4852291417
Currently some `Allocation`s are interned, some are not, and it's very hard to tell at a use point which is which. This commit introduces `ConstAllocation` for the known-interned ones, which makes the division much clearer. `ConstAllocation::inner()` is used to get the underlying `Allocation`. In some places it's natural to use an `Allocation`, in some it's natural to use a `ConstAllocation`, and in some places there's no clear choice. I've tried to make things look as nice as possible, while generally favouring `ConstAllocation`, which is the type that embodies more information. This does require quite a few calls to `inner()`. The commit also tweaks how `PartialOrd` works for `Interned`. The previous code was too clever by half, building on `T: Ord` to make the code shorter. That caused problems with deriving `PartialOrd` and `Ord` for `ConstAllocation`, so I changed it to build on `T: PartialOrd`, which is slightly more verbose but much more standard and avoided the problems.
396 lines
18 KiB
Rust
396 lines
18 KiB
Rust
use gccjit::{LValue, RValue, ToRValue, Type};
|
|
use rustc_codegen_ssa::traits::{BaseTypeMethods, ConstMethods, DerivedTypeMethods, StaticMethods};
|
|
use rustc_hir as hir;
|
|
use rustc_hir::Node;
|
|
use rustc_middle::{bug, span_bug};
|
|
use rustc_middle::middle::codegen_fn_attrs::{CodegenFnAttrFlags, CodegenFnAttrs};
|
|
use rustc_middle::mir::mono::MonoItem;
|
|
use rustc_middle::ty::{self, Instance, Ty};
|
|
use rustc_middle::ty::layout::LayoutOf;
|
|
use rustc_middle::mir::interpret::{self, ConstAllocation, ErrorHandled, Scalar as InterpScalar, read_target_uint};
|
|
use rustc_span::Span;
|
|
use rustc_span::def_id::DefId;
|
|
use rustc_target::abi::{self, Align, HasDataLayout, Primitive, Size, WrappingRange};
|
|
|
|
use crate::base;
|
|
use crate::context::CodegenCx;
|
|
use crate::type_of::LayoutGccExt;
|
|
|
|
impl<'gcc, 'tcx> CodegenCx<'gcc, 'tcx> {
|
|
pub fn const_bitcast(&self, value: RValue<'gcc>, typ: Type<'gcc>) -> RValue<'gcc> {
|
|
if value.get_type() == self.bool_type.make_pointer() {
|
|
if let Some(pointee) = typ.get_pointee() {
|
|
if pointee.dyncast_vector().is_some() {
|
|
panic!()
|
|
}
|
|
}
|
|
}
|
|
self.context.new_bitcast(None, value, typ)
|
|
}
|
|
}
|
|
|
|
impl<'gcc, 'tcx> StaticMethods for CodegenCx<'gcc, 'tcx> {
|
|
fn static_addr_of(&self, cv: RValue<'gcc>, align: Align, kind: Option<&str>) -> RValue<'gcc> {
|
|
// TODO(antoyo): implement a proper rvalue comparison in libgccjit instead of doing the
|
|
// following:
|
|
for (value, variable) in &*self.const_globals.borrow() {
|
|
if format!("{:?}", value) == format!("{:?}", cv) {
|
|
// TODO(antoyo): upgrade alignment.
|
|
return *variable;
|
|
}
|
|
}
|
|
let global_value = self.static_addr_of_mut(cv, align, kind);
|
|
// TODO(antoyo): set global constant.
|
|
self.const_globals.borrow_mut().insert(cv, global_value);
|
|
global_value
|
|
}
|
|
|
|
fn codegen_static(&self, def_id: DefId, is_mutable: bool) {
|
|
let attrs = self.tcx.codegen_fn_attrs(def_id);
|
|
|
|
let value =
|
|
match codegen_static_initializer(&self, def_id) {
|
|
Ok((value, _)) => value,
|
|
// Error has already been reported
|
|
Err(_) => return,
|
|
};
|
|
|
|
let global = self.get_static(def_id);
|
|
|
|
// boolean SSA values are i1, but they have to be stored in i8 slots,
|
|
// otherwise some LLVM optimization passes don't work as expected
|
|
let val_llty = self.val_ty(value);
|
|
let value =
|
|
if val_llty == self.type_i1() {
|
|
unimplemented!();
|
|
}
|
|
else {
|
|
value
|
|
};
|
|
|
|
let instance = Instance::mono(self.tcx, def_id);
|
|
let ty = instance.ty(self.tcx, ty::ParamEnv::reveal_all());
|
|
let gcc_type = self.layout_of(ty).gcc_type(self, true);
|
|
|
|
// TODO(antoyo): set alignment.
|
|
|
|
let value =
|
|
if value.get_type() != gcc_type {
|
|
self.context.new_bitcast(None, value, gcc_type)
|
|
}
|
|
else {
|
|
value
|
|
};
|
|
global.global_set_initializer_rvalue(value);
|
|
|
|
// As an optimization, all shared statics which do not have interior
|
|
// mutability are placed into read-only memory.
|
|
if !is_mutable {
|
|
if self.type_is_freeze(ty) {
|
|
// TODO(antoyo): set global constant.
|
|
}
|
|
}
|
|
|
|
if attrs.flags.contains(CodegenFnAttrFlags::THREAD_LOCAL) {
|
|
// Do not allow LLVM to change the alignment of a TLS on macOS.
|
|
//
|
|
// By default a global's alignment can be freely increased.
|
|
// This allows LLVM to generate more performant instructions
|
|
// e.g., using load-aligned into a SIMD register.
|
|
//
|
|
// However, on macOS 10.10 or below, the dynamic linker does not
|
|
// respect any alignment given on the TLS (radar 24221680).
|
|
// This will violate the alignment assumption, and causing segfault at runtime.
|
|
//
|
|
// This bug is very easy to trigger. In `println!` and `panic!`,
|
|
// the `LOCAL_STDOUT`/`LOCAL_STDERR` handles are stored in a TLS,
|
|
// which the values would be `mem::replace`d on initialization.
|
|
// The implementation of `mem::replace` will use SIMD
|
|
// whenever the size is 32 bytes or higher. LLVM notices SIMD is used
|
|
// and tries to align `LOCAL_STDOUT`/`LOCAL_STDERR` to a 32-byte boundary,
|
|
// which macOS's dyld disregarded and causing crashes
|
|
// (see issues #51794, #51758, #50867, #48866 and #44056).
|
|
//
|
|
// To workaround the bug, we trick LLVM into not increasing
|
|
// the global's alignment by explicitly assigning a section to it
|
|
// (equivalent to automatically generating a `#[link_section]` attribute).
|
|
// See the comment in the `GlobalValue::canIncreaseAlignment()` function
|
|
// of `lib/IR/Globals.cpp` for why this works.
|
|
//
|
|
// When the alignment is not increased, the optimized `mem::replace`
|
|
// will use load-unaligned instructions instead, and thus avoiding the crash.
|
|
//
|
|
// We could remove this hack whenever we decide to drop macOS 10.10 support.
|
|
if self.tcx.sess.target.options.is_like_osx {
|
|
// The `inspect` method is okay here because we checked relocations, and
|
|
// because we are doing this access to inspect the final interpreter state
|
|
// (not as part of the interpreter execution).
|
|
//
|
|
// FIXME: This check requires that the (arbitrary) value of undefined bytes
|
|
// happens to be zero. Instead, we should only check the value of defined bytes
|
|
// and set all undefined bytes to zero if this allocation is headed for the
|
|
// BSS.
|
|
unimplemented!();
|
|
}
|
|
}
|
|
|
|
// Wasm statics with custom link sections get special treatment as they
|
|
// go into custom sections of the wasm executable.
|
|
if self.tcx.sess.opts.target_triple.triple().starts_with("wasm32") {
|
|
if let Some(_section) = attrs.link_section {
|
|
unimplemented!();
|
|
}
|
|
} else {
|
|
// TODO(antoyo): set link section.
|
|
}
|
|
|
|
if attrs.flags.contains(CodegenFnAttrFlags::USED) || attrs.flags.contains(CodegenFnAttrFlags::USED_LINKER) {
|
|
self.add_used_global(global.to_rvalue());
|
|
}
|
|
}
|
|
|
|
/// Add a global value to a list to be stored in the `llvm.used` variable, an array of i8*.
|
|
fn add_used_global(&self, _global: RValue<'gcc>) {
|
|
// TODO(antoyo)
|
|
}
|
|
|
|
fn add_compiler_used_global(&self, _global: RValue<'gcc>) {
|
|
// TODO(antoyo)
|
|
}
|
|
}
|
|
|
|
impl<'gcc, 'tcx> CodegenCx<'gcc, 'tcx> {
|
|
pub fn static_addr_of_mut(&self, cv: RValue<'gcc>, align: Align, kind: Option<&str>) -> RValue<'gcc> {
|
|
let global =
|
|
match kind {
|
|
Some(kind) if !self.tcx.sess.fewer_names() => {
|
|
let name = self.generate_local_symbol_name(kind);
|
|
// TODO(antoyo): check if it's okay that TLS is off here.
|
|
// TODO(antoyo): check if it's okay that link_section is None here.
|
|
// TODO(antoyo): set alignment here as well.
|
|
let global = self.define_global(&name[..], self.val_ty(cv), false, None);
|
|
// TODO(antoyo): set linkage.
|
|
global
|
|
}
|
|
_ => {
|
|
let typ = self.val_ty(cv).get_aligned(align.bytes());
|
|
let global = self.declare_unnamed_global(typ);
|
|
global
|
|
},
|
|
};
|
|
// FIXME(antoyo): I think the name coming from generate_local_symbol_name() above cannot be used
|
|
// globally.
|
|
global.global_set_initializer_rvalue(cv);
|
|
// TODO(antoyo): set unnamed address.
|
|
global.get_address(None)
|
|
}
|
|
|
|
pub fn get_static(&self, def_id: DefId) -> LValue<'gcc> {
|
|
let instance = Instance::mono(self.tcx, def_id);
|
|
let fn_attrs = self.tcx.codegen_fn_attrs(def_id);
|
|
if let Some(&global) = self.instances.borrow().get(&instance) {
|
|
return global;
|
|
}
|
|
|
|
let defined_in_current_codegen_unit =
|
|
self.codegen_unit.items().contains_key(&MonoItem::Static(def_id));
|
|
assert!(
|
|
!defined_in_current_codegen_unit,
|
|
"consts::get_static() should always hit the cache for \
|
|
statics defined in the same CGU, but did not for `{:?}`",
|
|
def_id
|
|
);
|
|
|
|
let ty = instance.ty(self.tcx, ty::ParamEnv::reveal_all());
|
|
let sym = self.tcx.symbol_name(instance).name;
|
|
|
|
let global =
|
|
if let Some(def_id) = def_id.as_local() {
|
|
let id = self.tcx.hir().local_def_id_to_hir_id(def_id);
|
|
let llty = self.layout_of(ty).gcc_type(self, true);
|
|
// FIXME: refactor this to work without accessing the HIR
|
|
let global = match self.tcx.hir().get(id) {
|
|
Node::Item(&hir::Item { span, kind: hir::ItemKind::Static(..), .. }) => {
|
|
if let Some(global) = self.get_declared_value(&sym) {
|
|
if self.val_ty(global) != self.type_ptr_to(llty) {
|
|
span_bug!(span, "Conflicting types for static");
|
|
}
|
|
}
|
|
|
|
let is_tls = fn_attrs.flags.contains(CodegenFnAttrFlags::THREAD_LOCAL);
|
|
let global = self.declare_global(&sym, llty, is_tls, fn_attrs.link_section);
|
|
|
|
if !self.tcx.is_reachable_non_generic(def_id) {
|
|
// TODO(antoyo): set visibility.
|
|
}
|
|
|
|
global
|
|
}
|
|
|
|
Node::ForeignItem(&hir::ForeignItem {
|
|
span,
|
|
kind: hir::ForeignItemKind::Static(..),
|
|
..
|
|
}) => {
|
|
let fn_attrs = self.tcx.codegen_fn_attrs(def_id);
|
|
check_and_apply_linkage(&self, &fn_attrs, ty, sym, span)
|
|
}
|
|
|
|
item => bug!("get_static: expected static, found {:?}", item),
|
|
};
|
|
|
|
global
|
|
}
|
|
else {
|
|
// FIXME(nagisa): perhaps the map of externs could be offloaded to llvm somehow?
|
|
//debug!("get_static: sym={} item_attr={:?}", sym, self.tcx.item_attrs(def_id));
|
|
|
|
let attrs = self.tcx.codegen_fn_attrs(def_id);
|
|
let span = self.tcx.def_span(def_id);
|
|
let global = check_and_apply_linkage(&self, &attrs, ty, sym, span);
|
|
|
|
let needs_dll_storage_attr = false; // TODO(antoyo)
|
|
|
|
// If this assertion triggers, there's something wrong with commandline
|
|
// argument validation.
|
|
debug_assert!(
|
|
!(self.tcx.sess.opts.cg.linker_plugin_lto.enabled()
|
|
&& self.tcx.sess.target.options.is_like_msvc
|
|
&& self.tcx.sess.opts.cg.prefer_dynamic)
|
|
);
|
|
|
|
if needs_dll_storage_attr {
|
|
// This item is external but not foreign, i.e., it originates from an external Rust
|
|
// crate. Since we don't know whether this crate will be linked dynamically or
|
|
// statically in the final application, we always mark such symbols as 'dllimport'.
|
|
// If final linkage happens to be static, we rely on compiler-emitted __imp_ stubs
|
|
// to make things work.
|
|
//
|
|
// However, in some scenarios we defer emission of statics to downstream
|
|
// crates, so there are cases where a static with an upstream DefId
|
|
// is actually present in the current crate. We can find out via the
|
|
// is_codegened_item query.
|
|
if !self.tcx.is_codegened_item(def_id) {
|
|
unimplemented!();
|
|
}
|
|
}
|
|
global
|
|
};
|
|
|
|
// TODO(antoyo): set dll storage class.
|
|
|
|
self.instances.borrow_mut().insert(instance, global);
|
|
global
|
|
}
|
|
}
|
|
|
|
pub fn const_alloc_to_gcc<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, alloc: ConstAllocation<'tcx>) -> RValue<'gcc> {
|
|
let alloc = alloc.inner();
|
|
let mut llvals = Vec::with_capacity(alloc.relocations().len() + 1);
|
|
let dl = cx.data_layout();
|
|
let pointer_size = dl.pointer_size.bytes() as usize;
|
|
|
|
let mut next_offset = 0;
|
|
for &(offset, alloc_id) in alloc.relocations().iter() {
|
|
let offset = offset.bytes();
|
|
assert_eq!(offset as usize as u64, offset);
|
|
let offset = offset as usize;
|
|
if offset > next_offset {
|
|
// This `inspect` is okay since we have checked that it is not within a relocation, it
|
|
// is within the bounds of the allocation, and it doesn't affect interpreter execution
|
|
// (we inspect the result after interpreter execution). Any undef byte is replaced with
|
|
// some arbitrary byte value.
|
|
//
|
|
// FIXME: relay undef bytes to codegen as undef const bytes
|
|
let bytes = alloc.inspect_with_uninit_and_ptr_outside_interpreter(next_offset..offset);
|
|
llvals.push(cx.const_bytes(bytes));
|
|
}
|
|
let ptr_offset =
|
|
read_target_uint( dl.endian,
|
|
// This `inspect` is okay since it is within the bounds of the allocation, it doesn't
|
|
// affect interpreter execution (we inspect the result after interpreter execution),
|
|
// and we properly interpret the relocation as a relocation pointer offset.
|
|
alloc.inspect_with_uninit_and_ptr_outside_interpreter(offset..(offset + pointer_size)),
|
|
)
|
|
.expect("const_alloc_to_llvm: could not read relocation pointer")
|
|
as u64;
|
|
llvals.push(cx.scalar_to_backend(
|
|
InterpScalar::from_pointer(
|
|
interpret::Pointer::new(alloc_id, Size::from_bytes(ptr_offset)),
|
|
&cx.tcx,
|
|
),
|
|
abi::Scalar { value: Primitive::Pointer, valid_range: WrappingRange { start: 0, end: !0 } },
|
|
cx.type_i8p(),
|
|
));
|
|
next_offset = offset + pointer_size;
|
|
}
|
|
if alloc.len() >= next_offset {
|
|
let range = next_offset..alloc.len();
|
|
// This `inspect` is okay since we have check that it is after all relocations, it is
|
|
// within the bounds of the allocation, and it doesn't affect interpreter execution (we
|
|
// inspect the result after interpreter execution). Any undef byte is replaced with some
|
|
// arbitrary byte value.
|
|
//
|
|
// FIXME: relay undef bytes to codegen as undef const bytes
|
|
let bytes = alloc.inspect_with_uninit_and_ptr_outside_interpreter(range);
|
|
llvals.push(cx.const_bytes(bytes));
|
|
}
|
|
|
|
cx.const_struct(&llvals, true)
|
|
}
|
|
|
|
pub fn codegen_static_initializer<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, def_id: DefId) -> Result<(RValue<'gcc>, ConstAllocation<'tcx>), ErrorHandled> {
|
|
let alloc = cx.tcx.eval_static_initializer(def_id)?;
|
|
Ok((const_alloc_to_gcc(cx, alloc), alloc))
|
|
}
|
|
|
|
fn check_and_apply_linkage<'gcc, 'tcx>(cx: &CodegenCx<'gcc, 'tcx>, attrs: &CodegenFnAttrs, ty: Ty<'tcx>, sym: &str, span: Span) -> LValue<'gcc> {
|
|
let is_tls = attrs.flags.contains(CodegenFnAttrFlags::THREAD_LOCAL);
|
|
let llty = cx.layout_of(ty).gcc_type(cx, true);
|
|
if let Some(linkage) = attrs.linkage {
|
|
// If this is a static with a linkage specified, then we need to handle
|
|
// it a little specially. The typesystem prevents things like &T and
|
|
// extern "C" fn() from being non-null, so we can't just declare a
|
|
// static and call it a day. Some linkages (like weak) will make it such
|
|
// that the static actually has a null value.
|
|
let llty2 =
|
|
if let ty::RawPtr(ref mt) = ty.kind() {
|
|
cx.layout_of(mt.ty).gcc_type(cx, true)
|
|
}
|
|
else {
|
|
cx.sess().span_fatal(
|
|
span,
|
|
"must have type `*const T` or `*mut T` due to `#[linkage]` attribute",
|
|
)
|
|
};
|
|
// Declare a symbol `foo` with the desired linkage.
|
|
let global1 = cx.declare_global_with_linkage(&sym, llty2, base::global_linkage_to_gcc(linkage));
|
|
|
|
// Declare an internal global `extern_with_linkage_foo` which
|
|
// is initialized with the address of `foo`. If `foo` is
|
|
// discarded during linking (for example, if `foo` has weak
|
|
// linkage and there are no definitions), then
|
|
// `extern_with_linkage_foo` will instead be initialized to
|
|
// zero.
|
|
let mut real_name = "_rust_extern_with_linkage_".to_string();
|
|
real_name.push_str(&sym);
|
|
let global2 = cx.define_global(&real_name, llty, is_tls, attrs.link_section);
|
|
// TODO(antoyo): set linkage.
|
|
global2.global_set_initializer_rvalue(global1.get_address(None));
|
|
// TODO(antoyo): use global_set_initializer() when it will work.
|
|
global2
|
|
}
|
|
else {
|
|
// Generate an external declaration.
|
|
// FIXME(nagisa): investigate whether it can be changed into define_global
|
|
|
|
// Thread-local statics in some other crate need to *always* be linked
|
|
// against in a thread-local fashion, so we need to be sure to apply the
|
|
// thread-local attribute locally if it was present remotely. If we
|
|
// don't do this then linker errors can be generated where the linker
|
|
// complains that one object files has a thread local version of the
|
|
// symbol and another one doesn't.
|
|
cx.declare_global(&sym, llty, is_tls, attrs.link_section)
|
|
}
|
|
}
|