72a25d05bf
This updates the standard library's documentation to use the new syntax. The documentation is worthwhile to update as it should be more idiomatic (particularly for features like this, which are nice for users to get acquainted with). The general codebase is likely more hassle than benefit to update: it'll hurt git blame, and generally updates can be done by folks updating the code if (and when) that makes things more readable with the new format. A few places in the compiler and library code are updated (mostly just due to already having been done when this commit was first authored).
203 lines
6.7 KiB
Rust
203 lines
6.7 KiB
Rust
#![cfg(not(target_arch = "wasm32"))]
|
|
|
|
use std::mem::MaybeUninit;
|
|
use std::str;
|
|
|
|
use core::num::flt2dec::strategy::grisu::format_exact_opt;
|
|
use core::num::flt2dec::strategy::grisu::format_shortest_opt;
|
|
use core::num::flt2dec::MAX_SIG_DIGITS;
|
|
use core::num::flt2dec::{decode, DecodableFloat, Decoded, FullDecoded};
|
|
|
|
use rand::distributions::{Distribution, Uniform};
|
|
use rand::rngs::StdRng;
|
|
use rand::SeedableRng;
|
|
|
|
pub fn decode_finite<T: DecodableFloat>(v: T) -> Decoded {
|
|
match decode(v).1 {
|
|
FullDecoded::Finite(decoded) => decoded,
|
|
full_decoded => panic!("expected finite, got {full_decoded:?} instead"),
|
|
}
|
|
}
|
|
|
|
fn iterate<F, G, V>(func: &str, k: usize, n: usize, mut f: F, mut g: G, mut v: V) -> (usize, usize)
|
|
where
|
|
F: for<'a> FnMut(&Decoded, &'a mut [MaybeUninit<u8>]) -> Option<(&'a [u8], i16)>,
|
|
G: for<'a> FnMut(&Decoded, &'a mut [MaybeUninit<u8>]) -> (&'a [u8], i16),
|
|
V: FnMut(usize) -> Decoded,
|
|
{
|
|
assert!(k <= 1024);
|
|
|
|
let mut npassed = 0; // f(x) = Some(g(x))
|
|
let mut nignored = 0; // f(x) = None
|
|
|
|
for i in 0..n {
|
|
if (i & 0xfffff) == 0 {
|
|
println!(
|
|
"in progress, {:x}/{:x} (ignored={} passed={} failed={})",
|
|
i,
|
|
n,
|
|
nignored,
|
|
npassed,
|
|
i - nignored - npassed
|
|
);
|
|
}
|
|
|
|
let decoded = v(i);
|
|
let mut buf1 = [MaybeUninit::new(0); 1024];
|
|
if let Some((buf1, e1)) = f(&decoded, &mut buf1[..k]) {
|
|
let mut buf2 = [MaybeUninit::new(0); 1024];
|
|
let (buf2, e2) = g(&decoded, &mut buf2[..k]);
|
|
if e1 == e2 && buf1 == buf2 {
|
|
npassed += 1;
|
|
} else {
|
|
println!(
|
|
"equivalence test failed, {:x}/{:x}: {:?} f(i)={}e{} g(i)={}e{}",
|
|
i,
|
|
n,
|
|
decoded,
|
|
str::from_utf8(buf1).unwrap(),
|
|
e1,
|
|
str::from_utf8(buf2).unwrap(),
|
|
e2
|
|
);
|
|
}
|
|
} else {
|
|
nignored += 1;
|
|
}
|
|
}
|
|
println!(
|
|
"{}({}): done, ignored={} passed={} failed={}",
|
|
func,
|
|
k,
|
|
nignored,
|
|
npassed,
|
|
n - nignored - npassed
|
|
);
|
|
assert!(
|
|
nignored + npassed == n,
|
|
"{}({}): {} out of {} values returns an incorrect value!",
|
|
func,
|
|
k,
|
|
n - nignored - npassed,
|
|
n
|
|
);
|
|
(npassed, nignored)
|
|
}
|
|
|
|
pub fn f32_random_equivalence_test<F, G>(f: F, g: G, k: usize, n: usize)
|
|
where
|
|
F: for<'a> FnMut(&Decoded, &'a mut [MaybeUninit<u8>]) -> Option<(&'a [u8], i16)>,
|
|
G: for<'a> FnMut(&Decoded, &'a mut [MaybeUninit<u8>]) -> (&'a [u8], i16),
|
|
{
|
|
if cfg!(target_os = "emscripten") {
|
|
return; // using rng pulls in i128 support, which doesn't work
|
|
}
|
|
let mut rng = StdRng::from_entropy();
|
|
let f32_range = Uniform::new(0x0000_0001u32, 0x7f80_0000);
|
|
iterate("f32_random_equivalence_test", k, n, f, g, |_| {
|
|
let x = f32::from_bits(f32_range.sample(&mut rng));
|
|
decode_finite(x)
|
|
});
|
|
}
|
|
|
|
pub fn f64_random_equivalence_test<F, G>(f: F, g: G, k: usize, n: usize)
|
|
where
|
|
F: for<'a> FnMut(&Decoded, &'a mut [MaybeUninit<u8>]) -> Option<(&'a [u8], i16)>,
|
|
G: for<'a> FnMut(&Decoded, &'a mut [MaybeUninit<u8>]) -> (&'a [u8], i16),
|
|
{
|
|
if cfg!(target_os = "emscripten") {
|
|
return; // using rng pulls in i128 support, which doesn't work
|
|
}
|
|
let mut rng = StdRng::from_entropy();
|
|
let f64_range = Uniform::new(0x0000_0000_0000_0001u64, 0x7ff0_0000_0000_0000);
|
|
iterate("f64_random_equivalence_test", k, n, f, g, |_| {
|
|
let x = f64::from_bits(f64_range.sample(&mut rng));
|
|
decode_finite(x)
|
|
});
|
|
}
|
|
|
|
pub fn f32_exhaustive_equivalence_test<F, G>(f: F, g: G, k: usize)
|
|
where
|
|
F: for<'a> FnMut(&Decoded, &'a mut [MaybeUninit<u8>]) -> Option<(&'a [u8], i16)>,
|
|
G: for<'a> FnMut(&Decoded, &'a mut [MaybeUninit<u8>]) -> (&'a [u8], i16),
|
|
{
|
|
// we have only 2^23 * (2^8 - 1) - 1 = 2,139,095,039 positive finite f32 values,
|
|
// so why not simply testing all of them?
|
|
//
|
|
// this is of course very stressful (and thus should be behind an `#[ignore]` attribute),
|
|
// but with `-C opt-level=3 -C lto` this only takes about an hour or so.
|
|
|
|
// iterate from 0x0000_0001 to 0x7f7f_ffff, i.e., all finite ranges
|
|
let (npassed, nignored) =
|
|
iterate("f32_exhaustive_equivalence_test", k, 0x7f7f_ffff, f, g, |i: usize| {
|
|
let x = f32::from_bits(i as u32 + 1);
|
|
decode_finite(x)
|
|
});
|
|
assert_eq!((npassed, nignored), (2121451881, 17643158));
|
|
}
|
|
|
|
#[test]
|
|
fn shortest_random_equivalence_test() {
|
|
use core::num::flt2dec::strategy::dragon::format_shortest as fallback;
|
|
// Miri is too slow
|
|
let n = if cfg!(miri) { 10 } else { 10_000 };
|
|
|
|
f64_random_equivalence_test(format_shortest_opt, fallback, MAX_SIG_DIGITS, n);
|
|
f32_random_equivalence_test(format_shortest_opt, fallback, MAX_SIG_DIGITS, n);
|
|
}
|
|
|
|
#[test]
|
|
#[ignore] // it is too expensive
|
|
fn shortest_f32_exhaustive_equivalence_test() {
|
|
// it is hard to directly test the optimality of the output, but we can at least test if
|
|
// two different algorithms agree to each other.
|
|
//
|
|
// this reports the progress and the number of f32 values returned `None`.
|
|
// with `--nocapture` (and plenty of time and appropriate rustc flags), this should print:
|
|
// `done, ignored=17643158 passed=2121451881 failed=0`.
|
|
|
|
use core::num::flt2dec::strategy::dragon::format_shortest as fallback;
|
|
f32_exhaustive_equivalence_test(format_shortest_opt, fallback, MAX_SIG_DIGITS);
|
|
}
|
|
|
|
#[test]
|
|
#[ignore] // it is too expensive
|
|
fn shortest_f64_hard_random_equivalence_test() {
|
|
// this again probably has to use appropriate rustc flags.
|
|
|
|
use core::num::flt2dec::strategy::dragon::format_shortest as fallback;
|
|
f64_random_equivalence_test(format_shortest_opt, fallback, MAX_SIG_DIGITS, 100_000_000);
|
|
}
|
|
|
|
#[test]
|
|
fn exact_f32_random_equivalence_test() {
|
|
use core::num::flt2dec::strategy::dragon::format_exact as fallback;
|
|
// Miri is too slow
|
|
let n = if cfg!(miri) { 3 } else { 1_000 };
|
|
|
|
for k in 1..21 {
|
|
f32_random_equivalence_test(
|
|
|d, buf| format_exact_opt(d, buf, i16::MIN),
|
|
|d, buf| fallback(d, buf, i16::MIN),
|
|
k,
|
|
n,
|
|
);
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn exact_f64_random_equivalence_test() {
|
|
use core::num::flt2dec::strategy::dragon::format_exact as fallback;
|
|
// Miri is too slow
|
|
let n = if cfg!(miri) { 2 } else { 1_000 };
|
|
|
|
for k in 1..21 {
|
|
f64_random_equivalence_test(
|
|
|d, buf| format_exact_opt(d, buf, i16::MIN),
|
|
|d, buf| fallback(d, buf, i16::MIN),
|
|
k,
|
|
n,
|
|
);
|
|
}
|
|
}
|