rust/src/libstd/io/net/udp.rs
Aaron Turon e0ede9c6b3 Stabilization for owned (now boxed) and cell
This PR is the outcome of the library stabilization meeting for the
`liballoc::owned` and `libcore::cell` modules.

Aside from the stability attributes, there are a few breaking changes:

* The `owned` modules is now named `boxed`, to better represent its
  contents. (`box` was unavailable, since it's a keyword.) This will
  help avoid the misconception that `Box` plays a special role wrt
  ownership.

* The `AnyOwnExt` extension trait is renamed to `BoxAny`, and its `move`
  method is renamed to `downcast`, in both cases to improve clarity.

* The recently-added `AnySendOwnExt` extension trait is removed; it was
  not being used and is unnecessary.

[breaking-change]
2014-07-13 12:52:51 -07:00

600 lines
19 KiB
Rust

// Copyright 2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! UDP (User Datagram Protocol) network connections.
//!
//! This module contains the ability to open a UDP stream to a socket address.
//! The destination and binding addresses can either be an IPv4 or IPv6
//! address. There is no corresponding notion of a server because UDP is a
//! datagram protocol.
use clone::Clone;
use io::net::ip::{SocketAddr, IpAddr};
use io::{Reader, Writer, IoResult, IoError};
use kinds::Send;
use boxed::Box;
use option::Option;
use result::{Ok, Err};
use rt::rtio::{RtioSocket, RtioUdpSocket, IoFactory, LocalIo};
use rt::rtio;
/// A User Datagram Protocol socket.
///
/// This is an implementation of a bound UDP socket. This supports both IPv4 and
/// IPv6 addresses, and there is no corresponding notion of a server because UDP
/// is a datagram protocol.
///
/// # Example
///
/// ```rust,no_run
/// # #![allow(unused_must_use)]
/// use std::io::net::udp::UdpSocket;
/// use std::io::net::ip::{Ipv4Addr, SocketAddr};
///
/// let addr = SocketAddr { ip: Ipv4Addr(127, 0, 0, 1), port: 34254 };
/// let mut socket = match UdpSocket::bind(addr) {
/// Ok(s) => s,
/// Err(e) => fail!("couldn't bind socket: {}", e),
/// };
///
/// let mut buf = [0, ..10];
/// match socket.recv_from(buf) {
/// Ok((amt, src)) => {
/// // Send a reply to the socket we received data from
/// let buf = buf.mut_slice_to(amt);
/// buf.reverse();
/// socket.send_to(buf, src);
/// }
/// Err(e) => println!("couldn't receive a datagram: {}", e)
/// }
/// drop(socket); // close the socket
/// ```
pub struct UdpSocket {
obj: Box<RtioUdpSocket + Send>,
}
impl UdpSocket {
/// Creates a UDP socket from the given socket address.
pub fn bind(addr: SocketAddr) -> IoResult<UdpSocket> {
let SocketAddr { ip, port } = addr;
LocalIo::maybe_raise(|io| {
let addr = rtio::SocketAddr { ip: super::to_rtio(ip), port: port };
io.udp_bind(addr).map(|s| UdpSocket { obj: s })
}).map_err(IoError::from_rtio_error)
}
/// Receives data from the socket. On success, returns the number of bytes
/// read and the address from whence the data came.
pub fn recv_from(&mut self, buf: &mut [u8])
-> IoResult<(uint, SocketAddr)> {
match self.obj.recv_from(buf) {
Ok((amt, rtio::SocketAddr { ip, port })) => {
Ok((amt, SocketAddr { ip: super::from_rtio(ip), port: port }))
}
Err(e) => Err(IoError::from_rtio_error(e)),
}
}
#[allow(missing_doc)]
#[deprecated = "renamed to `recv_from`"]
pub fn recvfrom(&mut self, buf: &mut [u8])
-> IoResult<(uint, SocketAddr)> {
self.recv_from(buf)
}
/// Sends data on the socket to the given address. Returns nothing on
/// success.
pub fn send_to(&mut self, buf: &[u8], dst: SocketAddr) -> IoResult<()> {
self.obj.send_to(buf, rtio::SocketAddr {
ip: super::to_rtio(dst.ip),
port: dst.port,
}).map_err(IoError::from_rtio_error)
}
#[allow(missing_doc)]
#[deprecated = "renamed to `send_to`"]
pub fn sendto(&mut self, buf: &[u8], dst: SocketAddr) -> IoResult<()> {
self.send_to(buf, dst)
}
/// Creates a `UdpStream`, which allows use of the `Reader` and `Writer`
/// traits to receive and send data from the same address. This transfers
/// ownership of the socket to the stream.
///
/// Note that this call does not perform any actual network communication,
/// because UDP is a datagram protocol.
pub fn connect(self, other: SocketAddr) -> UdpStream {
UdpStream {
socket: self,
connected_to: other,
}
}
/// Returns the socket address that this socket was created from.
pub fn socket_name(&mut self) -> IoResult<SocketAddr> {
match self.obj.socket_name() {
Ok(a) => Ok(SocketAddr { ip: super::from_rtio(a.ip), port: a.port }),
Err(e) => Err(IoError::from_rtio_error(e))
}
}
/// Joins a multicast IP address (becomes a member of it)
#[experimental]
pub fn join_multicast(&mut self, multi: IpAddr) -> IoResult<()> {
let e = self.obj.join_multicast(super::to_rtio(multi));
e.map_err(IoError::from_rtio_error)
}
/// Leaves a multicast IP address (drops membership from it)
#[experimental]
pub fn leave_multicast(&mut self, multi: IpAddr) -> IoResult<()> {
let e = self.obj.leave_multicast(super::to_rtio(multi));
e.map_err(IoError::from_rtio_error)
}
/// Set the multicast loop flag to the specified value
///
/// This lets multicast packets loop back to local sockets (if enabled)
#[experimental]
pub fn set_multicast_loop(&mut self, on: bool) -> IoResult<()> {
if on {
self.obj.loop_multicast_locally()
} else {
self.obj.dont_loop_multicast_locally()
}.map_err(IoError::from_rtio_error)
}
/// Sets the multicast TTL
#[experimental]
pub fn set_multicast_ttl(&mut self, ttl: int) -> IoResult<()> {
self.obj.multicast_time_to_live(ttl).map_err(IoError::from_rtio_error)
}
/// Sets this socket's TTL
#[experimental]
pub fn set_ttl(&mut self, ttl: int) -> IoResult<()> {
self.obj.time_to_live(ttl).map_err(IoError::from_rtio_error)
}
/// Sets the broadcast flag on or off
#[experimental]
pub fn set_broadcast(&mut self, broadcast: bool) -> IoResult<()> {
if broadcast {
self.obj.hear_broadcasts()
} else {
self.obj.ignore_broadcasts()
}.map_err(IoError::from_rtio_error)
}
/// Sets the broadcast flag on or off
#[deprecated="renamed to `set_broadcast`"]
pub fn set_broadast(&mut self, broadcast: bool) -> IoResult<()> {
self.set_broadcast(broadcast)
}
/// Sets the read/write timeout for this socket.
///
/// For more information, see `TcpStream::set_timeout`
#[experimental = "the timeout argument may change in type and value"]
pub fn set_timeout(&mut self, timeout_ms: Option<u64>) {
self.obj.set_timeout(timeout_ms)
}
/// Sets the read timeout for this socket.
///
/// For more information, see `TcpStream::set_timeout`
#[experimental = "the timeout argument may change in type and value"]
pub fn set_read_timeout(&mut self, timeout_ms: Option<u64>) {
self.obj.set_read_timeout(timeout_ms)
}
/// Sets the write timeout for this socket.
///
/// For more information, see `TcpStream::set_timeout`
#[experimental = "the timeout argument may change in type and value"]
pub fn set_write_timeout(&mut self, timeout_ms: Option<u64>) {
self.obj.set_write_timeout(timeout_ms)
}
}
impl Clone for UdpSocket {
/// Creates a new handle to this UDP socket, allowing for simultaneous
/// reads and writes of the socket.
///
/// The underlying UDP socket will not be closed until all handles to the
/// socket have been deallocated. Two concurrent reads will not receive
/// the same data. Instead, the first read will receive the first packet
/// received, and the second read will receive the second packet.
fn clone(&self) -> UdpSocket {
UdpSocket {
obj: self.obj.clone(),
}
}
}
/// A type that allows convenient usage of a UDP stream connected to one
/// address via the `Reader` and `Writer` traits.
pub struct UdpStream {
socket: UdpSocket,
connected_to: SocketAddr
}
impl UdpStream {
/// Allows access to the underlying UDP socket owned by this stream. This
/// is useful to, for example, use the socket to send data to hosts other
/// than the one that this stream is connected to.
pub fn as_socket<T>(&mut self, f: |&mut UdpSocket| -> T) -> T {
f(&mut self.socket)
}
/// Consumes this UDP stream and returns out the underlying socket.
pub fn disconnect(self) -> UdpSocket {
self.socket
}
}
impl Reader for UdpStream {
fn read(&mut self, buf: &mut [u8]) -> IoResult<uint> {
let peer = self.connected_to;
self.as_socket(|sock| {
match sock.recv_from(buf) {
Ok((_nread, src)) if src != peer => Ok(0),
Ok((nread, _src)) => Ok(nread),
Err(e) => Err(e),
}
})
}
}
impl Writer for UdpStream {
fn write(&mut self, buf: &[u8]) -> IoResult<()> {
let connected_to = self.connected_to;
self.as_socket(|sock| sock.send_to(buf, connected_to))
}
}
#[cfg(test)]
#[allow(experimental)]
mod test {
use super::*;
use io::net::ip::{SocketAddr};
// FIXME #11530 this fails on android because tests are run as root
iotest!(fn bind_error() {
let addr = SocketAddr { ip: Ipv4Addr(0, 0, 0, 0), port: 1 };
match UdpSocket::bind(addr) {
Ok(..) => fail!(),
Err(e) => assert_eq!(e.kind, PermissionDenied),
}
} #[ignore(cfg(windows))] #[ignore(cfg(target_os = "android"))])
iotest!(fn socket_smoke_test_ip4() {
let server_ip = next_test_ip4();
let client_ip = next_test_ip4();
let (tx1, rx1) = channel();
let (tx2, rx2) = channel();
spawn(proc() {
match UdpSocket::bind(client_ip) {
Ok(ref mut client) => {
rx1.recv();
client.send_to([99], server_ip).unwrap()
}
Err(..) => fail!()
}
tx2.send(());
});
match UdpSocket::bind(server_ip) {
Ok(ref mut server) => {
tx1.send(());
let mut buf = [0];
match server.recv_from(buf) {
Ok((nread, src)) => {
assert_eq!(nread, 1);
assert_eq!(buf[0], 99);
assert_eq!(src, client_ip);
}
Err(..) => fail!()
}
}
Err(..) => fail!()
}
rx2.recv();
})
iotest!(fn socket_smoke_test_ip6() {
let server_ip = next_test_ip6();
let client_ip = next_test_ip6();
let (tx, rx) = channel::<()>();
spawn(proc() {
match UdpSocket::bind(client_ip) {
Ok(ref mut client) => {
rx.recv();
client.send_to([99], server_ip).unwrap()
}
Err(..) => fail!()
}
});
match UdpSocket::bind(server_ip) {
Ok(ref mut server) => {
tx.send(());
let mut buf = [0];
match server.recv_from(buf) {
Ok((nread, src)) => {
assert_eq!(nread, 1);
assert_eq!(buf[0], 99);
assert_eq!(src, client_ip);
}
Err(..) => fail!()
}
}
Err(..) => fail!()
}
})
iotest!(fn stream_smoke_test_ip4() {
let server_ip = next_test_ip4();
let client_ip = next_test_ip4();
let (tx1, rx1) = channel();
let (tx2, rx2) = channel();
spawn(proc() {
match UdpSocket::bind(client_ip) {
Ok(client) => {
let client = box client;
let mut stream = client.connect(server_ip);
rx1.recv();
stream.write([99]).unwrap();
}
Err(..) => fail!()
}
tx2.send(());
});
match UdpSocket::bind(server_ip) {
Ok(server) => {
let server = box server;
let mut stream = server.connect(client_ip);
tx1.send(());
let mut buf = [0];
match stream.read(buf) {
Ok(nread) => {
assert_eq!(nread, 1);
assert_eq!(buf[0], 99);
}
Err(..) => fail!()
}
}
Err(..) => fail!()
}
rx2.recv();
})
iotest!(fn stream_smoke_test_ip6() {
let server_ip = next_test_ip6();
let client_ip = next_test_ip6();
let (tx1, rx1) = channel();
let (tx2, rx2) = channel();
spawn(proc() {
match UdpSocket::bind(client_ip) {
Ok(client) => {
let client = box client;
let mut stream = client.connect(server_ip);
rx1.recv();
stream.write([99]).unwrap();
}
Err(..) => fail!()
}
tx2.send(());
});
match UdpSocket::bind(server_ip) {
Ok(server) => {
let server = box server;
let mut stream = server.connect(client_ip);
tx1.send(());
let mut buf = [0];
match stream.read(buf) {
Ok(nread) => {
assert_eq!(nread, 1);
assert_eq!(buf[0], 99);
}
Err(..) => fail!()
}
}
Err(..) => fail!()
}
rx2.recv();
})
pub fn socket_name(addr: SocketAddr) {
let server = UdpSocket::bind(addr);
assert!(server.is_ok());
let mut server = server.unwrap();
// Make sure socket_name gives
// us the socket we binded to.
let so_name = server.socket_name();
assert!(so_name.is_ok());
assert_eq!(addr, so_name.unwrap());
}
iotest!(fn socket_name_ip4() {
socket_name(next_test_ip4());
})
iotest!(fn socket_name_ip6() {
socket_name(next_test_ip6());
})
iotest!(fn udp_clone_smoke() {
let addr1 = next_test_ip4();
let addr2 = next_test_ip4();
let mut sock1 = UdpSocket::bind(addr1).unwrap();
let sock2 = UdpSocket::bind(addr2).unwrap();
spawn(proc() {
let mut sock2 = sock2;
let mut buf = [0, 0];
assert_eq!(sock2.recv_from(buf), Ok((1, addr1)));
assert_eq!(buf[0], 1);
sock2.send_to([2], addr1).unwrap();
});
let sock3 = sock1.clone();
let (tx1, rx1) = channel();
let (tx2, rx2) = channel();
spawn(proc() {
let mut sock3 = sock3;
rx1.recv();
sock3.send_to([1], addr2).unwrap();
tx2.send(());
});
tx1.send(());
let mut buf = [0, 0];
assert_eq!(sock1.recv_from(buf), Ok((1, addr2)));
rx2.recv();
})
iotest!(fn udp_clone_two_read() {
let addr1 = next_test_ip4();
let addr2 = next_test_ip4();
let mut sock1 = UdpSocket::bind(addr1).unwrap();
let sock2 = UdpSocket::bind(addr2).unwrap();
let (tx1, rx) = channel();
let tx2 = tx1.clone();
spawn(proc() {
let mut sock2 = sock2;
sock2.send_to([1], addr1).unwrap();
rx.recv();
sock2.send_to([2], addr1).unwrap();
rx.recv();
});
let sock3 = sock1.clone();
let (done, rx) = channel();
spawn(proc() {
let mut sock3 = sock3;
let mut buf = [0, 0];
sock3.recv_from(buf).unwrap();
tx2.send(());
done.send(());
});
let mut buf = [0, 0];
sock1.recv_from(buf).unwrap();
tx1.send(());
rx.recv();
})
iotest!(fn udp_clone_two_write() {
let addr1 = next_test_ip4();
let addr2 = next_test_ip4();
let mut sock1 = UdpSocket::bind(addr1).unwrap();
let sock2 = UdpSocket::bind(addr2).unwrap();
let (tx, rx) = channel();
let (serv_tx, serv_rx) = channel();
spawn(proc() {
let mut sock2 = sock2;
let mut buf = [0, 1];
rx.recv();
match sock2.recv_from(buf) {
Ok(..) => {}
Err(e) => fail!("failed receive: {}", e),
}
serv_tx.send(());
});
let sock3 = sock1.clone();
let (done, rx) = channel();
let tx2 = tx.clone();
spawn(proc() {
let mut sock3 = sock3;
match sock3.send_to([1], addr2) {
Ok(..) => { let _ = tx2.send_opt(()); }
Err(..) => {}
}
done.send(());
});
match sock1.send_to([2], addr2) {
Ok(..) => { let _ = tx.send_opt(()); }
Err(..) => {}
}
drop(tx);
rx.recv();
serv_rx.recv();
})
iotest!(fn recv_from_timeout() {
let addr1 = next_test_ip4();
let addr2 = next_test_ip4();
let mut a = UdpSocket::bind(addr1).unwrap();
let (tx, rx) = channel();
let (tx2, rx2) = channel();
spawn(proc() {
let mut a = UdpSocket::bind(addr2).unwrap();
assert_eq!(a.recv_from([0]), Ok((1, addr1)));
assert_eq!(a.send_to([0], addr1), Ok(()));
rx.recv();
assert_eq!(a.send_to([0], addr1), Ok(()));
tx2.send(());
});
// Make sure that reads time out, but writes can continue
a.set_read_timeout(Some(20));
assert_eq!(a.recv_from([0]).err().unwrap().kind, TimedOut);
assert_eq!(a.recv_from([0]).err().unwrap().kind, TimedOut);
assert_eq!(a.send_to([0], addr2), Ok(()));
// Cloned handles should be able to block
let mut a2 = a.clone();
assert_eq!(a2.recv_from([0]), Ok((1, addr2)));
// Clearing the timeout should allow for receiving
a.set_timeout(None);
tx.send(());
assert_eq!(a2.recv_from([0]), Ok((1, addr2)));
// Make sure the child didn't die
rx2.recv();
})
iotest!(fn send_to_timeout() {
let addr1 = next_test_ip4();
let addr2 = next_test_ip4();
let mut a = UdpSocket::bind(addr1).unwrap();
let _b = UdpSocket::bind(addr2).unwrap();
a.set_write_timeout(Some(1000));
for _ in range(0u, 100) {
match a.send_to([0, ..4*1024], addr2) {
Ok(()) | Err(IoError { kind: ShortWrite(..), .. }) => {},
Err(IoError { kind: TimedOut, .. }) => break,
Err(e) => fail!("other error: {}", e),
}
}
})
}