rust/compiler/rustc_codegen_gcc
bors 5e842953cc Auto merge of #130052 - khuey:clear-dilocation-after-const-emission, r=michaelwoerister
Don't leave debug locations for constants sitting on the builder indefinitely

Because constants are currently emitted *before* the prologue, leaving the debug location on the IRBuilder spills onto other instructions in the prologue and messes up both line numbers as well as the point LLVM chooses to be the prologue end.

Example LLVM IR (irrelevant IR elided):
Before:
```
define internal { i64, i64 } `@_ZN3tmp3Foo18var_return_opt_try17he02116165b0fc08cE(ptr` align 8 %self) !dbg !347 { start:
  %self.dbg.spill = alloca [8 x i8], align 8
  %_0 = alloca [16 x i8], align 8
  %residual.dbg.spill = alloca [0 x i8], align 1
    #dbg_declare(ptr %residual.dbg.spill, !353, !DIExpression(), !357)
  store ptr %self, ptr %self.dbg.spill, align 8, !dbg !357
    #dbg_declare(ptr %self.dbg.spill, !350, !DIExpression(), !358)
```
After:
```
define internal { i64, i64 } `@_ZN3tmp3Foo18var_return_opt_try17h00b17d08874ddd90E(ptr` align 8 %self) !dbg !347 { start:
  %self.dbg.spill = alloca [8 x i8], align 8
  %_0 = alloca [16 x i8], align 8
  %residual.dbg.spill = alloca [0 x i8], align 1
    #dbg_declare(ptr %residual.dbg.spill, !353, !DIExpression(), !357)
  store ptr %self, ptr %self.dbg.spill, align 8
    #dbg_declare(ptr %self.dbg.spill, !350, !DIExpression(), !358)
```
Note in particular how !357 from %residual.dbg.spill's dbg_declare no longer falls through onto the store to %self.dbg.spill. This fixes argument values at entry when the constant is a ZST (e.g. `<Option as Try>::Residual`). This fixes #130003 (but note that it does *not* fix issues with argument values and non-ZST constants, which emit their own stores that have debug info on them, like #128945).

r? `@michaelwoerister`
2024-09-13 08:57:41 +00:00
..
.github/workflows Merge commit '98ed962c7d3eebe12c97588e61245273d265e72f' into master 2024-07-10 12:44:23 +02:00
build_system rename ./x test's --rustc-args to --compiletest-rustc-args 2024-08-12 15:28:38 +00:00
doc Merge commit '98ed962c7d3eebe12c97588e61245273d265e72f' into master 2024-07-10 12:44:23 +02:00
example stabilize raw_ref_op 2024-08-18 19:46:53 +02:00
patches Merge commit '98ed962c7d3eebe12c97588e61245273d265e72f' into master 2024-07-10 12:44:23 +02:00
src Auto merge of #130052 - khuey:clear-dilocation-after-const-emission, r=michaelwoerister 2024-09-13 08:57:41 +00:00
target_specs Merge commit '98ed962c7d3eebe12c97588e61245273d265e72f' into master 2024-07-10 12:44:23 +02:00
tests stabilize asm_const 2024-08-13 23:18:31 +02:00
tools
.gitignore Merge commit '98ed962c7d3eebe12c97588e61245273d265e72f' into master 2024-07-10 12:44:23 +02:00
.ignore
.rustfmt.toml Align cg_gcc rustfmt.toml with rust's 2024-07-17 20:17:44 +02:00
Cargo.lock Use sysroot crates maximally in rustc_codegen_gcc. 2024-09-02 15:35:58 +10:00
Cargo.toml Use sysroot crates maximally in rustc_codegen_gcc. 2024-09-02 15:35:58 +10:00
config.example.toml Merge commit '98ed962c7d3eebe12c97588e61245273d265e72f' into master 2024-07-10 12:44:23 +02:00
libgccjit.version Merge commit '98ed962c7d3eebe12c97588e61245273d265e72f' into master 2024-07-10 12:44:23 +02:00
LICENSE-APACHE
LICENSE-MIT
messages.ftl
Readme.md Merge commit '98ed962c7d3eebe12c97588e61245273d265e72f' into master 2024-07-10 12:44:23 +02:00
rust-toolchain Merge commit '98ed962c7d3eebe12c97588e61245273d265e72f' into master 2024-07-10 12:44:23 +02:00
y.sh

WIP libgccjit codegen backend for rust

Chat on IRC Chat on Matrix

This is a GCC codegen for rustc, which means it can be loaded by the existing rustc frontend, but benefits from GCC: more architectures are supported and GCC's optimizations are used.

Despite its name, libgccjit can be used for ahead-of-time compilation, as is used here.

Motivation

The primary goal of this project is to be able to compile Rust code on platforms unsupported by LLVM. A secondary goal is to check if using the gcc backend will provide any run-time speed improvement for the programs compiled using rustc.

Dependencies

rustup: Follow the instructions on the official website

DejaGnu: Consider to install DejaGnu which is necessary for running the libgccjit test suite. website

Building

This requires a patched libgccjit in order to work. You need to use my fork of gcc which already includes these patches.

$ cp config.example.toml config.toml

If don't need to test GCC patches you wrote in our GCC fork, then the default configuration should be all you need. You can update the rustc_codegen_gcc without worrying about GCC.

Building with your own GCC version

If you wrote a patch for GCC and want to test it without this backend, you will need to do a few more things.

To build it (most of these instructions come from here, so don't hesitate to take a look there if you encounter an issue):

$ git clone https://github.com/antoyo/gcc
$ sudo apt install flex libmpfr-dev libgmp-dev libmpc3 libmpc-dev
$ mkdir gcc-build gcc-install
$ cd gcc-build
$ ../gcc/configure \
    --enable-host-shared \
    --enable-languages=jit \
    --enable-checking=release \ # it enables extra checks which allow to find bugs
    --disable-bootstrap \
    --disable-multilib \
    --prefix=$(pwd)/../gcc-install
$ make -j4 # You can replace `4` with another number depending on how many cores you have.

If you want to run libgccjit tests, you will need to also enable the C++ language in the configure:

--enable-languages=jit,c++

Then to run libgccjit tests:

$ cd gcc # from the `gcc-build` folder
$ make check-jit
# To run one specific test:
$ make check-jit RUNTESTFLAGS="-v -v -v jit.exp=jit.dg/test-asm.cc"

Put the path to your custom build of libgccjit in the file config.toml.

You now need to set the gcc-path value in config.toml with the result of this command:

$ dirname $(readlink -f `find . -name libgccjit.so`)

and to comment the download-gccjit setting:

gcc-path = "[MY PATH]"
# download-gccjit = true

Then you can run commands like this:

$ ./y.sh prepare # download and patch sysroot src and install hyperfine for benchmarking
$ ./y.sh build --sysroot --release

To run the tests:

$ ./y.sh test --release

Usage

You have to run these commands, in the corresponding order:

$ ./y.sh prepare
$ ./y.sh build --sysroot

To check if all is working correctly, run:

$ ./y.sh cargo build --manifest-path tests/hello-world/Cargo.toml

Cargo

$ CHANNEL="release" $CG_GCCJIT_DIR/y.sh cargo run

If you compiled cg_gccjit in debug mode (aka you didn't pass --release to ./y.sh test) you should use CHANNEL="debug" instead or omit CHANNEL="release" completely.

LTO

To use LTO, you need to set the variable EMBED_LTO_BITCODE=1 in addition to setting lto = "fat" in the Cargo.toml.

Failing to set EMBED_LTO_BITCODE will give you the following error:

error: failed to copy bitcode to object file: No such file or directory (os error 2)

Rustc

If you want to run rustc directly, you can do so with:

$ ./y.sh rustc my_crate.rs

You can do the same manually (although we don't recommend it):

$ LIBRARY_PATH="[gcc-path value]" LD_LIBRARY_PATH="[gcc-path value]" rustc +$(cat $CG_GCCJIT_DIR/rust-toolchain | grep 'channel' | cut -d '=' -f 2 | sed 's/"//g' | sed 's/ //g') -Cpanic=abort -Zcodegen-backend=$CG_GCCJIT_DIR/target/release/librustc_codegen_gcc.so --sysroot $CG_GCCJIT_DIR/build_sysroot/sysroot my_crate.rs

Env vars

  • CG_GCCJIT_DUMP_ALL_MODULES: Enables dumping of all compilation modules. When set to "1", a dump is created for each module during compilation and stored in /tmp/reproducers/.
  • CG_GCCJIT_DUMP_MODULE: Enables dumping of a specific module. When set with the module name, e.g., CG_GCCJIT_DUMP_MODULE=module_name, a dump of that specific module is created in /tmp/reproducers/.
  • CG_RUSTFLAGS: Send additional flags to rustc. Can be used to build the sysroot without unwinding by setting CG_RUSTFLAGS=-Cpanic=abort.
  • CG_GCCJIT_DUMP_TO_FILE: Dump a C-like representation to /tmp/gccjit_dumps and enable debug info in order to debug this C-like representation.
  • CG_GCCJIT_DUMP_RTL: Dumps RTL (Register Transfer Language) for virtual registers.
  • CG_GCCJIT_DUMP_RTL_ALL: Dumps all RTL passes.
  • CG_GCCJIT_DUMP_TREE_ALL: Dumps all tree (GIMPLE) passes.
  • CG_GCCJIT_DUMP_IPA_ALL: Dumps all Interprocedural Analysis (IPA) passes.
  • CG_GCCJIT_DUMP_CODE: Dumps the final generated code.
  • CG_GCCJIT_DUMP_GIMPLE: Dumps the initial GIMPLE representation.
  • CG_GCCJIT_DUMP_EVERYTHING: Enables dumping of all intermediate representations and passes.
  • CG_GCCJIT_KEEP_INTERMEDIATES: Keeps intermediate files generated during the compilation process.
  • CG_GCCJIT_VERBOSE: Enables verbose output from the GCC driver.

Extra documentation

More specific documentation is available in the doc folder:

Licensing

While this crate is licensed under a dual Apache/MIT license, it links to libgccjit which is under the GPLv3+ and thus, the resulting toolchain (rustc + GCC codegen) will need to be released under the GPL license.

However, programs compiled with rustc_codegen_gcc do not need to be released under a GPL license.