![1,2,3]);
|
||
case(vec![1,2,3,3], vec![1,2,3]);
|
||
case(vec![1,1,2,2,2,3,3], vec![1,2,3]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_dedup_unique() {
|
||
let mut v0 = vec![box 1, box 1, box 2, box 3];
|
||
v0.dedup();
|
||
let mut v1 = vec![box 1, box 2, box 2, box 3];
|
||
v1.dedup();
|
||
let mut v2 = vec![box 1, box 2, box 3, box 3];
|
||
v2.dedup();
|
||
/*
|
||
* If the boxed pointers were leaked or otherwise misused, valgrind
|
||
* and/or rustrt should raise errors.
|
||
*/
|
||
}
|
||
|
||
#[test]
|
||
fn test_dedup_shared() {
|
||
let mut v0 = vec![box 1, box 1, box 2, box 3];
|
||
v0.dedup();
|
||
let mut v1 = vec![box 1, box 2, box 2, box 3];
|
||
v1.dedup();
|
||
let mut v2 = vec![box 1, box 2, box 3, box 3];
|
||
v2.dedup();
|
||
/*
|
||
* If the pointers were leaked or otherwise misused, valgrind and/or
|
||
* rustrt should raise errors.
|
||
*/
|
||
}
|
||
|
||
#[test]
|
||
fn test_retain() {
|
||
let mut v = vec![1, 2, 3, 4, 5];
|
||
v.retain(is_odd);
|
||
assert_eq!(v, vec![1, 3, 5]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_element_swaps() {
|
||
let mut v = [1, 2, 3];
|
||
for (i, (a, b)) in ElementSwaps::new(v.len()).enumerate() {
|
||
v.swap(a, b);
|
||
match i {
|
||
0 => assert!(v == [1, 3, 2]),
|
||
1 => assert!(v == [3, 1, 2]),
|
||
2 => assert!(v == [3, 2, 1]),
|
||
3 => assert!(v == [2, 3, 1]),
|
||
4 => assert!(v == [2, 1, 3]),
|
||
5 => assert!(v == [1, 2, 3]),
|
||
_ => fail!(),
|
||
}
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn test_permutations() {
|
||
{
|
||
let v: [int, ..0] = [];
|
||
let mut it = v.permutations();
|
||
let (min_size, max_opt) = it.size_hint();
|
||
assert_eq!(min_size, 1);
|
||
assert_eq!(max_opt.unwrap(), 1);
|
||
assert_eq!(it.next(), Some(v.as_slice().to_owned()));
|
||
assert_eq!(it.next(), None);
|
||
}
|
||
{
|
||
let v = ["Hello".to_string()];
|
||
let mut it = v.permutations();
|
||
let (min_size, max_opt) = it.size_hint();
|
||
assert_eq!(min_size, 1);
|
||
assert_eq!(max_opt.unwrap(), 1);
|
||
assert_eq!(it.next(), Some(v.as_slice().to_owned()));
|
||
assert_eq!(it.next(), None);
|
||
}
|
||
{
|
||
let v = [1, 2, 3];
|
||
let mut it = v.permutations();
|
||
let (min_size, max_opt) = it.size_hint();
|
||
assert_eq!(min_size, 3*2);
|
||
assert_eq!(max_opt.unwrap(), 3*2);
|
||
assert_eq!(it.next(), Some(box [1,2,3]));
|
||
assert_eq!(it.next(), Some(box [1,3,2]));
|
||
assert_eq!(it.next(), Some(box [3,1,2]));
|
||
let (min_size, max_opt) = it.size_hint();
|
||
assert_eq!(min_size, 3);
|
||
assert_eq!(max_opt.unwrap(), 3);
|
||
assert_eq!(it.next(), Some(box [3,2,1]));
|
||
assert_eq!(it.next(), Some(box [2,3,1]));
|
||
assert_eq!(it.next(), Some(box [2,1,3]));
|
||
assert_eq!(it.next(), None);
|
||
}
|
||
{
|
||
// check that we have N! permutations
|
||
let v = ['A', 'B', 'C', 'D', 'E', 'F'];
|
||
let mut amt = 0;
|
||
let mut it = v.permutations();
|
||
let (min_size, max_opt) = it.size_hint();
|
||
for _perm in it {
|
||
amt += 1;
|
||
}
|
||
assert_eq!(amt, it.swaps.swaps_made);
|
||
assert_eq!(amt, min_size);
|
||
assert_eq!(amt, 2 * 3 * 4 * 5 * 6);
|
||
assert_eq!(amt, max_opt.unwrap());
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn test_lexicographic_permutations() {
|
||
let v : &mut[int] = &mut[1, 2, 3, 4, 5];
|
||
assert!(v.prev_permutation() == false);
|
||
assert!(v.next_permutation());
|
||
assert_eq!(v, &mut[1, 2, 3, 5, 4]);
|
||
assert!(v.prev_permutation());
|
||
assert_eq!(v, &mut[1, 2, 3, 4, 5]);
|
||
assert!(v.next_permutation());
|
||
assert!(v.next_permutation());
|
||
assert_eq!(v, &mut[1, 2, 4, 3, 5]);
|
||
assert!(v.next_permutation());
|
||
assert_eq!(v, &mut[1, 2, 4, 5, 3]);
|
||
|
||
let v : &mut[int] = &mut[1, 0, 0, 0];
|
||
assert!(v.next_permutation() == false);
|
||
assert!(v.prev_permutation());
|
||
assert_eq!(v, &mut[0, 1, 0, 0]);
|
||
assert!(v.prev_permutation());
|
||
assert_eq!(v, &mut[0, 0, 1, 0]);
|
||
assert!(v.prev_permutation());
|
||
assert_eq!(v, &mut[0, 0, 0, 1]);
|
||
assert!(v.prev_permutation() == false);
|
||
}
|
||
|
||
#[test]
|
||
fn test_lexicographic_permutations_empty_and_short() {
|
||
let empty : &mut[int] = &mut[];
|
||
assert!(empty.next_permutation() == false);
|
||
assert_eq!(empty, &mut[]);
|
||
assert!(empty.prev_permutation() == false);
|
||
assert_eq!(empty, &mut[]);
|
||
|
||
let one_elem : &mut[int] = &mut[4];
|
||
assert!(one_elem.prev_permutation() == false);
|
||
assert_eq!(one_elem, &mut[4]);
|
||
assert!(one_elem.next_permutation() == false);
|
||
assert_eq!(one_elem, &mut[4]);
|
||
|
||
let two_elem : &mut[int] = &mut[1, 2];
|
||
assert!(two_elem.prev_permutation() == false);
|
||
assert_eq!(two_elem, &mut[1, 2]);
|
||
assert!(two_elem.next_permutation());
|
||
assert_eq!(two_elem, &mut[2, 1]);
|
||
assert!(two_elem.next_permutation() == false);
|
||
assert_eq!(two_elem, &mut[2, 1]);
|
||
assert!(two_elem.prev_permutation());
|
||
assert_eq!(two_elem, &mut[1, 2]);
|
||
assert!(two_elem.prev_permutation() == false);
|
||
assert_eq!(two_elem, &mut[1, 2]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_position_elem() {
|
||
assert!([].position_elem(&1).is_none());
|
||
|
||
let v1 = box [1, 2, 3, 3, 2, 5];
|
||
assert_eq!(v1.position_elem(&1), Some(0u));
|
||
assert_eq!(v1.position_elem(&2), Some(1u));
|
||
assert_eq!(v1.position_elem(&5), Some(5u));
|
||
assert!(v1.position_elem(&4).is_none());
|
||
}
|
||
|
||
#[test]
|
||
fn test_bsearch_elem() {
|
||
assert_eq!([1,2,3,4,5].bsearch_elem(&5), Some(4));
|
||
assert_eq!([1,2,3,4,5].bsearch_elem(&4), Some(3));
|
||
assert_eq!([1,2,3,4,5].bsearch_elem(&3), Some(2));
|
||
assert_eq!([1,2,3,4,5].bsearch_elem(&2), Some(1));
|
||
assert_eq!([1,2,3,4,5].bsearch_elem(&1), Some(0));
|
||
|
||
assert_eq!([2,4,6,8,10].bsearch_elem(&1), None);
|
||
assert_eq!([2,4,6,8,10].bsearch_elem(&5), None);
|
||
assert_eq!([2,4,6,8,10].bsearch_elem(&4), Some(1));
|
||
assert_eq!([2,4,6,8,10].bsearch_elem(&10), Some(4));
|
||
|
||
assert_eq!([2,4,6,8].bsearch_elem(&1), None);
|
||
assert_eq!([2,4,6,8].bsearch_elem(&5), None);
|
||
assert_eq!([2,4,6,8].bsearch_elem(&4), Some(1));
|
||
assert_eq!([2,4,6,8].bsearch_elem(&8), Some(3));
|
||
|
||
assert_eq!([2,4,6].bsearch_elem(&1), None);
|
||
assert_eq!([2,4,6].bsearch_elem(&5), None);
|
||
assert_eq!([2,4,6].bsearch_elem(&4), Some(1));
|
||
assert_eq!([2,4,6].bsearch_elem(&6), Some(2));
|
||
|
||
assert_eq!([2,4].bsearch_elem(&1), None);
|
||
assert_eq!([2,4].bsearch_elem(&5), None);
|
||
assert_eq!([2,4].bsearch_elem(&2), Some(0));
|
||
assert_eq!([2,4].bsearch_elem(&4), Some(1));
|
||
|
||
assert_eq!([2].bsearch_elem(&1), None);
|
||
assert_eq!([2].bsearch_elem(&5), None);
|
||
assert_eq!([2].bsearch_elem(&2), Some(0));
|
||
|
||
assert_eq!([].bsearch_elem(&1), None);
|
||
assert_eq!([].bsearch_elem(&5), None);
|
||
|
||
assert!([1,1,1,1,1].bsearch_elem(&1) != None);
|
||
assert!([1,1,1,1,2].bsearch_elem(&1) != None);
|
||
assert!([1,1,1,2,2].bsearch_elem(&1) != None);
|
||
assert!([1,1,2,2,2].bsearch_elem(&1) != None);
|
||
assert_eq!([1,2,2,2,2].bsearch_elem(&1), Some(0));
|
||
|
||
assert_eq!([1,2,3,4,5].bsearch_elem(&6), None);
|
||
assert_eq!([1,2,3,4,5].bsearch_elem(&0), None);
|
||
}
|
||
|
||
#[test]
|
||
fn test_reverse() {
|
||
let mut v: ~[int] = box [10, 20];
|
||
assert_eq!(v[0], 10);
|
||
assert_eq!(v[1], 20);
|
||
v.reverse();
|
||
assert_eq!(v[0], 20);
|
||
assert_eq!(v[1], 10);
|
||
|
||
let mut v3: ~[int] = box [];
|
||
v3.reverse();
|
||
assert!(v3.is_empty());
|
||
}
|
||
|
||
#[test]
|
||
fn test_sort() {
|
||
for len in range(4u, 25) {
|
||
for _ in range(0, 100) {
|
||
let mut v = task_rng().gen_iter::<uint>().take(len)
|
||
.collect::<Vec<uint>>();
|
||
let mut v1 = v.clone();
|
||
|
||
v.as_mut_slice().sort();
|
||
assert!(v.as_slice().windows(2).all(|w| w[0] <= w[1]));
|
||
|
||
v1.as_mut_slice().sort_by(|a, b| a.cmp(b));
|
||
assert!(v1.as_slice().windows(2).all(|w| w[0] <= w[1]));
|
||
|
||
v1.as_mut_slice().sort_by(|a, b| b.cmp(a));
|
||
assert!(v1.as_slice().windows(2).all(|w| w[0] >= w[1]));
|
||
}
|
||
}
|
||
|
||
// shouldn't fail/crash
|
||
let mut v: [uint, .. 0] = [];
|
||
v.sort();
|
||
|
||
let mut v = [0xDEADBEEFu];
|
||
v.sort();
|
||
assert!(v == [0xDEADBEEF]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_sort_stability() {
|
||
for len in range(4, 25) {
|
||
for _ in range(0 , 10) {
|
||
let mut counts = [0, .. 10];
|
||
|
||
// create a vector like [(6, 1), (5, 1), (6, 2), ...],
|
||
// where the first item of each tuple is random, but
|
||
// the second item represents which occurrence of that
|
||
// number this element is, i.e. the second elements
|
||
// will occur in sorted order.
|
||
let mut v = range(0, len).map(|_| {
|
||
let n = task_rng().gen::<uint>() % 10;
|
||
counts[n] += 1;
|
||
(n, counts[n])
|
||
}).collect::<Vec<(uint, int)>>();
|
||
|
||
// only sort on the first element, so an unstable sort
|
||
// may mix up the counts.
|
||
v.sort_by(|&(a,_), &(b,_)| a.cmp(&b));
|
||
|
||
// this comparison includes the count (the second item
|
||
// of the tuple), so elements with equal first items
|
||
// will need to be ordered with increasing
|
||
// counts... i.e. exactly asserting that this sort is
|
||
// stable.
|
||
assert!(v.as_slice().windows(2).all(|w| w[0] <= w[1]));
|
||
}
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn test_partition() {
|
||
assert_eq!((box []).partition(|x: &int| *x < 3), (vec![], vec![]));
|
||
assert_eq!((box [1, 2, 3]).partition(|x: &int| *x < 4), (vec![1, 2, 3], vec![]));
|
||
assert_eq!((box [1, 2, 3]).partition(|x: &int| *x < 2), (vec![1], vec![2, 3]));
|
||
assert_eq!((box [1, 2, 3]).partition(|x: &int| *x < 0), (vec![], vec![1, 2, 3]));
|
||
}
|
||
|
||
#[test]
|
||
fn test_partitioned() {
|
||
assert_eq!(([]).partitioned(|x: &int| *x < 3), (vec![], vec![]));
|
||
assert_eq!(([1, 2, 3]).partitioned(|x: &int| *x < 4), (vec![1, 2, 3], vec![]));
|
||
assert_eq!(([1, 2, 3]).partitioned(|x: &int| *x < 2), (vec![1], vec![2, 3]));
|
||
assert_eq!(([1, 2, 3]).partitioned(|x: &int| *x < 0), (vec![], vec![1, 2, 3]));
|
||
}
|
||
|
||
#[test]
|
||
fn test_concat() {
|
||
let v: [~[int], ..0] = [];
|
||
assert_eq!(v.concat_vec(), vec![]);
|
||
assert_eq!([box [1], box [2,3]].concat_vec(), vec![1, 2, 3]);
|
||
|
||
assert_eq!([&[1], &[2,3]].concat_vec(), vec![1, 2, 3]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_connect() {
|
||
let v: [~[int], ..0] = [];
|
||
assert_eq!(v.connect_vec(&0), vec![]);
|
||
assert_eq!([box [1], box [2, 3]].connect_vec(&0), vec![1, 0, 2, 3]);
|
||
assert_eq!([box [1], box [2], box [3]].connect_vec(&0), vec![1, 0, 2, 0, 3]);
|
||
|
||
assert_eq!([&[1], &[2, 3]].connect_vec(&0), vec![1, 0, 2, 3]);
|
||
assert_eq!([&[1], &[2], &[3]].connect_vec(&0), vec![1, 0, 2, 0, 3]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_shift() {
|
||
let mut x = vec![1, 2, 3];
|
||
assert_eq!(x.shift(), Some(1));
|
||
assert_eq!(&x, &vec![2, 3]);
|
||
assert_eq!(x.shift(), Some(2));
|
||
assert_eq!(x.shift(), Some(3));
|
||
assert_eq!(x.shift(), None);
|
||
assert_eq!(x.len(), 0);
|
||
}
|
||
|
||
#[test]
|
||
fn test_unshift() {
|
||
let mut x = vec![1, 2, 3];
|
||
x.unshift(0);
|
||
assert_eq!(x, vec![0, 1, 2, 3]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_insert() {
|
||
let mut a = vec![1, 2, 4];
|
||
a.insert(2, 3);
|
||
assert_eq!(a, vec![1, 2, 3, 4]);
|
||
|
||
let mut a = vec![1, 2, 3];
|
||
a.insert(0, 0);
|
||
assert_eq!(a, vec![0, 1, 2, 3]);
|
||
|
||
let mut a = vec![1, 2, 3];
|
||
a.insert(3, 4);
|
||
assert_eq!(a, vec![1, 2, 3, 4]);
|
||
|
||
let mut a = vec![];
|
||
a.insert(0, 1);
|
||
assert_eq!(a, vec![1]);
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_insert_oob() {
|
||
let mut a = vec![1, 2, 3];
|
||
a.insert(4, 5);
|
||
}
|
||
|
||
#[test]
|
||
fn test_remove() {
|
||
let mut a = vec![1,2,3,4];
|
||
|
||
assert_eq!(a.remove(2), Some(3));
|
||
assert_eq!(a, vec![1,2,4]);
|
||
|
||
assert_eq!(a.remove(2), Some(4));
|
||
assert_eq!(a, vec![1,2]);
|
||
|
||
assert_eq!(a.remove(2), None);
|
||
assert_eq!(a, vec![1,2]);
|
||
|
||
assert_eq!(a.remove(0), Some(1));
|
||
assert_eq!(a, vec![2]);
|
||
|
||
assert_eq!(a.remove(0), Some(2));
|
||
assert_eq!(a, vec![]);
|
||
|
||
assert_eq!(a.remove(0), None);
|
||
assert_eq!(a.remove(10), None);
|
||
}
|
||
|
||
#[test]
|
||
fn test_capacity() {
|
||
let mut v = vec![0u64];
|
||
v.reserve_exact(10u);
|
||
assert_eq!(v.capacity(), 10u);
|
||
let mut v = vec![0u32];
|
||
v.reserve_exact(10u);
|
||
assert_eq!(v.capacity(), 10u);
|
||
}
|
||
|
||
#[test]
|
||
fn test_slice_2() {
|
||
let v = vec![1, 2, 3, 4, 5];
|
||
let v = v.slice(1u, 3u);
|
||
assert_eq!(v.len(), 2u);
|
||
assert_eq!(v[0], 2);
|
||
assert_eq!(v[1], 3);
|
||
}
|
||
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_from_fn_fail() {
|
||
Vec::from_fn(100, |v| {
|
||
if v == 50 { fail!() }
|
||
box 0
|
||
});
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_from_elem_fail() {
|
||
|
||
struct S {
|
||
f: Cell<int>,
|
||
boxes: (Box<int>, Rc<int>)
|
||
}
|
||
|
||
impl Clone for S {
|
||
fn clone(&self) -> S {
|
||
self.f.set(self.f.get() + 1);
|
||
if self.f.get() == 10 { fail!() }
|
||
S { f: self.f, boxes: self.boxes.clone() }
|
||
}
|
||
}
|
||
|
||
let s = S { f: Cell::new(0), boxes: (box 0, Rc::new(0)) };
|
||
let _ = Vec::from_elem(100, s);
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_grow_fn_fail() {
|
||
let mut v = vec![];
|
||
v.grow_fn(100, |i| {
|
||
if i == 50 {
|
||
fail!()
|
||
}
|
||
(box 0, Rc::new(0))
|
||
})
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_permute_fail() {
|
||
let v = [(box 0, Rc::new(0)), (box 0, Rc::new(0)),
|
||
(box 0, Rc::new(0)), (box 0, Rc::new(0))];
|
||
let mut i = 0;
|
||
for _ in v.permutations() {
|
||
if i == 2 {
|
||
fail!()
|
||
}
|
||
i += 1;
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_copy_memory_oob() {
|
||
unsafe {
|
||
let mut a = [1, 2, 3, 4];
|
||
let b = [1, 2, 3, 4, 5];
|
||
a.copy_memory(b);
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn test_total_ord() {
|
||
[1, 2, 3, 4].cmp(& &[1, 2, 3]) == Greater;
|
||
[1, 2, 3].cmp(& &[1, 2, 3, 4]) == Less;
|
||
[1, 2, 3, 4].cmp(& &[1, 2, 3, 4]) == Equal;
|
||
[1, 2, 3, 4, 5, 5, 5, 5].cmp(& &[1, 2, 3, 4, 5, 6]) == Less;
|
||
[2, 2].cmp(& &[1, 2, 3, 4]) == Greater;
|
||
}
|
||
|
||
#[test]
|
||
fn test_iterator() {
|
||
let xs = [1, 2, 5, 10, 11];
|
||
let mut it = xs.iter();
|
||
assert_eq!(it.size_hint(), (5, Some(5)));
|
||
assert_eq!(it.next().unwrap(), &1);
|
||
assert_eq!(it.size_hint(), (4, Some(4)));
|
||
assert_eq!(it.next().unwrap(), &2);
|
||
assert_eq!(it.size_hint(), (3, Some(3)));
|
||
assert_eq!(it.next().unwrap(), &5);
|
||
assert_eq!(it.size_hint(), (2, Some(2)));
|
||
assert_eq!(it.next().unwrap(), &10);
|
||
assert_eq!(it.size_hint(), (1, Some(1)));
|
||
assert_eq!(it.next().unwrap(), &11);
|
||
assert_eq!(it.size_hint(), (0, Some(0)));
|
||
assert!(it.next().is_none());
|
||
}
|
||
|
||
#[test]
|
||
fn test_random_access_iterator() {
|
||
let xs = [1, 2, 5, 10, 11];
|
||
let mut it = xs.iter();
|
||
|
||
assert_eq!(it.indexable(), 5);
|
||
assert_eq!(it.idx(0).unwrap(), &1);
|
||
assert_eq!(it.idx(2).unwrap(), &5);
|
||
assert_eq!(it.idx(4).unwrap(), &11);
|
||
assert!(it.idx(5).is_none());
|
||
|
||
assert_eq!(it.next().unwrap(), &1);
|
||
assert_eq!(it.indexable(), 4);
|
||
assert_eq!(it.idx(0).unwrap(), &2);
|
||
assert_eq!(it.idx(3).unwrap(), &11);
|
||
assert!(it.idx(4).is_none());
|
||
|
||
assert_eq!(it.next().unwrap(), &2);
|
||
assert_eq!(it.indexable(), 3);
|
||
assert_eq!(it.idx(1).unwrap(), &10);
|
||
assert!(it.idx(3).is_none());
|
||
|
||
assert_eq!(it.next().unwrap(), &5);
|
||
assert_eq!(it.indexable(), 2);
|
||
assert_eq!(it.idx(1).unwrap(), &11);
|
||
|
||
assert_eq!(it.next().unwrap(), &10);
|
||
assert_eq!(it.indexable(), 1);
|
||
assert_eq!(it.idx(0).unwrap(), &11);
|
||
assert!(it.idx(1).is_none());
|
||
|
||
assert_eq!(it.next().unwrap(), &11);
|
||
assert_eq!(it.indexable(), 0);
|
||
assert!(it.idx(0).is_none());
|
||
|
||
assert!(it.next().is_none());
|
||
}
|
||
|
||
#[test]
|
||
fn test_iter_size_hints() {
|
||
let mut xs = [1, 2, 5, 10, 11];
|
||
assert_eq!(xs.iter().size_hint(), (5, Some(5)));
|
||
assert_eq!(xs.mut_iter().size_hint(), (5, Some(5)));
|
||
}
|
||
|
||
#[test]
|
||
fn test_iter_clone() {
|
||
let xs = [1, 2, 5];
|
||
let mut it = xs.iter();
|
||
it.next();
|
||
let mut jt = it.clone();
|
||
assert_eq!(it.next(), jt.next());
|
||
assert_eq!(it.next(), jt.next());
|
||
assert_eq!(it.next(), jt.next());
|
||
}
|
||
|
||
#[test]
|
||
fn test_mut_iterator() {
|
||
let mut xs = [1, 2, 3, 4, 5];
|
||
for x in xs.mut_iter() {
|
||
*x += 1;
|
||
}
|
||
assert!(xs == [2, 3, 4, 5, 6])
|
||
}
|
||
|
||
#[test]
|
||
fn test_rev_iterator() {
|
||
|
||
let xs = [1, 2, 5, 10, 11];
|
||
let ys = [11, 10, 5, 2, 1];
|
||
let mut i = 0;
|
||
for &x in xs.iter().rev() {
|
||
assert_eq!(x, ys[i]);
|
||
i += 1;
|
||
}
|
||
assert_eq!(i, 5);
|
||
}
|
||
|
||
#[test]
|
||
fn test_mut_rev_iterator() {
|
||
let mut xs = [1u, 2, 3, 4, 5];
|
||
for (i,x) in xs.mut_iter().rev().enumerate() {
|
||
*x += i;
|
||
}
|
||
assert!(xs == [5, 5, 5, 5, 5])
|
||
}
|
||
|
||
#[test]
|
||
fn test_move_iterator() {
|
||
let xs = box [1u,2,3,4,5];
|
||
assert_eq!(xs.move_iter().fold(0, |a: uint, b: uint| 10*a + b), 12345);
|
||
}
|
||
|
||
#[test]
|
||
fn test_move_rev_iterator() {
|
||
let xs = box [1u,2,3,4,5];
|
||
assert_eq!(xs.move_iter().rev().fold(0, |a: uint, b: uint| 10*a + b), 54321);
|
||
}
|
||
|
||
#[test]
|
||
fn test_splitator() {
|
||
let xs = &[1i,2,3,4,5];
|
||
|
||
assert_eq!(xs.split(|x| *x % 2 == 0).collect::<Vec<&[int]>>().as_slice(),
|
||
&[&[1], &[3], &[5]]);
|
||
assert_eq!(xs.split(|x| *x == 1).collect::<Vec<&[int]>>().as_slice(),
|
||
&[&[], &[2,3,4,5]]);
|
||
assert_eq!(xs.split(|x| *x == 5).collect::<Vec<&[int]>>().as_slice(),
|
||
&[&[1,2,3,4], &[]]);
|
||
assert_eq!(xs.split(|x| *x == 10).collect::<Vec<&[int]>>().as_slice(),
|
||
&[&[1,2,3,4,5]]);
|
||
assert_eq!(xs.split(|_| true).collect::<Vec<&[int]>>().as_slice(),
|
||
&[&[], &[], &[], &[], &[], &[]]);
|
||
|
||
let xs: &[int] = &[];
|
||
assert_eq!(xs.split(|x| *x == 5).collect::<Vec<&[int]>>().as_slice(), &[&[]]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_splitnator() {
|
||
let xs = &[1i,2,3,4,5];
|
||
|
||
assert_eq!(xs.splitn(0, |x| *x % 2 == 0).collect::<Vec<&[int]>>().as_slice(),
|
||
&[&[1,2,3,4,5]]);
|
||
assert_eq!(xs.splitn(1, |x| *x % 2 == 0).collect::<Vec<&[int]>>().as_slice(),
|
||
&[&[1], &[3,4,5]]);
|
||
assert_eq!(xs.splitn(3, |_| true).collect::<Vec<&[int]>>().as_slice(),
|
||
&[&[], &[], &[], &[4,5]]);
|
||
|
||
let xs: &[int] = &[];
|
||
assert_eq!(xs.splitn(1, |x| *x == 5).collect::<Vec<&[int]>>().as_slice(), &[&[]]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_rsplitator() {
|
||
let xs = &[1i,2,3,4,5];
|
||
|
||
assert_eq!(xs.split(|x| *x % 2 == 0).rev().collect::<Vec<&[int]>>().as_slice(),
|
||
&[&[5], &[3], &[1]]);
|
||
assert_eq!(xs.split(|x| *x == 1).rev().collect::<Vec<&[int]>>().as_slice(),
|
||
&[&[2,3,4,5], &[]]);
|
||
assert_eq!(xs.split(|x| *x == 5).rev().collect::<Vec<&[int]>>().as_slice(),
|
||
&[&[], &[1,2,3,4]]);
|
||
assert_eq!(xs.split(|x| *x == 10).rev().collect::<Vec<&[int]>>().as_slice(),
|
||
&[&[1,2,3,4,5]]);
|
||
|
||
let xs: &[int] = &[];
|
||
assert_eq!(xs.split(|x| *x == 5).rev().collect::<Vec<&[int]>>().as_slice(), &[&[]]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_rsplitnator() {
|
||
let xs = &[1,2,3,4,5];
|
||
|
||
assert_eq!(xs.rsplitn(0, |x| *x % 2 == 0).collect::<Vec<&[int]>>().as_slice(),
|
||
&[&[1,2,3,4,5]]);
|
||
assert_eq!(xs.rsplitn(1, |x| *x % 2 == 0).collect::<Vec<&[int]>>().as_slice(),
|
||
&[&[5], &[1,2,3]]);
|
||
assert_eq!(xs.rsplitn(3, |_| true).collect::<Vec<&[int]>>().as_slice(),
|
||
&[&[], &[], &[], &[1,2]]);
|
||
|
||
let xs: &[int] = &[];
|
||
assert_eq!(xs.rsplitn(1, |x| *x == 5).collect::<Vec<&[int]>>().as_slice(), &[&[]]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_windowsator() {
|
||
let v = &[1i,2,3,4];
|
||
|
||
assert_eq!(v.windows(2).collect::<Vec<&[int]>>().as_slice(), &[&[1,2], &[2,3], &[3,4]]);
|
||
assert_eq!(v.windows(3).collect::<Vec<&[int]>>().as_slice(), &[&[1i,2,3], &[2,3,4]]);
|
||
assert!(v.windows(6).next().is_none());
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_windowsator_0() {
|
||
let v = &[1i,2,3,4];
|
||
let _it = v.windows(0);
|
||
}
|
||
|
||
#[test]
|
||
fn test_chunksator() {
|
||
let v = &[1i,2,3,4,5];
|
||
|
||
assert_eq!(v.chunks(2).collect::<Vec<&[int]>>().as_slice(), &[&[1i,2], &[3,4], &[5]]);
|
||
assert_eq!(v.chunks(3).collect::<Vec<&[int]>>().as_slice(), &[&[1i,2,3], &[4,5]]);
|
||
assert_eq!(v.chunks(6).collect::<Vec<&[int]>>().as_slice(), &[&[1i,2,3,4,5]]);
|
||
|
||
assert_eq!(v.chunks(2).rev().collect::<Vec<&[int]>>().as_slice(), &[&[5i], &[3,4], &[1,2]]);
|
||
let mut it = v.chunks(2);
|
||
assert_eq!(it.indexable(), 3);
|
||
assert_eq!(it.idx(0).unwrap(), &[1,2]);
|
||
assert_eq!(it.idx(1).unwrap(), &[3,4]);
|
||
assert_eq!(it.idx(2).unwrap(), &[5]);
|
||
assert_eq!(it.idx(3), None);
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_chunksator_0() {
|
||
let v = &[1i,2,3,4];
|
||
let _it = v.chunks(0);
|
||
}
|
||
|
||
#[test]
|
||
fn test_move_from() {
|
||
let mut a = [1,2,3,4,5];
|
||
let b = box [6,7,8];
|
||
assert_eq!(a.move_from(b, 0, 3), 3);
|
||
assert!(a == [6,7,8,4,5]);
|
||
let mut a = [7,2,8,1];
|
||
let b = box [3,1,4,1,5,9];
|
||
assert_eq!(a.move_from(b, 0, 6), 4);
|
||
assert!(a == [3,1,4,1]);
|
||
let mut a = [1,2,3,4];
|
||
let b = box [5,6,7,8,9,0];
|
||
assert_eq!(a.move_from(b, 2, 3), 1);
|
||
assert!(a == [7,2,3,4]);
|
||
let mut a = [1,2,3,4,5];
|
||
let b = box [5,6,7,8,9,0];
|
||
assert_eq!(a.mut_slice(2,4).move_from(b,1,6), 2);
|
||
assert!(a == [1,2,6,7,5]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_copy_from() {
|
||
let mut a = [1,2,3,4,5];
|
||
let b = [6,7,8];
|
||
assert_eq!(a.copy_from(b), 3);
|
||
assert!(a == [6,7,8,4,5]);
|
||
let mut c = [7,2,8,1];
|
||
let d = [3,1,4,1,5,9];
|
||
assert_eq!(c.copy_from(d), 4);
|
||
assert!(c == [3,1,4,1]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_reverse_part() {
|
||
let mut values = [1,2,3,4,5];
|
||
values.mut_slice(1, 4).reverse();
|
||
assert!(values == [1,4,3,2,5]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_show() {
|
||
macro_rules! test_show_vec(
|
||
($x:expr, $x_str:expr) => ({
|
||
let (x, x_str) = ($x, $x_str);
|
||
assert_eq!(format!("{}", x), x_str);
|
||
assert_eq!(format!("{}", x.as_slice()), x_str);
|
||
})
|
||
)
|
||
let empty: ~[int] = box [];
|
||
test_show_vec!(empty, "[]".to_string());
|
||
test_show_vec!(box [1], "[1]".to_string());
|
||
test_show_vec!(box [1, 2, 3], "[1, 2, 3]".to_string());
|
||
test_show_vec!(box [box [], box [1u], box [1u, 1u]],
|
||
"[[], [1], [1, 1]]".to_string());
|
||
|
||
let empty_mut: &mut [int] = &mut[];
|
||
test_show_vec!(empty_mut, "[]".to_string());
|
||
test_show_vec!(&mut[1], "[1]".to_string());
|
||
test_show_vec!(&mut[1, 2, 3], "[1, 2, 3]".to_string());
|
||
test_show_vec!(&mut[&mut[], &mut[1u], &mut[1u, 1u]],
|
||
"[[], [1], [1, 1]]".to_string());
|
||
}
|
||
|
||
#[test]
|
||
fn test_vec_default() {
|
||
macro_rules! t (
|
||
($ty:ty) => {{
|
||
let v: $ty = Default::default();
|
||
assert!(v.is_empty());
|
||
}}
|
||
);
|
||
|
||
t!(&[int]);
|
||
t!(~[int]);
|
||
t!(Vec<int>);
|
||
}
|
||
|
||
#[test]
|
||
fn test_bytes_set_memory() {
|
||
use slice::bytes::MutableByteVector;
|
||
let mut values = [1u8,2,3,4,5];
|
||
values.mut_slice(0,5).set_memory(0xAB);
|
||
assert!(values == [0xAB, 0xAB, 0xAB, 0xAB, 0xAB]);
|
||
values.mut_slice(2,4).set_memory(0xFF);
|
||
assert!(values == [0xAB, 0xAB, 0xFF, 0xFF, 0xAB]);
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_overflow_does_not_cause_segfault() {
|
||
let mut v = vec![];
|
||
v.reserve_exact(-1);
|
||
v.push(1);
|
||
v.push(2);
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_overflow_does_not_cause_segfault_managed() {
|
||
let mut v = vec![Rc::new(1)];
|
||
v.reserve_exact(-1);
|
||
v.push(Rc::new(2));
|
||
}
|
||
|
||
#[test]
|
||
fn test_mut_split_at() {
|
||
let mut values = [1u8,2,3,4,5];
|
||
{
|
||
let (left, right) = values.mut_split_at(2);
|
||
assert!(left.slice(0, left.len()) == [1, 2]);
|
||
for p in left.mut_iter() {
|
||
*p += 1;
|
||
}
|
||
|
||
assert!(right.slice(0, right.len()) == [3, 4, 5]);
|
||
for p in right.mut_iter() {
|
||
*p += 2;
|
||
}
|
||
}
|
||
|
||
assert!(values == [2, 3, 5, 6, 7]);
|
||
}
|
||
|
||
#[deriving(Clone, PartialEq)]
|
||
struct Foo;
|
||
|
||
#[test]
|
||
fn test_iter_zero_sized() {
|
||
let mut v = vec![Foo, Foo, Foo];
|
||
assert_eq!(v.len(), 3);
|
||
let mut cnt = 0;
|
||
|
||
for f in v.iter() {
|
||
assert!(*f == Foo);
|
||
cnt += 1;
|
||
}
|
||
assert_eq!(cnt, 3);
|
||
|
||
for f in v.slice(1, 3).iter() {
|
||
assert!(*f == Foo);
|
||
cnt += 1;
|
||
}
|
||
assert_eq!(cnt, 5);
|
||
|
||
for f in v.mut_iter() {
|
||
assert!(*f == Foo);
|
||
cnt += 1;
|
||
}
|
||
assert_eq!(cnt, 8);
|
||
|
||
for f in v.move_iter() {
|
||
assert!(f == Foo);
|
||
cnt += 1;
|
||
}
|
||
assert_eq!(cnt, 11);
|
||
|
||
let xs: [Foo, ..3] = [Foo, Foo, Foo];
|
||
cnt = 0;
|
||
for f in xs.iter() {
|
||
assert!(*f == Foo);
|
||
cnt += 1;
|
||
}
|
||
assert!(cnt == 3);
|
||
}
|
||
|
||
#[test]
|
||
fn test_shrink_to_fit() {
|
||
let mut xs = vec![0, 1, 2, 3];
|
||
for i in range(4, 100) {
|
||
xs.push(i)
|
||
}
|
||
assert_eq!(xs.capacity(), 128);
|
||
xs.shrink_to_fit();
|
||
assert_eq!(xs.capacity(), 100);
|
||
assert_eq!(xs, range(0, 100).collect::<Vec<_>>());
|
||
}
|
||
|
||
#[test]
|
||
fn test_starts_with() {
|
||
assert!(bytes!("foobar").starts_with(bytes!("foo")));
|
||
assert!(!bytes!("foobar").starts_with(bytes!("oob")));
|
||
assert!(!bytes!("foobar").starts_with(bytes!("bar")));
|
||
assert!(!bytes!("foo").starts_with(bytes!("foobar")));
|
||
assert!(!bytes!("bar").starts_with(bytes!("foobar")));
|
||
assert!(bytes!("foobar").starts_with(bytes!("foobar")));
|
||
let empty: &[u8] = [];
|
||
assert!(empty.starts_with(empty));
|
||
assert!(!empty.starts_with(bytes!("foo")));
|
||
assert!(bytes!("foobar").starts_with(empty));
|
||
}
|
||
|
||
#[test]
|
||
fn test_ends_with() {
|
||
assert!(bytes!("foobar").ends_with(bytes!("bar")));
|
||
assert!(!bytes!("foobar").ends_with(bytes!("oba")));
|
||
assert!(!bytes!("foobar").ends_with(bytes!("foo")));
|
||
assert!(!bytes!("foo").ends_with(bytes!("foobar")));
|
||
assert!(!bytes!("bar").ends_with(bytes!("foobar")));
|
||
assert!(bytes!("foobar").ends_with(bytes!("foobar")));
|
||
let empty: &[u8] = [];
|
||
assert!(empty.ends_with(empty));
|
||
assert!(!empty.ends_with(bytes!("foo")));
|
||
assert!(bytes!("foobar").ends_with(empty));
|
||
}
|
||
|
||
#[test]
|
||
fn test_shift_ref() {
|
||
let mut x: &[int] = [1, 2, 3, 4, 5];
|
||
let h = x.shift_ref();
|
||
assert_eq!(*h.unwrap(), 1);
|
||
assert_eq!(x.len(), 4);
|
||
assert_eq!(x[0], 2);
|
||
assert_eq!(x[3], 5);
|
||
|
||
let mut y: &[int] = [];
|
||
assert_eq!(y.shift_ref(), None);
|
||
}
|
||
|
||
#[test]
|
||
fn test_pop_ref() {
|
||
let mut x: &[int] = [1, 2, 3, 4, 5];
|
||
let h = x.pop_ref();
|
||
assert_eq!(*h.unwrap(), 5);
|
||
assert_eq!(x.len(), 4);
|
||
assert_eq!(x[0], 1);
|
||
assert_eq!(x[3], 4);
|
||
|
||
let mut y: &[int] = [];
|
||
assert!(y.pop_ref().is_none());
|
||
}
|
||
|
||
#[test]
|
||
fn test_mut_splitator() {
|
||
let mut xs = [0,1,0,2,3,0,0,4,5,0];
|
||
assert_eq!(xs.mut_split(|x| *x == 0).count(), 6);
|
||
for slice in xs.mut_split(|x| *x == 0) {
|
||
slice.reverse();
|
||
}
|
||
assert!(xs == [0,1,0,3,2,0,0,5,4,0]);
|
||
|
||
let mut xs = [0,1,0,2,3,0,0,4,5,0,6,7];
|
||
for slice in xs.mut_split(|x| *x == 0).take(5) {
|
||
slice.reverse();
|
||
}
|
||
assert!(xs == [0,1,0,3,2,0,0,5,4,0,6,7]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_mut_splitator_rev() {
|
||
let mut xs = [1,2,0,3,4,0,0,5,6,0];
|
||
for slice in xs.mut_split(|x| *x == 0).rev().take(4) {
|
||
slice.reverse();
|
||
}
|
||
assert!(xs == [1,2,0,4,3,0,0,6,5,0]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_mut_chunks() {
|
||
let mut v = [0u8, 1, 2, 3, 4, 5, 6];
|
||
for (i, chunk) in v.mut_chunks(3).enumerate() {
|
||
for x in chunk.mut_iter() {
|
||
*x = i as u8;
|
||
}
|
||
}
|
||
let result = [0u8, 0, 0, 1, 1, 1, 2];
|
||
assert!(v == result);
|
||
}
|
||
|
||
#[test]
|
||
fn test_mut_chunks_rev() {
|
||
let mut v = [0u8, 1, 2, 3, 4, 5, 6];
|
||
for (i, chunk) in v.mut_chunks(3).rev().enumerate() {
|
||
for x in chunk.mut_iter() {
|
||
*x = i as u8;
|
||
}
|
||
}
|
||
let result = [2u8, 2, 2, 1, 1, 1, 0];
|
||
assert!(v == result);
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_mut_chunks_0() {
|
||
let mut v = [1, 2, 3, 4];
|
||
let _it = v.mut_chunks(0);
|
||
}
|
||
|
||
#[test]
|
||
fn test_mut_shift_ref() {
|
||
let mut x: &mut [int] = [1, 2, 3, 4, 5];
|
||
let h = x.mut_shift_ref();
|
||
assert_eq!(*h.unwrap(), 1);
|
||
assert_eq!(x.len(), 4);
|
||
assert_eq!(x[0], 2);
|
||
assert_eq!(x[3], 5);
|
||
|
||
let mut y: &mut [int] = [];
|
||
assert!(y.mut_shift_ref().is_none());
|
||
}
|
||
|
||
#[test]
|
||
fn test_mut_pop_ref() {
|
||
let mut x: &mut [int] = [1, 2, 3, 4, 5];
|
||
let h = x.mut_pop_ref();
|
||
assert_eq!(*h.unwrap(), 5);
|
||
assert_eq!(x.len(), 4);
|
||
assert_eq!(x[0], 1);
|
||
assert_eq!(x[3], 4);
|
||
|
||
let mut y: &mut [int] = [];
|
||
assert!(y.mut_pop_ref().is_none());
|
||
}
|
||
|
||
#[test]
|
||
fn test_mut_last() {
|
||
let mut x = [1, 2, 3, 4, 5];
|
||
let h = x.mut_last();
|
||
assert_eq!(*h.unwrap(), 5);
|
||
|
||
let y: &mut [int] = [];
|
||
assert!(y.mut_last().is_none());
|
||
}
|
||
}
|
||
|
||
#[cfg(test)]
|
||
mod bench {
|
||
use std::prelude::*;
|
||
use std::rand::{weak_rng, Rng};
|
||
use std::mem;
|
||
use std::ptr;
|
||
use test::Bencher;
|
||
|
||
use vec::Vec;
|
||
|
||
#[bench]
|
||
fn iterator(b: &mut Bencher) {
|
||
// peculiar numbers to stop LLVM from optimising the summation
|
||
// out.
|
||
let v = Vec::from_fn(100, |i| i ^ (i << 1) ^ (i >> 1));
|
||
|
||
b.iter(|| {
|
||
let mut sum = 0;
|
||
for x in v.iter() {
|
||
sum += *x;
|
||
}
|
||
// sum == 11806, to stop dead code elimination.
|
||
if sum == 0 {fail!()}
|
||
})
|
||
}
|
||
|
||
#[bench]
|
||
fn mut_iterator(b: &mut Bencher) {
|
||
let mut v = Vec::from_elem(100, 0);
|
||
|
||
b.iter(|| {
|
||
let mut i = 0;
|
||
for x in v.mut_iter() {
|
||
*x = i;
|
||
i += 1;
|
||
}
|
||
})
|
||
}
|
||
|
||
#[bench]
|
||
fn concat(b: &mut Bencher) {
|
||
let xss: Vec<Vec<uint>> = Vec::from_fn(100, |i| range(0, i).collect());
|
||
b.iter(|| {
|
||
xss.as_slice().concat_vec()
|
||
});
|
||
}
|
||
|
||
#[bench]
|
||
fn connect(b: &mut Bencher) {
|
||
let xss: Vec<Vec<uint>> = Vec::from_fn(100, |i| range(0, i).collect());
|
||
b.iter(|| {
|
||
xss.as_slice().connect_vec(&0)
|
||
});
|
||
}
|
||
|
||
#[bench]
|
||
fn push(b: &mut Bencher) {
|
||
let mut vec: Vec<uint> = vec![];
|
||
b.iter(|| {
|
||
vec.push(0);
|
||
&vec
|
||
})
|
||
}
|
||
|
||
#[bench]
|
||
fn starts_with_same_vector(b: &mut Bencher) {
|
||
let vec: Vec<uint> = Vec::from_fn(100, |i| i);
|
||
b.iter(|| {
|
||
vec.as_slice().starts_with(vec.as_slice())
|
||
})
|
||
}
|
||
|
||
#[bench]
|
||
fn starts_with_single_element(b: &mut Bencher) {
|
||
let vec: Vec<uint> = vec![0];
|
||
b.iter(|| {
|
||
vec.as_slice().starts_with(vec.as_slice())
|
||
})
|
||
}
|
||
|
||
#[bench]
|
||
fn starts_with_diff_one_element_at_end(b: &mut Bencher) {
|
||
let vec: Vec<uint> = Vec::from_fn(100, |i| i);
|
||
let mut match_vec: Vec<uint> = Vec::from_fn(99, |i| i);
|
||
match_vec.push(0);
|
||
b.iter(|| {
|
||
vec.as_slice().starts_with(match_vec.as_slice())
|
||
})
|
||
}
|
||
|
||
#[bench]
|
||
fn ends_with_same_vector(b: &mut Bencher) {
|
||
let vec: Vec<uint> = Vec::from_fn(100, |i| i);
|
||
b.iter(|| {
|
||
vec.as_slice().ends_with(vec.as_slice())
|
||
})
|
||
}
|
||
|
||
#[bench]
|
||
fn ends_with_single_element(b: &mut Bencher) {
|
||
let vec: Vec<uint> = vec![0];
|
||
b.iter(|| {
|
||
vec.as_slice().ends_with(vec.as_slice())
|
||
})
|
||
}
|
||
|
||
#[bench]
|
||
fn ends_with_diff_one_element_at_beginning(b: &mut Bencher) {
|
||
let vec: Vec<uint> = Vec::from_fn(100, |i| i);
|
||
let mut match_vec: Vec<uint> = Vec::from_fn(100, |i| i);
|
||
match_vec.as_mut_slice()[0] = 200;
|
||
b.iter(|| {
|
||
vec.as_slice().starts_with(match_vec.as_slice())
|
||
})
|
||
}
|
||
|
||
#[bench]
|
||
fn contains_last_element(b: &mut Bencher) {
|
||
let vec: Vec<uint> = Vec::from_fn(100, |i| i);
|
||
b.iter(|| {
|
||
vec.contains(&99u)
|
||
})
|
||
}
|
||
|
||
#[bench]
|
||
fn zero_1kb_from_elem(b: &mut Bencher) {
|
||
b.iter(|| {
|
||
Vec::from_elem(1024, 0u8)
|
||
});
|
||
}
|
||
|
||
#[bench]
|
||
fn zero_1kb_set_memory(b: &mut Bencher) {
|
||
b.iter(|| {
|
||
let mut v: Vec<uint> = Vec::with_capacity(1024);
|
||
unsafe {
|
||
let vp = v.as_mut_ptr();
|
||
ptr::set_memory(vp, 0, 1024);
|
||
v.set_len(1024);
|
||
}
|
||
v
|
||
});
|
||
}
|
||
|
||
#[bench]
|
||
fn zero_1kb_fixed_repeat(b: &mut Bencher) {
|
||
b.iter(|| {
|
||
box [0u8, ..1024]
|
||
});
|
||
}
|
||
|
||
#[bench]
|
||
fn zero_1kb_loop_set(b: &mut Bencher) {
|
||
b.iter(|| {
|
||
let mut v: Vec<uint> = Vec::with_capacity(1024);
|
||
unsafe {
|
||
v.set_len(1024);
|
||
}
|
||
for i in range(0u, 1024) {
|
||
*v.get_mut(i) = 0;
|
||
}
|
||
});
|
||
}
|
||
|
||
#[bench]
|
||
fn zero_1kb_mut_iter(b: &mut Bencher) {
|
||
b.iter(|| {
|
||
let mut v = Vec::with_capacity(1024);
|
||
unsafe {
|
||
v.set_len(1024);
|
||
}
|
||
for x in v.mut_iter() {
|
||
*x = 0;
|
||
}
|
||
v
|
||
});
|
||
}
|
||
|
||
#[bench]
|
||
fn random_inserts(b: &mut Bencher) {
|
||
let mut rng = weak_rng();
|
||
b.iter(|| {
|
||
let mut v = Vec::from_elem(30, (0u, 0u));
|
||
for _ in range(0, 100) {
|
||
let l = v.len();
|
||
v.insert(rng.gen::<uint>() % (l + 1),
|
||
(1, 1));
|
||
}
|
||
})
|
||
}
|
||
#[bench]
|
||
fn random_removes(b: &mut Bencher) {
|
||
let mut rng = weak_rng();
|
||
b.iter(|| {
|
||
let mut v = Vec::from_elem(130, (0u, 0u));
|
||
for _ in range(0, 100) {
|
||
let l = v.len();
|
||
v.remove(rng.gen::<uint>() % l);
|
||
}
|
||
})
|
||
}
|
||
|
||
#[bench]
|
||
fn sort_random_small(b: &mut Bencher) {
|
||
let mut rng = weak_rng();
|
||
b.iter(|| {
|
||
let mut v = rng.gen_iter::<u64>().take(5).collect::<Vec<u64>>();
|
||
v.as_mut_slice().sort();
|
||
});
|
||
b.bytes = 5 * mem::size_of::<u64>() as u64;
|
||
}
|
||
|
||
#[bench]
|
||
fn sort_random_medium(b: &mut Bencher) {
|
||
let mut rng = weak_rng();
|
||
b.iter(|| {
|
||
let mut v = rng.gen_iter::<u64>().take(100).collect::<Vec<u64>>();
|
||
v.as_mut_slice().sort();
|
||
});
|
||
b.bytes = 100 * mem::size_of::<u64>() as u64;
|
||
}
|
||
|
||
#[bench]
|
||
fn sort_random_large(b: &mut Bencher) {
|
||
let mut rng = weak_rng();
|
||
b.iter(|| {
|
||
let mut v = rng.gen_iter::<u64>().take(10000).collect::<Vec<u64>>();
|
||
v.as_mut_slice().sort();
|
||
});
|
||
b.bytes = 10000 * mem::size_of::<u64>() as u64;
|
||
}
|
||
|
||
#[bench]
|
||
fn sort_sorted(b: &mut Bencher) {
|
||
let mut v = Vec::from_fn(10000, |i| i);
|
||
b.iter(|| {
|
||
v.sort();
|
||
});
|
||
b.bytes = (v.len() * mem::size_of_val(v.get(0))) as u64;
|
||
}
|
||
|
||
type BigSortable = (u64,u64,u64,u64);
|
||
|
||
#[bench]
|
||
fn sort_big_random_small(b: &mut Bencher) {
|
||
let mut rng = weak_rng();
|
||
b.iter(|| {
|
||
let mut v = rng.gen_iter::<BigSortable>().take(5)
|
||
.collect::<Vec<BigSortable>>();
|
||
v.sort();
|
||
});
|
||
b.bytes = 5 * mem::size_of::<BigSortable>() as u64;
|
||
}
|
||
|
||
#[bench]
|
||
fn sort_big_random_medium(b: &mut Bencher) {
|
||
let mut rng = weak_rng();
|
||
b.iter(|| {
|
||
let mut v = rng.gen_iter::<BigSortable>().take(100)
|
||
.collect::<Vec<BigSortable>>();
|
||
v.sort();
|
||
});
|
||
b.bytes = 100 * mem::size_of::<BigSortable>() as u64;
|
||
}
|
||
|
||
#[bench]
|
||
fn sort_big_random_large(b: &mut Bencher) {
|
||
let mut rng = weak_rng();
|
||
b.iter(|| {
|
||
let mut v = rng.gen_iter::<BigSortable>().take(10000)
|
||
.collect::<Vec<BigSortable>>();
|
||
v.sort();
|
||
});
|
||
b.bytes = 10000 * mem::size_of::<BigSortable>() as u64;
|
||
}
|
||
|
||
#[bench]
|
||
fn sort_big_sorted(b: &mut Bencher) {
|
||
let mut v = Vec::from_fn(10000u, |i| (i, i, i, i));
|
||
b.iter(|| {
|
||
v.sort();
|
||
});
|
||
b.bytes = (v.len() * mem::size_of_val(v.get(0))) as u64;
|
||
}
|
||
}
|