rust/src/libstd/sys/common/net.rs
2015-02-04 20:06:08 -05:00

965 lines
32 KiB
Rust

// Copyright 2013-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use prelude::v1::*;
use self::SocketStatus::*;
use self::InAddr::*;
use ffi::CString;
use ffi;
use old_io::net::addrinfo;
use old_io::net::ip::{SocketAddr, IpAddr, Ipv4Addr, Ipv6Addr};
use old_io::{IoResult, IoError};
use libc::{self, c_char, c_int};
use mem;
use num::Int;
use ptr::{self, null, null_mut};
use str;
use sys::{self, retry, c, sock_t, last_error, last_net_error, last_gai_error, close_sock,
wrlen, msglen_t, os, wouldblock, set_nonblocking, timer, ms_to_timeval,
decode_error_detailed};
use sync::{Arc, Mutex, MutexGuard};
use sys_common::{self, keep_going, short_write, timeout};
use cmp;
use old_io;
// FIXME: move uses of Arc and deadline tracking to std::io
#[derive(Debug)]
pub enum SocketStatus {
Readable,
Writable,
}
////////////////////////////////////////////////////////////////////////////////
// sockaddr and misc bindings
////////////////////////////////////////////////////////////////////////////////
pub fn htons(u: u16) -> u16 {
u.to_be()
}
pub fn ntohs(u: u16) -> u16 {
Int::from_be(u)
}
pub enum InAddr {
In4Addr(libc::in_addr),
In6Addr(libc::in6_addr),
}
pub fn ip_to_inaddr(ip: IpAddr) -> InAddr {
match ip {
Ipv4Addr(a, b, c, d) => {
let ip = ((a as u32) << 24) |
((b as u32) << 16) |
((c as u32) << 8) |
((d as u32) << 0);
In4Addr(libc::in_addr {
s_addr: Int::from_be(ip)
})
}
Ipv6Addr(a, b, c, d, e, f, g, h) => {
In6Addr(libc::in6_addr {
s6_addr: [
htons(a),
htons(b),
htons(c),
htons(d),
htons(e),
htons(f),
htons(g),
htons(h),
]
})
}
}
}
pub fn addr_to_sockaddr(addr: SocketAddr,
storage: &mut libc::sockaddr_storage)
-> libc::socklen_t {
unsafe {
let len = match ip_to_inaddr(addr.ip) {
In4Addr(inaddr) => {
let storage = storage as *mut _ as *mut libc::sockaddr_in;
(*storage).sin_family = libc::AF_INET as libc::sa_family_t;
(*storage).sin_port = htons(addr.port);
(*storage).sin_addr = inaddr;
mem::size_of::<libc::sockaddr_in>()
}
In6Addr(inaddr) => {
let storage = storage as *mut _ as *mut libc::sockaddr_in6;
(*storage).sin6_family = libc::AF_INET6 as libc::sa_family_t;
(*storage).sin6_port = htons(addr.port);
(*storage).sin6_addr = inaddr;
mem::size_of::<libc::sockaddr_in6>()
}
};
return len as libc::socklen_t;
}
}
pub fn socket(addr: SocketAddr, ty: libc::c_int) -> IoResult<sock_t> {
unsafe {
let fam = match addr.ip {
Ipv4Addr(..) => libc::AF_INET,
Ipv6Addr(..) => libc::AF_INET6,
};
match libc::socket(fam, ty, 0) {
-1 => Err(last_net_error()),
fd => Ok(fd),
}
}
}
pub fn setsockopt<T>(fd: sock_t, opt: libc::c_int, val: libc::c_int,
payload: T) -> IoResult<()> {
unsafe {
let payload = &payload as *const T as *const libc::c_void;
let ret = libc::setsockopt(fd, opt, val,
payload,
mem::size_of::<T>() as libc::socklen_t);
if ret != 0 {
Err(last_net_error())
} else {
Ok(())
}
}
}
pub fn getsockopt<T: Copy>(fd: sock_t, opt: libc::c_int,
val: libc::c_int) -> IoResult<T> {
unsafe {
let mut slot: T = mem::zeroed();
let mut len = mem::size_of::<T>() as libc::socklen_t;
let ret = c::getsockopt(fd, opt, val,
&mut slot as *mut _ as *mut _,
&mut len);
if ret != 0 {
Err(last_net_error())
} else {
assert!(len as uint == mem::size_of::<T>());
Ok(slot)
}
}
}
pub fn sockname(fd: sock_t,
f: unsafe extern "system" fn(sock_t, *mut libc::sockaddr,
*mut libc::socklen_t) -> libc::c_int)
-> IoResult<SocketAddr>
{
let mut storage: libc::sockaddr_storage = unsafe { mem::zeroed() };
let mut len = mem::size_of::<libc::sockaddr_storage>() as libc::socklen_t;
unsafe {
let storage = &mut storage as *mut libc::sockaddr_storage;
let ret = f(fd,
storage as *mut libc::sockaddr,
&mut len as *mut libc::socklen_t);
if ret != 0 {
return Err(last_net_error())
}
}
return sockaddr_to_addr(&storage, len as uint);
}
pub fn sockaddr_to_addr(storage: &libc::sockaddr_storage,
len: uint) -> IoResult<SocketAddr> {
match storage.ss_family as libc::c_int {
libc::AF_INET => {
assert!(len as uint >= mem::size_of::<libc::sockaddr_in>());
let storage: &libc::sockaddr_in = unsafe {
mem::transmute(storage)
};
let ip = (storage.sin_addr.s_addr as u32).to_be();
let a = (ip >> 24) as u8;
let b = (ip >> 16) as u8;
let c = (ip >> 8) as u8;
let d = (ip >> 0) as u8;
Ok(SocketAddr {
ip: Ipv4Addr(a, b, c, d),
port: ntohs(storage.sin_port),
})
}
libc::AF_INET6 => {
assert!(len as uint >= mem::size_of::<libc::sockaddr_in6>());
let storage: &libc::sockaddr_in6 = unsafe {
mem::transmute(storage)
};
let a = ntohs(storage.sin6_addr.s6_addr[0]);
let b = ntohs(storage.sin6_addr.s6_addr[1]);
let c = ntohs(storage.sin6_addr.s6_addr[2]);
let d = ntohs(storage.sin6_addr.s6_addr[3]);
let e = ntohs(storage.sin6_addr.s6_addr[4]);
let f = ntohs(storage.sin6_addr.s6_addr[5]);
let g = ntohs(storage.sin6_addr.s6_addr[6]);
let h = ntohs(storage.sin6_addr.s6_addr[7]);
Ok(SocketAddr {
ip: Ipv6Addr(a, b, c, d, e, f, g, h),
port: ntohs(storage.sin6_port),
})
}
_ => {
Err(IoError {
kind: old_io::InvalidInput,
desc: "invalid argument",
detail: None,
})
}
}
}
////////////////////////////////////////////////////////////////////////////////
// get_host_addresses
////////////////////////////////////////////////////////////////////////////////
extern "system" {
fn getaddrinfo(node: *const c_char, service: *const c_char,
hints: *const libc::addrinfo,
res: *mut *mut libc::addrinfo) -> c_int;
fn freeaddrinfo(res: *mut libc::addrinfo);
}
pub fn get_host_addresses(host: Option<&str>, servname: Option<&str>,
hint: Option<addrinfo::Hint>)
-> Result<Vec<addrinfo::Info>, IoError>
{
sys::init_net();
assert!(host.is_some() || servname.is_some());
let c_host = host.map(|x| CString::from_slice(x.as_bytes()));
let c_host = c_host.as_ref().map(|x| x.as_ptr()).unwrap_or(null());
let c_serv = servname.map(|x| CString::from_slice(x.as_bytes()));
let c_serv = c_serv.as_ref().map(|x| x.as_ptr()).unwrap_or(null());
let hint = hint.map(|hint| {
libc::addrinfo {
ai_flags: hint.flags as c_int,
ai_family: hint.family as c_int,
ai_socktype: 0,
ai_protocol: 0,
ai_addrlen: 0,
ai_canonname: null_mut(),
ai_addr: null_mut(),
ai_next: null_mut()
}
});
let hint_ptr = hint.as_ref().map_or(null(), |x| {
x as *const libc::addrinfo
});
let mut res = null_mut();
// Make the call
let s = unsafe {
getaddrinfo(c_host, c_serv, hint_ptr, &mut res)
};
// Error?
if s != 0 {
return Err(last_gai_error(s));
}
// Collect all the results we found
let mut addrs = Vec::new();
let mut rp = res;
while !rp.is_null() {
unsafe {
let addr = try!(sockaddr_to_addr(mem::transmute((*rp).ai_addr),
(*rp).ai_addrlen as uint));
addrs.push(addrinfo::Info {
address: addr,
family: (*rp).ai_family as uint,
socktype: None,
protocol: None,
flags: (*rp).ai_flags as uint
});
rp = (*rp).ai_next as *mut libc::addrinfo;
}
}
unsafe { freeaddrinfo(res); }
Ok(addrs)
}
////////////////////////////////////////////////////////////////////////////////
// get_address_name
////////////////////////////////////////////////////////////////////////////////
extern "system" {
fn getnameinfo(sa: *const libc::sockaddr, salen: libc::socklen_t,
host: *mut c_char, hostlen: libc::size_t,
serv: *mut c_char, servlen: libc::size_t,
flags: c_int) -> c_int;
}
const NI_MAXHOST: uint = 1025;
pub fn get_address_name(addr: IpAddr) -> Result<String, IoError> {
let addr = SocketAddr{ip: addr, port: 0};
let mut storage: libc::sockaddr_storage = unsafe { mem::zeroed() };
let len = addr_to_sockaddr(addr, &mut storage);
let mut hostbuf = [0 as c_char; NI_MAXHOST];
let res = unsafe {
getnameinfo(&storage as *const _ as *const libc::sockaddr, len,
hostbuf.as_mut_ptr(), NI_MAXHOST as libc::size_t,
ptr::null_mut(), 0,
0)
};
if res != 0 {
return Err(last_gai_error(res));
}
unsafe {
Ok(str::from_utf8(ffi::c_str_to_bytes(&hostbuf.as_ptr()))
.unwrap().to_string())
}
}
////////////////////////////////////////////////////////////////////////////////
// Timeout helpers
//
// The read/write functions below are the helpers for reading/writing a socket
// with a possible deadline specified. This is generally viewed as a timed out
// I/O operation.
//
// From the application's perspective, timeouts apply to the I/O object, not to
// the underlying file descriptor (it's one timeout per object). This means that
// we can't use the SO_RCVTIMEO and corresponding send timeout option.
//
// The next idea to implement timeouts would be to use nonblocking I/O. An
// invocation of select() would wait (with a timeout) for a socket to be ready.
// Once its ready, we can perform the operation. Note that the operation *must*
// be nonblocking, even though select() says the socket is ready. This is
// because some other thread could have come and stolen our data (handles can be
// cloned).
//
// To implement nonblocking I/O, the first option we have is to use the
// O_NONBLOCK flag. Remember though that this is a global setting, affecting all
// I/O objects, so this was initially viewed as unwise.
//
// It turns out that there's this nifty MSG_DONTWAIT flag which can be passed to
// send/recv, but the niftiness wears off once you realize it only works well on
// Linux [1] [2]. This means that it's pretty easy to get a nonblocking
// operation on Linux (no flag fiddling, no affecting other objects), but not on
// other platforms.
//
// To work around this constraint on other platforms, we end up using the
// original strategy of flipping the O_NONBLOCK flag. As mentioned before, this
// could cause other objects' blocking operations to suddenly become
// nonblocking. To get around this, a "blocking operation" which returns EAGAIN
// falls back to using the same code path as nonblocking operations, but with an
// infinite timeout (select + send/recv). This helps emulate blocking
// reads/writes despite the underlying descriptor being nonblocking, as well as
// optimizing the fast path of just hitting one syscall in the good case.
//
// As a final caveat, this implementation uses a mutex so only one thread is
// doing a nonblocking operation at at time. This is the operation that comes
// after the select() (at which point we think the socket is ready). This is
// done for sanity to ensure that the state of the O_NONBLOCK flag is what we
// expect (wouldn't want someone turning it on when it should be off!). All
// operations performed in the lock are *nonblocking* to avoid holding the mutex
// forever.
//
// So, in summary, Linux uses MSG_DONTWAIT and doesn't need mutexes, everyone
// else uses O_NONBLOCK and mutexes with some trickery to make sure blocking
// reads/writes are still blocking.
//
// Fun, fun!
//
// [1] http://twistedmatrix.com/pipermail/twisted-commits/2012-April/034692.html
// [2] http://stackoverflow.com/questions/19819198/does-send-msg-dontwait
pub fn read<T, L, R>(fd: sock_t, deadline: u64, mut lock: L, mut read: R) -> IoResult<uint> where
L: FnMut() -> T,
R: FnMut(bool) -> libc::c_int,
{
let mut ret = -1;
if deadline == 0 {
ret = retry(|| read(false));
}
if deadline != 0 || (ret == -1 && wouldblock()) {
let deadline = match deadline {
0 => None,
n => Some(n),
};
loop {
// With a timeout, first we wait for the socket to become
// readable using select(), specifying the relevant timeout for
// our previously set deadline.
try!(await(&[fd], deadline, Readable));
// At this point, we're still within the timeout, and we've
// determined that the socket is readable (as returned by
// select). We must still read the socket in *nonblocking* mode
// because some other thread could come steal our data. If we
// fail to read some data, we retry (hence the outer loop) and
// wait for the socket to become readable again.
let _guard = lock();
match retry(|| read(deadline.is_some())) {
-1 if wouldblock() => {}
-1 => return Err(last_net_error()),
n => { ret = n; break }
}
}
}
match ret {
0 => Err(sys_common::eof()),
n if n < 0 => Err(last_net_error()),
n => Ok(n as uint)
}
}
pub fn write<T, L, W>(fd: sock_t,
deadline: u64,
buf: &[u8],
write_everything: bool,
mut lock: L,
mut write: W) -> IoResult<uint> where
L: FnMut() -> T,
W: FnMut(bool, *const u8, uint) -> i64,
{
let mut ret = -1;
let mut written = 0;
if deadline == 0 {
if write_everything {
ret = keep_going(buf, |inner, len| {
written = buf.len() - len;
write(false, inner, len)
});
} else {
ret = retry(|| { write(false, buf.as_ptr(), buf.len()) });
if ret > 0 { written = ret as uint; }
}
}
if deadline != 0 || (ret == -1 && wouldblock()) {
let deadline = match deadline {
0 => None,
n => Some(n),
};
while written < buf.len() && (write_everything || written == 0) {
// As with read(), first wait for the socket to be ready for
// the I/O operation.
match await(&[fd], deadline, Writable) {
Err(ref e) if e.kind == old_io::EndOfFile && written > 0 => {
assert!(deadline.is_some());
return Err(short_write(written, "short write"))
}
Err(e) => return Err(e),
Ok(()) => {}
}
// Also as with read(), we use MSG_DONTWAIT to guard ourselves
// against unforeseen circumstances.
let _guard = lock();
let ptr = buf[written..].as_ptr();
let len = buf.len() - written;
match retry(|| write(deadline.is_some(), ptr, len)) {
-1 if wouldblock() => {}
-1 => return Err(last_net_error()),
n => { written += n as uint; }
}
}
ret = 0;
}
if ret < 0 {
Err(last_net_error())
} else {
Ok(written)
}
}
// See http://developerweb.net/viewtopic.php?id=3196 for where this is
// derived from.
pub fn connect_timeout(fd: sock_t,
addrp: *const libc::sockaddr,
len: libc::socklen_t,
timeout_ms: u64) -> IoResult<()> {
#[cfg(unix)] use libc::EINPROGRESS as INPROGRESS;
#[cfg(windows)] use libc::WSAEINPROGRESS as INPROGRESS;
#[cfg(unix)] use libc::EWOULDBLOCK as WOULDBLOCK;
#[cfg(windows)] use libc::WSAEWOULDBLOCK as WOULDBLOCK;
// Make sure the call to connect() doesn't block
try!(set_nonblocking(fd, true));
let ret = match unsafe { libc::connect(fd, addrp, len) } {
// If the connection is in progress, then we need to wait for it to
// finish (with a timeout). The current strategy for doing this is
// to use select() with a timeout.
-1 if os::errno() as int == INPROGRESS as int ||
os::errno() as int == WOULDBLOCK as int => {
let mut set: c::fd_set = unsafe { mem::zeroed() };
c::fd_set(&mut set, fd);
match await(fd, &mut set, timeout_ms) {
0 => Err(timeout("connection timed out")),
-1 => Err(last_net_error()),
_ => {
let err: libc::c_int = try!(
getsockopt(fd, libc::SOL_SOCKET, libc::SO_ERROR));
if err == 0 {
Ok(())
} else {
Err(decode_error_detailed(err))
}
}
}
}
-1 => Err(last_net_error()),
_ => Ok(()),
};
// be sure to turn blocking I/O back on
try!(set_nonblocking(fd, false));
return ret;
#[cfg(unix)]
fn await(fd: sock_t, set: &mut c::fd_set, timeout: u64) -> libc::c_int {
let start = timer::now();
retry(|| unsafe {
// Recalculate the timeout each iteration (it is generally
// undefined what the value of the 'tv' is after select
// returns EINTR).
let mut tv = ms_to_timeval(timeout - (timer::now() - start));
c::select(fd + 1, ptr::null_mut(), set as *mut _,
ptr::null_mut(), &mut tv)
})
}
#[cfg(windows)]
fn await(_fd: sock_t, set: &mut c::fd_set, timeout: u64) -> libc::c_int {
let mut tv = ms_to_timeval(timeout);
unsafe { c::select(1, ptr::null_mut(), set, ptr::null_mut(), &mut tv) }
}
}
pub fn await(fds: &[sock_t], deadline: Option<u64>,
status: SocketStatus) -> IoResult<()> {
let mut set: c::fd_set = unsafe { mem::zeroed() };
let mut max = 0;
for &fd in fds {
c::fd_set(&mut set, fd);
max = cmp::max(max, fd + 1);
}
if cfg!(windows) {
max = fds.len() as sock_t;
}
let (read, write) = match status {
Readable => (&mut set as *mut _, ptr::null_mut()),
Writable => (ptr::null_mut(), &mut set as *mut _),
};
let mut tv: libc::timeval = unsafe { mem::zeroed() };
match retry(|| {
let now = timer::now();
let tvp = match deadline {
None => ptr::null_mut(),
Some(deadline) => {
// If we're past the deadline, then pass a 0 timeout to
// select() so we can poll the status
let ms = if deadline < now {0} else {deadline - now};
tv = ms_to_timeval(ms);
&mut tv as *mut _
}
};
let r = unsafe {
c::select(max as libc::c_int, read, write, ptr::null_mut(), tvp)
};
r
}) {
-1 => Err(last_net_error()),
0 => Err(timeout("timed out")),
_ => Ok(()),
}
}
////////////////////////////////////////////////////////////////////////////////
// Basic socket representation
////////////////////////////////////////////////////////////////////////////////
struct Inner {
fd: sock_t,
// Unused on Linux, where this lock is not necessary.
#[allow(dead_code)]
lock: Mutex<()>,
}
impl Inner {
fn new(fd: sock_t) -> Inner {
Inner { fd: fd, lock: Mutex::new(()) }
}
}
impl Drop for Inner {
fn drop(&mut self) { unsafe { close_sock(self.fd); } }
}
pub struct Guard<'a> {
pub fd: sock_t,
pub guard: MutexGuard<'a, ()>,
}
#[unsafe_destructor]
impl<'a> Drop for Guard<'a> {
fn drop(&mut self) {
assert!(set_nonblocking(self.fd, false).is_ok());
}
}
////////////////////////////////////////////////////////////////////////////////
// TCP streams
////////////////////////////////////////////////////////////////////////////////
pub struct TcpStream {
inner: Arc<Inner>,
read_deadline: u64,
write_deadline: u64,
}
impl TcpStream {
pub fn connect(addr: SocketAddr, timeout: Option<u64>) -> IoResult<TcpStream> {
sys::init_net();
let fd = try!(socket(addr, libc::SOCK_STREAM));
let ret = TcpStream::new(fd);
let mut storage = unsafe { mem::zeroed() };
let len = addr_to_sockaddr(addr, &mut storage);
let addrp = &storage as *const _ as *const libc::sockaddr;
match timeout {
Some(timeout) => {
try!(connect_timeout(fd, addrp, len, timeout));
Ok(ret)
},
None => {
match retry(|| unsafe { libc::connect(fd, addrp, len) }) {
-1 => Err(last_error()),
_ => Ok(ret),
}
}
}
}
pub fn new(fd: sock_t) -> TcpStream {
TcpStream {
inner: Arc::new(Inner::new(fd)),
read_deadline: 0,
write_deadline: 0,
}
}
pub fn fd(&self) -> sock_t { self.inner.fd }
pub fn set_nodelay(&mut self, nodelay: bool) -> IoResult<()> {
setsockopt(self.fd(), libc::IPPROTO_TCP, libc::TCP_NODELAY,
nodelay as libc::c_int)
}
pub fn set_keepalive(&mut self, seconds: Option<uint>) -> IoResult<()> {
let ret = setsockopt(self.fd(), libc::SOL_SOCKET, libc::SO_KEEPALIVE,
seconds.is_some() as libc::c_int);
match seconds {
Some(n) => ret.and_then(|()| self.set_tcp_keepalive(n)),
None => ret,
}
}
#[cfg(any(target_os = "macos", target_os = "ios"))]
fn set_tcp_keepalive(&mut self, seconds: uint) -> IoResult<()> {
setsockopt(self.fd(), libc::IPPROTO_TCP, libc::TCP_KEEPALIVE,
seconds as libc::c_int)
}
#[cfg(any(target_os = "freebsd", target_os = "dragonfly"))]
fn set_tcp_keepalive(&mut self, seconds: uint) -> IoResult<()> {
setsockopt(self.fd(), libc::IPPROTO_TCP, libc::TCP_KEEPIDLE,
seconds as libc::c_int)
}
#[cfg(target_os = "openbsd")]
fn set_tcp_keepalive(&mut self, seconds: uint) -> IoResult<()> {
setsockopt(self.fd(), libc::IPPROTO_TCP, libc::SO_KEEPALIVE,
seconds as libc::c_int)
}
#[cfg(not(any(target_os = "macos",
target_os = "ios",
target_os = "freebsd",
target_os = "dragonfly",
target_os = "openbsd")))]
fn set_tcp_keepalive(&mut self, _seconds: uint) -> IoResult<()> {
Ok(())
}
#[cfg(target_os = "linux")]
fn lock_nonblocking(&self) {}
#[cfg(not(target_os = "linux"))]
fn lock_nonblocking<'a>(&'a self) -> Guard<'a> {
let ret = Guard {
fd: self.fd(),
guard: self.inner.lock.lock().unwrap(),
};
assert!(set_nonblocking(self.fd(), true).is_ok());
ret
}
pub fn read(&mut self, buf: &mut [u8]) -> IoResult<uint> {
let fd = self.fd();
let dolock = || self.lock_nonblocking();
let doread = |nb| unsafe {
let flags = if nb {c::MSG_DONTWAIT} else {0};
libc::recv(fd,
buf.as_mut_ptr() as *mut libc::c_void,
buf.len() as wrlen,
flags) as libc::c_int
};
read(fd, self.read_deadline, dolock, doread)
}
pub fn write(&mut self, buf: &[u8]) -> IoResult<()> {
let fd = self.fd();
let dolock = || self.lock_nonblocking();
let dowrite = |nb: bool, buf: *const u8, len: uint| unsafe {
let flags = if nb {c::MSG_DONTWAIT} else {0};
libc::send(fd,
buf as *const _,
len as wrlen,
flags) as i64
};
write(fd, self.write_deadline, buf, true, dolock, dowrite).map(|_| ())
}
pub fn peer_name(&mut self) -> IoResult<SocketAddr> {
sockname(self.fd(), libc::getpeername)
}
pub fn close_write(&mut self) -> IoResult<()> {
super::mkerr_libc(unsafe { libc::shutdown(self.fd(), libc::SHUT_WR) })
}
pub fn close_read(&mut self) -> IoResult<()> {
super::mkerr_libc(unsafe { libc::shutdown(self.fd(), libc::SHUT_RD) })
}
pub fn set_timeout(&mut self, timeout: Option<u64>) {
let deadline = timeout.map(|a| timer::now() + a).unwrap_or(0);
self.read_deadline = deadline;
self.write_deadline = deadline;
}
pub fn set_read_timeout(&mut self, timeout: Option<u64>) {
self.read_deadline = timeout.map(|a| timer::now() + a).unwrap_or(0);
}
pub fn set_write_timeout(&mut self, timeout: Option<u64>) {
self.write_deadline = timeout.map(|a| timer::now() + a).unwrap_or(0);
}
pub fn socket_name(&mut self) -> IoResult<SocketAddr> {
sockname(self.fd(), libc::getsockname)
}
}
impl Clone for TcpStream {
fn clone(&self) -> TcpStream {
TcpStream {
inner: self.inner.clone(),
read_deadline: 0,
write_deadline: 0,
}
}
}
////////////////////////////////////////////////////////////////////////////////
// UDP
////////////////////////////////////////////////////////////////////////////////
pub struct UdpSocket {
inner: Arc<Inner>,
read_deadline: u64,
write_deadline: u64,
}
impl UdpSocket {
pub fn bind(addr: SocketAddr) -> IoResult<UdpSocket> {
sys::init_net();
let fd = try!(socket(addr, libc::SOCK_DGRAM));
let ret = UdpSocket {
inner: Arc::new(Inner::new(fd)),
read_deadline: 0,
write_deadline: 0,
};
let mut storage = unsafe { mem::zeroed() };
let len = addr_to_sockaddr(addr, &mut storage);
let addrp = &storage as *const _ as *const libc::sockaddr;
match unsafe { libc::bind(fd, addrp, len) } {
-1 => Err(last_error()),
_ => Ok(ret),
}
}
pub fn fd(&self) -> sock_t { self.inner.fd }
pub fn set_broadcast(&mut self, on: bool) -> IoResult<()> {
setsockopt(self.fd(), libc::SOL_SOCKET, libc::SO_BROADCAST,
on as libc::c_int)
}
pub fn set_multicast_loop(&mut self, on: bool) -> IoResult<()> {
setsockopt(self.fd(), libc::IPPROTO_IP, libc::IP_MULTICAST_LOOP,
on as libc::c_int)
}
pub fn set_membership(&mut self, addr: IpAddr, opt: libc::c_int) -> IoResult<()> {
match ip_to_inaddr(addr) {
In4Addr(addr) => {
let mreq = libc::ip_mreq {
imr_multiaddr: addr,
// interface == INADDR_ANY
imr_interface: libc::in_addr { s_addr: 0x0 },
};
setsockopt(self.fd(), libc::IPPROTO_IP, opt, mreq)
}
In6Addr(addr) => {
let mreq = libc::ip6_mreq {
ipv6mr_multiaddr: addr,
ipv6mr_interface: 0,
};
setsockopt(self.fd(), libc::IPPROTO_IPV6, opt, mreq)
}
}
}
#[cfg(target_os = "linux")]
fn lock_nonblocking(&self) {}
#[cfg(not(target_os = "linux"))]
fn lock_nonblocking<'a>(&'a self) -> Guard<'a> {
let ret = Guard {
fd: self.fd(),
guard: self.inner.lock.lock().unwrap(),
};
assert!(set_nonblocking(self.fd(), true).is_ok());
ret
}
pub fn socket_name(&mut self) -> IoResult<SocketAddr> {
sockname(self.fd(), libc::getsockname)
}
pub fn recv_from(&mut self, buf: &mut [u8]) -> IoResult<(uint, SocketAddr)> {
let fd = self.fd();
let mut storage: libc::sockaddr_storage = unsafe { mem::zeroed() };
let storagep = &mut storage as *mut _ as *mut libc::sockaddr;
let mut addrlen: libc::socklen_t =
mem::size_of::<libc::sockaddr_storage>() as libc::socklen_t;
let dolock = || self.lock_nonblocking();
let n = try!(read(fd, self.read_deadline, dolock, |nb| unsafe {
let flags = if nb {c::MSG_DONTWAIT} else {0};
libc::recvfrom(fd,
buf.as_mut_ptr() as *mut libc::c_void,
buf.len() as msglen_t,
flags,
storagep,
&mut addrlen) as libc::c_int
}));
sockaddr_to_addr(&storage, addrlen as uint).and_then(|addr| {
Ok((n as uint, addr))
})
}
pub fn send_to(&mut self, buf: &[u8], dst: SocketAddr) -> IoResult<()> {
let mut storage = unsafe { mem::zeroed() };
let dstlen = addr_to_sockaddr(dst, &mut storage);
let dstp = &storage as *const _ as *const libc::sockaddr;
let fd = self.fd();
let dolock = || self.lock_nonblocking();
let dowrite = |nb, buf: *const u8, len: uint| unsafe {
let flags = if nb {c::MSG_DONTWAIT} else {0};
libc::sendto(fd,
buf as *const libc::c_void,
len as msglen_t,
flags,
dstp,
dstlen) as i64
};
let n = try!(write(fd, self.write_deadline, buf, false, dolock, dowrite));
if n != buf.len() {
Err(short_write(n, "couldn't send entire packet at once"))
} else {
Ok(())
}
}
pub fn join_multicast(&mut self, multi: IpAddr) -> IoResult<()> {
match multi {
Ipv4Addr(..) => {
self.set_membership(multi, libc::IP_ADD_MEMBERSHIP)
}
Ipv6Addr(..) => {
self.set_membership(multi, libc::IPV6_ADD_MEMBERSHIP)
}
}
}
pub fn leave_multicast(&mut self, multi: IpAddr) -> IoResult<()> {
match multi {
Ipv4Addr(..) => {
self.set_membership(multi, libc::IP_DROP_MEMBERSHIP)
}
Ipv6Addr(..) => {
self.set_membership(multi, libc::IPV6_DROP_MEMBERSHIP)
}
}
}
pub fn multicast_time_to_live(&mut self, ttl: int) -> IoResult<()> {
setsockopt(self.fd(), libc::IPPROTO_IP, libc::IP_MULTICAST_TTL,
ttl as libc::c_int)
}
pub fn time_to_live(&mut self, ttl: int) -> IoResult<()> {
setsockopt(self.fd(), libc::IPPROTO_IP, libc::IP_TTL, ttl as libc::c_int)
}
pub fn set_timeout(&mut self, timeout: Option<u64>) {
let deadline = timeout.map(|a| timer::now() + a).unwrap_or(0);
self.read_deadline = deadline;
self.write_deadline = deadline;
}
pub fn set_read_timeout(&mut self, timeout: Option<u64>) {
self.read_deadline = timeout.map(|a| timer::now() + a).unwrap_or(0);
}
pub fn set_write_timeout(&mut self, timeout: Option<u64>) {
self.write_deadline = timeout.map(|a| timer::now() + a).unwrap_or(0);
}
}
impl Clone for UdpSocket {
fn clone(&self) -> UdpSocket {
UdpSocket {
inner: self.inner.clone(),
read_deadline: 0,
write_deadline: 0,
}
}
}