rust/src/libcollections/ringbuf.rs
Aaron Turon d8dfe1957b Align with _mut conventions
As per [RFC
52](https://github.com/rust-lang/rfcs/blob/master/active/0052-ownership-variants.md),
use `_mut` suffixes to mark mutable variants, and `into_iter` for moving
iterators.

[breaking-change]
2014-09-16 11:46:52 -07:00

1076 lines
29 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! This crate implements a double-ended queue with `O(1)` amortized inserts and removals from both
//! ends of the container. It also has `O(1)` indexing like a vector. The contained elements are
//! not required to be copyable, and the queue will be sendable if the contained type is sendable.
//! Its interface `Deque` is defined in `collections`.
use core::prelude::*;
use core::cmp;
use core::default::Default;
use core::fmt;
use core::iter;
use std::hash::{Writer, Hash};
use {Deque, Mutable, MutableSeq};
use vec::Vec;
static INITIAL_CAPACITY: uint = 8u; // 2^3
static MINIMUM_CAPACITY: uint = 2u;
/// `RingBuf` is a circular buffer that implements `Deque`.
#[deriving(Clone)]
pub struct RingBuf<T> {
nelts: uint,
lo: uint,
elts: Vec<Option<T>>
}
impl<T> Collection for RingBuf<T> {
/// Returns the number of elements in the `RingBuf`.
fn len(&self) -> uint { self.nelts }
}
impl<T> Mutable for RingBuf<T> {
/// Clears the `RingBuf`, removing all values.
fn clear(&mut self) {
for x in self.elts.mut_iter() { *x = None }
self.nelts = 0;
self.lo = 0;
}
}
impl<T> Deque<T> for RingBuf<T> {
/// Returns a reference to the first element in the `RingBuf`.
fn front<'a>(&'a self) -> Option<&'a T> {
if self.nelts > 0 { Some(&self[0]) } else { None }
}
/// Returns a mutable reference to the first element in the `RingBuf`.
fn front_mut<'a>(&'a mut self) -> Option<&'a mut T> {
if self.nelts > 0 { Some(self.get_mut(0)) } else { None }
}
/// Returns a reference to the last element in the `RingBuf`.
fn back<'a>(&'a self) -> Option<&'a T> {
if self.nelts > 0 { Some(&self[self.nelts - 1]) } else { None }
}
/// Returns a mutable reference to the last element in the `RingBuf`.
fn back_mut<'a>(&'a mut self) -> Option<&'a mut T> {
let nelts = self.nelts;
if nelts > 0 { Some(self.get_mut(nelts - 1)) } else { None }
}
/// Removes and returns the first element in the `RingBuf`, or `None` if it
/// is empty.
fn pop_front(&mut self) -> Option<T> {
let result = self.elts.get_mut(self.lo).take();
if result.is_some() {
self.lo = (self.lo + 1u) % self.elts.len();
self.nelts -= 1u;
}
result
}
/// Prepends an element to the `RingBuf`.
fn push_front(&mut self, t: T) {
if self.nelts == self.elts.len() {
grow(self.nelts, &mut self.lo, &mut self.elts);
}
if self.lo == 0u {
self.lo = self.elts.len() - 1u;
} else { self.lo -= 1u; }
*self.elts.get_mut(self.lo) = Some(t);
self.nelts += 1u;
}
}
impl<T> MutableSeq<T> for RingBuf<T> {
fn push(&mut self, t: T) {
if self.nelts == self.elts.len() {
grow(self.nelts, &mut self.lo, &mut self.elts);
}
let hi = self.raw_index(self.nelts);
*self.elts.get_mut(hi) = Some(t);
self.nelts += 1u;
}
fn pop(&mut self) -> Option<T> {
if self.nelts > 0 {
self.nelts -= 1;
let hi = self.raw_index(self.nelts);
self.elts.get_mut(hi).take()
} else {
None
}
}
}
impl<T> Default for RingBuf<T> {
#[inline]
fn default() -> RingBuf<T> { RingBuf::new() }
}
impl<T> RingBuf<T> {
/// Creates an empty `RingBuf`.
pub fn new() -> RingBuf<T> {
RingBuf::with_capacity(INITIAL_CAPACITY)
}
/// Creates an empty `RingBuf` with space for at least `n` elements.
pub fn with_capacity(n: uint) -> RingBuf<T> {
RingBuf{nelts: 0, lo: 0,
elts: Vec::from_fn(cmp::max(MINIMUM_CAPACITY, n), |_| None)}
}
/// Retrieve an element in the `RingBuf` by index.
///
/// Fails if there is no element with the given index.
///
/// # Example
///
/// ```rust
/// #![allow(deprecated)]
///
/// use std::collections::RingBuf;
///
/// let mut buf = RingBuf::new();
/// buf.push(3i);
/// buf.push(4);
/// buf.push(5);
/// assert_eq!(buf.get(1), &4);
/// ```
#[deprecated = "prefer using indexing, e.g., ringbuf[0]"]
pub fn get<'a>(&'a self, i: uint) -> &'a T {
let idx = self.raw_index(i);
match self.elts[idx] {
None => fail!(),
Some(ref v) => v
}
}
/// Retrieves an element in the `RingBuf` by index.
///
/// Fails if there is no element with the given index.
///
/// # Example
///
/// ```rust
/// use std::collections::RingBuf;
///
/// let mut buf = RingBuf::new();
/// buf.push(3i);
/// buf.push(4);
/// buf.push(5);
/// *buf.get_mut(1) = 7;
/// assert_eq!(buf[1], 7);
/// ```
pub fn get_mut<'a>(&'a mut self, i: uint) -> &'a mut T {
let idx = self.raw_index(i);
match *self.elts.get_mut(idx) {
None => fail!(),
Some(ref mut v) => v
}
}
/// Swaps elements at indices `i` and `j`.
///
/// `i` and `j` may be equal.
///
/// Fails if there is no element with either index.
///
/// # Example
///
/// ```rust
/// use std::collections::RingBuf;
///
/// let mut buf = RingBuf::new();
/// buf.push(3i);
/// buf.push(4);
/// buf.push(5);
/// buf.swap(0, 2);
/// assert_eq!(buf[0], 5);
/// assert_eq!(buf[2], 3);
/// ```
pub fn swap(&mut self, i: uint, j: uint) {
assert!(i < self.len());
assert!(j < self.len());
let ri = self.raw_index(i);
let rj = self.raw_index(j);
self.elts.as_mut_slice().swap(ri, rj);
}
/// Returns the index in the underlying `Vec` for a given logical element
/// index.
fn raw_index(&self, idx: uint) -> uint {
raw_index(self.lo, self.elts.len(), idx)
}
/// Reserves capacity for exactly `n` elements in the given `RingBuf`,
/// doing nothing if `self`'s capacity is already equal to or greater
/// than the requested capacity.
pub fn reserve_exact(&mut self, n: uint) {
self.elts.reserve_exact(n);
}
/// Reserves capacity for at least `n` elements in the given `RingBuf`,
/// over-allocating in case the caller needs to reserve additional
/// space.
///
/// Do nothing if `self`'s capacity is already equal to or greater
/// than the requested capacity.
pub fn reserve(&mut self, n: uint) {
self.elts.reserve(n);
}
/// Returns a front-to-back iterator.
///
/// # Example
///
/// ```rust
/// use std::collections::RingBuf;
///
/// let mut buf = RingBuf::new();
/// buf.push(5i);
/// buf.push(3);
/// buf.push(4);
/// let b: &[_] = &[&5, &3, &4];
/// assert_eq!(buf.iter().collect::<Vec<&int>>().as_slice(), b);
/// ```
pub fn iter<'a>(&'a self) -> Items<'a, T> {
Items{index: 0, rindex: self.nelts, lo: self.lo, elts: self.elts.as_slice()}
}
/// Deprecated: use `iter_mut`
#[deprecated = "use iter_mut"]
pub fn mut_iter<'a>(&'a mut self) -> MutItems<'a, T> {
self.iter_mut()
}
/// Returns a front-to-back iterator which returns mutable references.
///
/// # Example
///
/// ```rust
/// use std::collections::RingBuf;
///
/// let mut buf = RingBuf::new();
/// buf.push(5i);
/// buf.push(3);
/// buf.push(4);
/// for num in buf.mut_iter() {
/// *num = *num - 2;
/// }
/// let b: &[_] = &[&mut 3, &mut 1, &mut 2];
/// assert_eq!(buf.mut_iter().collect::<Vec<&mut int>>().as_slice(), b);
/// ```
pub fn iter_mut<'a>(&'a mut self) -> MutItems<'a, T> {
let start_index = raw_index(self.lo, self.elts.len(), 0);
let end_index = raw_index(self.lo, self.elts.len(), self.nelts);
// Divide up the array
if end_index <= start_index {
// Items to iterate goes from:
// start_index to self.elts.len()
// and then
// 0 to end_index
let (temp, remaining1) = self.elts.mut_split_at(start_index);
let (remaining2, _) = temp.mut_split_at(end_index);
MutItems { remaining1: remaining1,
remaining2: remaining2,
nelts: self.nelts }
} else {
// Items to iterate goes from start_index to end_index:
let (empty, elts) = self.elts.mut_split_at(0);
let remaining1 = elts.mut_slice(start_index, end_index);
MutItems { remaining1: remaining1,
remaining2: empty,
nelts: self.nelts }
}
}
}
/// `RingBuf` iterator.
pub struct Items<'a, T:'a> {
lo: uint,
index: uint,
rindex: uint,
elts: &'a [Option<T>],
}
impl<'a, T> Iterator<&'a T> for Items<'a, T> {
#[inline]
fn next(&mut self) -> Option<&'a T> {
if self.index == self.rindex {
return None;
}
let raw_index = raw_index(self.lo, self.elts.len(), self.index);
self.index += 1;
Some(self.elts[raw_index].as_ref().unwrap())
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
let len = self.rindex - self.index;
(len, Some(len))
}
}
impl<'a, T> DoubleEndedIterator<&'a T> for Items<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<&'a T> {
if self.index == self.rindex {
return None;
}
self.rindex -= 1;
let raw_index = raw_index(self.lo, self.elts.len(), self.rindex);
Some(self.elts[raw_index].as_ref().unwrap())
}
}
impl<'a, T> ExactSize<&'a T> for Items<'a, T> {}
impl<'a, T> RandomAccessIterator<&'a T> for Items<'a, T> {
#[inline]
fn indexable(&self) -> uint { self.rindex - self.index }
#[inline]
fn idx(&mut self, j: uint) -> Option<&'a T> {
if j >= self.indexable() {
None
} else {
let raw_index = raw_index(self.lo, self.elts.len(), self.index + j);
Some(self.elts[raw_index].as_ref().unwrap())
}
}
}
/// `RingBuf` mutable iterator.
pub struct MutItems<'a, T:'a> {
remaining1: &'a mut [Option<T>],
remaining2: &'a mut [Option<T>],
nelts: uint,
}
impl<'a, T> Iterator<&'a mut T> for MutItems<'a, T> {
#[inline]
#[allow(deprecated)] // mut_shift_ref
fn next(&mut self) -> Option<&'a mut T> {
if self.nelts == 0 {
return None;
}
let r = if self.remaining1.len() > 0 {
&mut self.remaining1
} else {
assert!(self.remaining2.len() > 0);
&mut self.remaining2
};
self.nelts -= 1;
Some(r.mut_shift_ref().unwrap().get_mut_ref())
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
(self.nelts, Some(self.nelts))
}
}
impl<'a, T> DoubleEndedIterator<&'a mut T> for MutItems<'a, T> {
#[inline]
#[allow(deprecated)] // mut_shift_ref
fn next_back(&mut self) -> Option<&'a mut T> {
if self.nelts == 0 {
return None;
}
let r = if self.remaining2.len() > 0 {
&mut self.remaining2
} else {
assert!(self.remaining1.len() > 0);
&mut self.remaining1
};
self.nelts -= 1;
Some(r.mut_pop_ref().unwrap().get_mut_ref())
}
}
impl<'a, T> ExactSize<&'a mut T> for MutItems<'a, T> {}
/// Grow is only called on full elts, so nelts is also len(elts), unlike
/// elsewhere.
fn grow<T>(nelts: uint, loptr: &mut uint, elts: &mut Vec<Option<T>>) {
assert_eq!(nelts, elts.len());
let lo = *loptr;
elts.reserve(nelts * 2);
let newlen = elts.capacity();
/* fill with None */
for _ in range(elts.len(), newlen) {
elts.push(None);
}
/*
Move the shortest half into the newly reserved area.
lo ---->|
nelts ----------->|
[o o o|o o o o o]
A [. . .|o o o o o o o o|. . . . .]
B [o o o|. . . . . . . .|o o o o o]
*/
assert!(newlen - nelts/2 >= nelts);
if lo <= (nelts - lo) { // A
for i in range(0u, lo) {
elts.as_mut_slice().swap(i, nelts + i);
}
} else { // B
for i in range(lo, nelts) {
elts.as_mut_slice().swap(i, newlen - nelts + i);
}
*loptr += newlen - nelts;
}
}
/// Returns the index in the underlying `Vec` for a given logical element index.
fn raw_index(lo: uint, len: uint, index: uint) -> uint {
if lo >= len - index {
lo + index - len
} else {
lo + index
}
}
impl<A: PartialEq> PartialEq for RingBuf<A> {
fn eq(&self, other: &RingBuf<A>) -> bool {
self.nelts == other.nelts &&
self.iter().zip(other.iter()).all(|(a, b)| a.eq(b))
}
fn ne(&self, other: &RingBuf<A>) -> bool {
!self.eq(other)
}
}
impl<A: Eq> Eq for RingBuf<A> {}
impl<A: PartialOrd> PartialOrd for RingBuf<A> {
fn partial_cmp(&self, other: &RingBuf<A>) -> Option<Ordering> {
iter::order::partial_cmp(self.iter(), other.iter())
}
}
impl<A: Ord> Ord for RingBuf<A> {
#[inline]
fn cmp(&self, other: &RingBuf<A>) -> Ordering {
iter::order::cmp(self.iter(), other.iter())
}
}
impl<S: Writer, A: Hash<S>> Hash<S> for RingBuf<A> {
fn hash(&self, state: &mut S) {
self.len().hash(state);
for elt in self.iter() {
elt.hash(state);
}
}
}
impl<A> Index<uint, A> for RingBuf<A> {
#[inline]
#[allow(deprecated)]
fn index<'a>(&'a self, i: &uint) -> &'a A {
self.get(*i)
}
}
// FIXME(#12825) Indexing will always try IndexMut first and that causes issues.
/*impl<A> IndexMut<uint, A> for RingBuf<A> {
#[inline]
fn index_mut<'a>(&'a mut self, index: &uint) -> &'a mut A {
self.get_mut(*index)
}
}*/
impl<A> FromIterator<A> for RingBuf<A> {
fn from_iter<T: Iterator<A>>(iterator: T) -> RingBuf<A> {
let (lower, _) = iterator.size_hint();
let mut deq = RingBuf::with_capacity(lower);
deq.extend(iterator);
deq
}
}
impl<A> Extendable<A> for RingBuf<A> {
fn extend<T: Iterator<A>>(&mut self, mut iterator: T) {
for elt in iterator {
self.push(elt);
}
}
}
impl<T: fmt::Show> fmt::Show for RingBuf<T> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
try!(write!(f, "["));
for (i, e) in self.iter().enumerate() {
if i != 0 { try!(write!(f, ", ")); }
try!(write!(f, "{}", *e));
}
write!(f, "]")
}
}
#[cfg(test)]
mod tests {
use std::fmt::Show;
use std::prelude::*;
use std::gc::{GC, Gc};
use std::hash;
use test::Bencher;
use test;
use {Deque, Mutable, MutableSeq};
use super::RingBuf;
use vec::Vec;
#[test]
fn test_simple() {
let mut d = RingBuf::new();
assert_eq!(d.len(), 0u);
d.push_front(17i);
d.push_front(42i);
d.push(137);
assert_eq!(d.len(), 3u);
d.push(137);
assert_eq!(d.len(), 4u);
debug!("{:?}", d.front());
assert_eq!(*d.front().unwrap(), 42);
debug!("{:?}", d.back());
assert_eq!(*d.back().unwrap(), 137);
let mut i = d.pop_front();
debug!("{:?}", i);
assert_eq!(i, Some(42));
i = d.pop();
debug!("{:?}", i);
assert_eq!(i, Some(137));
i = d.pop();
debug!("{:?}", i);
assert_eq!(i, Some(137));
i = d.pop();
debug!("{:?}", i);
assert_eq!(i, Some(17));
assert_eq!(d.len(), 0u);
d.push(3);
assert_eq!(d.len(), 1u);
d.push_front(2);
assert_eq!(d.len(), 2u);
d.push(4);
assert_eq!(d.len(), 3u);
d.push_front(1);
assert_eq!(d.len(), 4u);
debug!("{:?}", d.get(0));
debug!("{:?}", d.get(1));
debug!("{:?}", d.get(2));
debug!("{:?}", d.get(3));
assert_eq!(*d.get(0), 1);
assert_eq!(*d.get(1), 2);
assert_eq!(*d.get(2), 3);
assert_eq!(*d.get(3), 4);
}
#[test]
fn test_boxes() {
let a: Gc<int> = box(GC) 5;
let b: Gc<int> = box(GC) 72;
let c: Gc<int> = box(GC) 64;
let d: Gc<int> = box(GC) 175;
let mut deq = RingBuf::new();
assert_eq!(deq.len(), 0);
deq.push_front(a);
deq.push_front(b);
deq.push(c);
assert_eq!(deq.len(), 3);
deq.push(d);
assert_eq!(deq.len(), 4);
assert_eq!(deq.front(), Some(&b));
assert_eq!(deq.back(), Some(&d));
assert_eq!(deq.pop_front(), Some(b));
assert_eq!(deq.pop(), Some(d));
assert_eq!(deq.pop(), Some(c));
assert_eq!(deq.pop(), Some(a));
assert_eq!(deq.len(), 0);
deq.push(c);
assert_eq!(deq.len(), 1);
deq.push_front(b);
assert_eq!(deq.len(), 2);
deq.push(d);
assert_eq!(deq.len(), 3);
deq.push_front(a);
assert_eq!(deq.len(), 4);
assert_eq!(*deq.get(0), a);
assert_eq!(*deq.get(1), b);
assert_eq!(*deq.get(2), c);
assert_eq!(*deq.get(3), d);
}
#[cfg(test)]
fn test_parameterized<T:Clone + PartialEq + Show>(a: T, b: T, c: T, d: T) {
let mut deq = RingBuf::new();
assert_eq!(deq.len(), 0);
deq.push_front(a.clone());
deq.push_front(b.clone());
deq.push(c.clone());
assert_eq!(deq.len(), 3);
deq.push(d.clone());
assert_eq!(deq.len(), 4);
assert_eq!((*deq.front().unwrap()).clone(), b.clone());
assert_eq!((*deq.back().unwrap()).clone(), d.clone());
assert_eq!(deq.pop_front().unwrap(), b.clone());
assert_eq!(deq.pop().unwrap(), d.clone());
assert_eq!(deq.pop().unwrap(), c.clone());
assert_eq!(deq.pop().unwrap(), a.clone());
assert_eq!(deq.len(), 0);
deq.push(c.clone());
assert_eq!(deq.len(), 1);
deq.push_front(b.clone());
assert_eq!(deq.len(), 2);
deq.push(d.clone());
assert_eq!(deq.len(), 3);
deq.push_front(a.clone());
assert_eq!(deq.len(), 4);
assert_eq!((*deq.get(0)).clone(), a.clone());
assert_eq!((*deq.get(1)).clone(), b.clone());
assert_eq!((*deq.get(2)).clone(), c.clone());
assert_eq!((*deq.get(3)).clone(), d.clone());
}
#[test]
fn test_push_front_grow() {
let mut deq = RingBuf::new();
for i in range(0u, 66) {
deq.push_front(i);
}
assert_eq!(deq.len(), 66);
for i in range(0u, 66) {
assert_eq!(*deq.get(i), 65 - i);
}
let mut deq = RingBuf::new();
for i in range(0u, 66) {
deq.push(i);
}
for i in range(0u, 66) {
assert_eq!(*deq.get(i), i);
}
}
#[test]
fn test_index() {
let mut deq = RingBuf::new();
for i in range(1u, 4) {
deq.push_front(i);
}
assert_eq!(deq[1], 2);
}
#[test]
#[should_fail]
fn test_index_out_of_bounds() {
let mut deq = RingBuf::new();
for i in range(1u, 4) {
deq.push_front(i);
}
deq[3];
}
#[bench]
fn bench_new(b: &mut test::Bencher) {
b.iter(|| {
let _: RingBuf<u64> = RingBuf::new();
})
}
#[bench]
fn bench_push_back(b: &mut test::Bencher) {
let mut deq = RingBuf::new();
b.iter(|| {
deq.push(0i);
})
}
#[bench]
fn bench_push_front(b: &mut test::Bencher) {
let mut deq = RingBuf::new();
b.iter(|| {
deq.push_front(0i);
})
}
#[bench]
fn bench_grow(b: &mut test::Bencher) {
let mut deq = RingBuf::new();
b.iter(|| {
for _ in range(0i, 65) {
deq.push_front(1i);
}
})
}
#[deriving(Clone, PartialEq, Show)]
enum Taggy {
One(int),
Two(int, int),
Three(int, int, int),
}
#[deriving(Clone, PartialEq, Show)]
enum Taggypar<T> {
Onepar(int),
Twopar(int, int),
Threepar(int, int, int),
}
#[deriving(Clone, PartialEq, Show)]
struct RecCy {
x: int,
y: int,
t: Taggy
}
#[test]
fn test_param_int() {
test_parameterized::<int>(5, 72, 64, 175);
}
#[test]
fn test_param_at_int() {
test_parameterized::<Gc<int>>(box(GC) 5, box(GC) 72,
box(GC) 64, box(GC) 175);
}
#[test]
fn test_param_taggy() {
test_parameterized::<Taggy>(One(1), Two(1, 2), Three(1, 2, 3), Two(17, 42));
}
#[test]
fn test_param_taggypar() {
test_parameterized::<Taggypar<int>>(Onepar::<int>(1),
Twopar::<int>(1, 2),
Threepar::<int>(1, 2, 3),
Twopar::<int>(17, 42));
}
#[test]
fn test_param_reccy() {
let reccy1 = RecCy { x: 1, y: 2, t: One(1) };
let reccy2 = RecCy { x: 345, y: 2, t: Two(1, 2) };
let reccy3 = RecCy { x: 1, y: 777, t: Three(1, 2, 3) };
let reccy4 = RecCy { x: 19, y: 252, t: Two(17, 42) };
test_parameterized::<RecCy>(reccy1, reccy2, reccy3, reccy4);
}
#[test]
fn test_with_capacity() {
let mut d = RingBuf::with_capacity(0);
d.push(1i);
assert_eq!(d.len(), 1);
let mut d = RingBuf::with_capacity(50);
d.push(1i);
assert_eq!(d.len(), 1);
}
#[test]
fn test_with_capacity_non_power_two() {
let mut d3 = RingBuf::with_capacity(3);
d3.push(1i);
// X = None, | = lo
// [|1, X, X]
assert_eq!(d3.pop_front(), Some(1));
// [X, |X, X]
assert_eq!(d3.front(), None);
// [X, |3, X]
d3.push(3);
// [X, |3, 6]
d3.push(6);
// [X, X, |6]
assert_eq!(d3.pop_front(), Some(3));
// Pushing the lo past half way point to trigger
// the 'B' scenario for growth
// [9, X, |6]
d3.push(9);
// [9, 12, |6]
d3.push(12);
d3.push(15);
// There used to be a bug here about how the
// RingBuf made growth assumptions about the
// underlying Vec which didn't hold and lead
// to corruption.
// (Vec grows to next power of two)
//good- [9, 12, 15, X, X, X, X, |6]
//bug- [15, 12, X, X, X, |6, X, X]
assert_eq!(d3.pop_front(), Some(6));
// Which leads us to the following state which
// would be a failure case.
//bug- [15, 12, X, X, X, X, |X, X]
assert_eq!(d3.front(), Some(&9));
}
#[test]
fn test_reserve_exact() {
let mut d = RingBuf::new();
d.push(0u64);
d.reserve_exact(50);
assert_eq!(d.elts.capacity(), 50);
let mut d = RingBuf::new();
d.push(0u32);
d.reserve_exact(50);
assert_eq!(d.elts.capacity(), 50);
}
#[test]
fn test_reserve() {
let mut d = RingBuf::new();
d.push(0u64);
d.reserve(50);
assert_eq!(d.elts.capacity(), 64);
let mut d = RingBuf::new();
d.push(0u32);
d.reserve(50);
assert_eq!(d.elts.capacity(), 64);
}
#[test]
fn test_swap() {
let mut d: RingBuf<int> = range(0i, 5).collect();
d.pop_front();
d.swap(0, 3);
assert_eq!(d.iter().map(|&x|x).collect::<Vec<int>>(), vec!(4, 2, 3, 1));
}
#[test]
fn test_iter() {
let mut d = RingBuf::new();
assert_eq!(d.iter().next(), None);
assert_eq!(d.iter().size_hint(), (0, Some(0)));
for i in range(0i, 5) {
d.push(i);
}
{
let b: &[_] = &[&0,&1,&2,&3,&4];
assert_eq!(d.iter().collect::<Vec<&int>>().as_slice(), b);
}
for i in range(6i, 9) {
d.push_front(i);
}
{
let b: &[_] = &[&8,&7,&6,&0,&1,&2,&3,&4];
assert_eq!(d.iter().collect::<Vec<&int>>().as_slice(), b);
}
let mut it = d.iter();
let mut len = d.len();
loop {
match it.next() {
None => break,
_ => { len -= 1; assert_eq!(it.size_hint(), (len, Some(len))) }
}
}
}
#[test]
fn test_rev_iter() {
let mut d = RingBuf::new();
assert_eq!(d.iter().rev().next(), None);
for i in range(0i, 5) {
d.push(i);
}
{
let b: &[_] = &[&4,&3,&2,&1,&0];
assert_eq!(d.iter().rev().collect::<Vec<&int>>().as_slice(), b);
}
for i in range(6i, 9) {
d.push_front(i);
}
let b: &[_] = &[&4,&3,&2,&1,&0,&6,&7,&8];
assert_eq!(d.iter().rev().collect::<Vec<&int>>().as_slice(), b);
}
#[test]
fn test_mut_rev_iter_wrap() {
let mut d = RingBuf::with_capacity(3);
assert!(d.mut_iter().rev().next().is_none());
d.push(1i);
d.push(2);
d.push(3);
assert_eq!(d.pop_front(), Some(1));
d.push(4);
assert_eq!(d.mut_iter().rev().map(|x| *x).collect::<Vec<int>>(),
vec!(4, 3, 2));
}
#[test]
fn test_mut_iter() {
let mut d = RingBuf::new();
assert!(d.mut_iter().next().is_none());
for i in range(0u, 3) {
d.push_front(i);
}
for (i, elt) in d.mut_iter().enumerate() {
assert_eq!(*elt, 2 - i);
*elt = i;
}
{
let mut it = d.mut_iter();
assert_eq!(*it.next().unwrap(), 0);
assert_eq!(*it.next().unwrap(), 1);
assert_eq!(*it.next().unwrap(), 2);
assert!(it.next().is_none());
}
}
#[test]
fn test_mut_rev_iter() {
let mut d = RingBuf::new();
assert!(d.mut_iter().rev().next().is_none());
for i in range(0u, 3) {
d.push_front(i);
}
for (i, elt) in d.mut_iter().rev().enumerate() {
assert_eq!(*elt, i);
*elt = i;
}
{
let mut it = d.mut_iter().rev();
assert_eq!(*it.next().unwrap(), 0);
assert_eq!(*it.next().unwrap(), 1);
assert_eq!(*it.next().unwrap(), 2);
assert!(it.next().is_none());
}
}
#[test]
fn test_from_iter() {
use std::iter;
let v = vec!(1i,2,3,4,5,6,7);
let deq: RingBuf<int> = v.iter().map(|&x| x).collect();
let u: Vec<int> = deq.iter().map(|&x| x).collect();
assert_eq!(u, v);
let mut seq = iter::count(0u, 2).take(256);
let deq: RingBuf<uint> = seq.collect();
for (i, &x) in deq.iter().enumerate() {
assert_eq!(2*i, x);
}
assert_eq!(deq.len(), 256);
}
#[test]
fn test_clone() {
let mut d = RingBuf::new();
d.push_front(17i);
d.push_front(42);
d.push(137);
d.push(137);
assert_eq!(d.len(), 4u);
let mut e = d.clone();
assert_eq!(e.len(), 4u);
while !d.is_empty() {
assert_eq!(d.pop(), e.pop());
}
assert_eq!(d.len(), 0u);
assert_eq!(e.len(), 0u);
}
#[test]
fn test_eq() {
let mut d = RingBuf::new();
assert!(d == RingBuf::with_capacity(0));
d.push_front(137i);
d.push_front(17);
d.push_front(42);
d.push(137);
let mut e = RingBuf::with_capacity(0);
e.push(42);
e.push(17);
e.push(137);
e.push(137);
assert!(&e == &d);
e.pop();
e.push(0);
assert!(e != d);
e.clear();
assert!(e == RingBuf::new());
}
#[test]
fn test_hash() {
let mut x = RingBuf::new();
let mut y = RingBuf::new();
x.push(1i);
x.push(2);
x.push(3);
y.push(0i);
y.push(1i);
y.pop_front();
y.push(2);
y.push(3);
assert!(hash::hash(&x) == hash::hash(&y));
}
#[test]
fn test_ord() {
let x = RingBuf::new();
let mut y = RingBuf::new();
y.push(1i);
y.push(2);
y.push(3);
assert!(x < y);
assert!(y > x);
assert!(x <= x);
assert!(x >= x);
}
#[test]
fn test_show() {
let ringbuf: RingBuf<int> = range(0i, 10).collect();
assert!(format!("{}", ringbuf).as_slice() == "[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]");
let ringbuf: RingBuf<&str> = vec!["just", "one", "test", "more"].iter()
.map(|&s| s)
.collect();
assert!(format!("{}", ringbuf).as_slice() == "[just, one, test, more]");
}
}