00fcf79448
type-outlives works for closure types so that it ensures that all upvars outlive the region in question. This gives the same guarantees but without introducing artificial regions (and gives better error messages to boot).
929 lines
34 KiB
Rust
929 lines
34 KiB
Rust
// Copyright 2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Code for projecting associated types out of trait references.
|
|
|
|
use super::elaborate_predicates;
|
|
use super::Obligation;
|
|
use super::ObligationCause;
|
|
use super::Overflow;
|
|
use super::PredicateObligation;
|
|
use super::SelectionContext;
|
|
use super::SelectionError;
|
|
use super::VtableImplData;
|
|
use super::util;
|
|
|
|
use middle::infer;
|
|
use middle::subst::{Subst, Substs};
|
|
use middle::ty::{self, AsPredicate, ReferencesError, RegionEscape,
|
|
HasProjectionTypes, ToPolyTraitRef, Ty};
|
|
use middle::ty_fold::{self, TypeFoldable, TypeFolder};
|
|
use std::rc::Rc;
|
|
use syntax::ast;
|
|
use syntax::parse::token;
|
|
use util::common::FN_OUTPUT_NAME;
|
|
use util::ppaux::Repr;
|
|
|
|
pub type PolyProjectionObligation<'tcx> =
|
|
Obligation<'tcx, ty::PolyProjectionPredicate<'tcx>>;
|
|
|
|
pub type ProjectionObligation<'tcx> =
|
|
Obligation<'tcx, ty::ProjectionPredicate<'tcx>>;
|
|
|
|
pub type ProjectionTyObligation<'tcx> =
|
|
Obligation<'tcx, ty::ProjectionTy<'tcx>>;
|
|
|
|
/// When attempting to resolve `<T as TraitRef>::Name` ...
|
|
pub enum ProjectionTyError<'tcx> {
|
|
/// ...we found multiple sources of information and couldn't resolve the ambiguity.
|
|
TooManyCandidates,
|
|
|
|
/// ...an error occurred matching `T : TraitRef`
|
|
TraitSelectionError(SelectionError<'tcx>),
|
|
}
|
|
|
|
#[derive(Clone)]
|
|
pub struct MismatchedProjectionTypes<'tcx> {
|
|
pub err: ty::type_err<'tcx>
|
|
}
|
|
|
|
#[derive(PartialEq, Eq)]
|
|
enum ProjectionTyCandidate<'tcx> {
|
|
ParamEnv(ty::PolyProjectionPredicate<'tcx>),
|
|
Impl(VtableImplData<'tcx, PredicateObligation<'tcx>>),
|
|
Closure(ast::DefId, Substs<'tcx>),
|
|
FnPointer(Ty<'tcx>),
|
|
}
|
|
|
|
struct ProjectionTyCandidateSet<'tcx> {
|
|
vec: Vec<ProjectionTyCandidate<'tcx>>,
|
|
ambiguous: bool
|
|
}
|
|
|
|
/// Evaluates constraints of the form:
|
|
///
|
|
/// for<...> <T as Trait>::U == V
|
|
///
|
|
/// If successful, this may result in additional obligations.
|
|
pub fn poly_project_and_unify_type<'cx,'tcx>(
|
|
selcx: &mut SelectionContext<'cx,'tcx>,
|
|
obligation: &PolyProjectionObligation<'tcx>)
|
|
-> Result<Option<Vec<PredicateObligation<'tcx>>>, MismatchedProjectionTypes<'tcx>>
|
|
{
|
|
debug!("poly_project_and_unify_type(obligation={})",
|
|
obligation.repr(selcx.tcx()));
|
|
|
|
let infcx = selcx.infcx();
|
|
infcx.try(|snapshot| {
|
|
let (skol_predicate, skol_map) =
|
|
infcx.skolemize_late_bound_regions(&obligation.predicate, snapshot);
|
|
|
|
let skol_obligation = obligation.with(skol_predicate);
|
|
match project_and_unify_type(selcx, &skol_obligation) {
|
|
Ok(result) => {
|
|
match infcx.leak_check(&skol_map, snapshot) {
|
|
Ok(()) => Ok(infcx.plug_leaks(skol_map, snapshot, &result)),
|
|
Err(e) => Err(MismatchedProjectionTypes { err: e }),
|
|
}
|
|
}
|
|
Err(e) => {
|
|
Err(e)
|
|
}
|
|
}
|
|
})
|
|
}
|
|
|
|
/// Evaluates constraints of the form:
|
|
///
|
|
/// <T as Trait>::U == V
|
|
///
|
|
/// If successful, this may result in additional obligations.
|
|
fn project_and_unify_type<'cx,'tcx>(
|
|
selcx: &mut SelectionContext<'cx,'tcx>,
|
|
obligation: &ProjectionObligation<'tcx>)
|
|
-> Result<Option<Vec<PredicateObligation<'tcx>>>, MismatchedProjectionTypes<'tcx>>
|
|
{
|
|
debug!("project_and_unify_type(obligation={})",
|
|
obligation.repr(selcx.tcx()));
|
|
|
|
let Normalized { value: normalized_ty, obligations } =
|
|
match opt_normalize_projection_type(selcx,
|
|
obligation.predicate.projection_ty.clone(),
|
|
obligation.cause.clone(),
|
|
obligation.recursion_depth) {
|
|
Some(n) => n,
|
|
None => {
|
|
consider_unification_despite_ambiguity(selcx, obligation);
|
|
return Ok(None);
|
|
}
|
|
};
|
|
|
|
debug!("project_and_unify_type: normalized_ty={} obligations={}",
|
|
normalized_ty.repr(selcx.tcx()),
|
|
obligations.repr(selcx.tcx()));
|
|
|
|
let infcx = selcx.infcx();
|
|
let origin = infer::RelateOutputImplTypes(obligation.cause.span);
|
|
match infer::mk_eqty(infcx, true, origin, normalized_ty, obligation.predicate.ty) {
|
|
Ok(()) => Ok(Some(obligations)),
|
|
Err(err) => Err(MismatchedProjectionTypes { err: err }),
|
|
}
|
|
}
|
|
|
|
fn consider_unification_despite_ambiguity<'cx,'tcx>(selcx: &mut SelectionContext<'cx,'tcx>,
|
|
obligation: &ProjectionObligation<'tcx>) {
|
|
debug!("consider_unification_despite_ambiguity(obligation={})",
|
|
obligation.repr(selcx.tcx()));
|
|
|
|
let def_id = obligation.predicate.projection_ty.trait_ref.def_id;
|
|
match selcx.tcx().lang_items.fn_trait_kind(def_id) {
|
|
Some(_) => { }
|
|
None => { return; }
|
|
}
|
|
|
|
let infcx = selcx.infcx();
|
|
let self_ty = obligation.predicate.projection_ty.trait_ref.self_ty();
|
|
let self_ty = infcx.shallow_resolve(self_ty);
|
|
debug!("consider_unification_despite_ambiguity: self_ty.sty={:?}",
|
|
self_ty.sty);
|
|
match self_ty.sty {
|
|
ty::ty_closure(closure_def_id, substs) => {
|
|
let closure_typer = selcx.closure_typer();
|
|
let closure_type = closure_typer.closure_type(closure_def_id, substs);
|
|
let ty::Binder((_, ret_type)) =
|
|
util::closure_trait_ref_and_return_type(infcx.tcx,
|
|
def_id,
|
|
self_ty,
|
|
&closure_type.sig,
|
|
util::TupleArgumentsFlag::No);
|
|
let (ret_type, _) =
|
|
infcx.replace_late_bound_regions_with_fresh_var(
|
|
obligation.cause.span,
|
|
infer::AssocTypeProjection(obligation.predicate.projection_ty.item_name),
|
|
&ty::Binder(ret_type));
|
|
debug!("consider_unification_despite_ambiguity: ret_type={:?}",
|
|
ret_type.repr(selcx.tcx()));
|
|
let origin = infer::RelateOutputImplTypes(obligation.cause.span);
|
|
let obligation_ty = obligation.predicate.ty;
|
|
match infer::mk_eqty(infcx, true, origin, obligation_ty, ret_type) {
|
|
Ok(()) => { }
|
|
Err(_) => { /* ignore errors */ }
|
|
}
|
|
}
|
|
_ => { }
|
|
}
|
|
}
|
|
|
|
/// Normalizes any associated type projections in `value`, replacing
|
|
/// them with a fully resolved type where possible. The return value
|
|
/// combines the normalized result and any additional obligations that
|
|
/// were incurred as result.
|
|
pub fn normalize<'a,'b,'tcx,T>(selcx: &'a mut SelectionContext<'b,'tcx>,
|
|
cause: ObligationCause<'tcx>,
|
|
value: &T)
|
|
-> Normalized<'tcx, T>
|
|
where T : TypeFoldable<'tcx> + HasProjectionTypes + Clone + Repr<'tcx>
|
|
{
|
|
normalize_with_depth(selcx, cause, 0, value)
|
|
}
|
|
|
|
/// As `normalize`, but with a custom depth.
|
|
pub fn normalize_with_depth<'a,'b,'tcx,T>(selcx: &'a mut SelectionContext<'b,'tcx>,
|
|
cause: ObligationCause<'tcx>,
|
|
depth: uint,
|
|
value: &T)
|
|
-> Normalized<'tcx, T>
|
|
where T : TypeFoldable<'tcx> + HasProjectionTypes + Clone + Repr<'tcx>
|
|
{
|
|
let mut normalizer = AssociatedTypeNormalizer::new(selcx, cause, depth);
|
|
let result = normalizer.fold(value);
|
|
Normalized {
|
|
value: result,
|
|
obligations: normalizer.obligations,
|
|
}
|
|
}
|
|
|
|
struct AssociatedTypeNormalizer<'a,'b:'a,'tcx:'b> {
|
|
selcx: &'a mut SelectionContext<'b,'tcx>,
|
|
cause: ObligationCause<'tcx>,
|
|
obligations: Vec<PredicateObligation<'tcx>>,
|
|
depth: uint,
|
|
}
|
|
|
|
impl<'a,'b,'tcx> AssociatedTypeNormalizer<'a,'b,'tcx> {
|
|
fn new(selcx: &'a mut SelectionContext<'b,'tcx>,
|
|
cause: ObligationCause<'tcx>,
|
|
depth: uint)
|
|
-> AssociatedTypeNormalizer<'a,'b,'tcx>
|
|
{
|
|
AssociatedTypeNormalizer {
|
|
selcx: selcx,
|
|
cause: cause,
|
|
obligations: vec!(),
|
|
depth: depth,
|
|
}
|
|
}
|
|
|
|
fn fold<T:TypeFoldable<'tcx> + HasProjectionTypes + Clone>(&mut self, value: &T) -> T {
|
|
let value = self.selcx.infcx().resolve_type_vars_if_possible(value);
|
|
|
|
if !value.has_projection_types() {
|
|
value.clone()
|
|
} else {
|
|
value.fold_with(self)
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'a,'b,'tcx> TypeFolder<'tcx> for AssociatedTypeNormalizer<'a,'b,'tcx> {
|
|
fn tcx(&self) -> &ty::ctxt<'tcx> {
|
|
self.selcx.tcx()
|
|
}
|
|
|
|
fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> {
|
|
// We don't want to normalize associated types that occur inside of region
|
|
// binders, because they may contain bound regions, and we can't cope with that.
|
|
//
|
|
// Example:
|
|
//
|
|
// for<'a> fn(<T as Foo<&'a>>::A)
|
|
//
|
|
// Instead of normalizing `<T as Foo<&'a>>::A` here, we'll
|
|
// normalize it when we instantiate those bound regions (which
|
|
// should occur eventually).
|
|
|
|
let ty = ty_fold::super_fold_ty(self, ty);
|
|
match ty.sty {
|
|
ty::ty_projection(ref data) if !data.has_escaping_regions() => { // (*)
|
|
|
|
// (*) This is kind of hacky -- we need to be able to
|
|
// handle normalization within binders because
|
|
// otherwise we wind up a need to normalize when doing
|
|
// trait matching (since you can have a trait
|
|
// obligation like `for<'a> T::B : Fn(&'a int)`), but
|
|
// we can't normalize with bound regions in scope. So
|
|
// far now we just ignore binders but only normalize
|
|
// if all bound regions are gone (and then we still
|
|
// have to renormalize whenever we instantiate a
|
|
// binder). It would be better to normalize in a
|
|
// binding-aware fashion.
|
|
|
|
let Normalized { value: ty, obligations } =
|
|
normalize_projection_type(self.selcx,
|
|
data.clone(),
|
|
self.cause.clone(),
|
|
self.depth);
|
|
self.obligations.extend(obligations.into_iter());
|
|
ty
|
|
}
|
|
|
|
_ => {
|
|
ty
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub struct Normalized<'tcx,T> {
|
|
pub value: T,
|
|
pub obligations: Vec<PredicateObligation<'tcx>>,
|
|
}
|
|
|
|
pub type NormalizedTy<'tcx> = Normalized<'tcx, Ty<'tcx>>;
|
|
|
|
impl<'tcx,T> Normalized<'tcx,T> {
|
|
pub fn with<U>(self, value: U) -> Normalized<'tcx,U> {
|
|
Normalized { value: value, obligations: self.obligations }
|
|
}
|
|
}
|
|
|
|
/// The guts of `normalize`: normalize a specific projection like `<T
|
|
/// as Trait>::Item`. The result is always a type (and possibly
|
|
/// additional obligations). If ambiguity arises, which implies that
|
|
/// there are unresolved type variables in the projection, we will
|
|
/// substitute a fresh type variable `$X` and generate a new
|
|
/// obligation `<T as Trait>::Item == $X` for later.
|
|
pub fn normalize_projection_type<'a,'b,'tcx>(
|
|
selcx: &'a mut SelectionContext<'b,'tcx>,
|
|
projection_ty: ty::ProjectionTy<'tcx>,
|
|
cause: ObligationCause<'tcx>,
|
|
depth: uint)
|
|
-> NormalizedTy<'tcx>
|
|
{
|
|
opt_normalize_projection_type(selcx, projection_ty.clone(), cause.clone(), depth)
|
|
.unwrap_or_else(move || {
|
|
// if we bottom out in ambiguity, create a type variable
|
|
// and a deferred predicate to resolve this when more type
|
|
// information is available.
|
|
|
|
let ty_var = selcx.infcx().next_ty_var();
|
|
let projection = ty::Binder(ty::ProjectionPredicate {
|
|
projection_ty: projection_ty,
|
|
ty: ty_var
|
|
});
|
|
let obligation = Obligation::with_depth(cause, depth+1, projection.as_predicate());
|
|
Normalized {
|
|
value: ty_var,
|
|
obligations: vec!(obligation)
|
|
}
|
|
})
|
|
}
|
|
|
|
/// The guts of `normalize`: normalize a specific projection like `<T
|
|
/// as Trait>::Item`. The result is always a type (and possibly
|
|
/// additional obligations). Returns `None` in the case of ambiguity,
|
|
/// which indicates that there are unbound type variables.
|
|
fn opt_normalize_projection_type<'a,'b,'tcx>(
|
|
selcx: &'a mut SelectionContext<'b,'tcx>,
|
|
projection_ty: ty::ProjectionTy<'tcx>,
|
|
cause: ObligationCause<'tcx>,
|
|
depth: uint)
|
|
-> Option<NormalizedTy<'tcx>>
|
|
{
|
|
debug!("normalize_projection_type(\
|
|
projection_ty={}, \
|
|
depth={})",
|
|
projection_ty.repr(selcx.tcx()),
|
|
depth);
|
|
|
|
let obligation = Obligation::with_depth(cause.clone(), depth, projection_ty.clone());
|
|
match project_type(selcx, &obligation) {
|
|
Ok(ProjectedTy::Progress(projected_ty, mut obligations)) => {
|
|
// if projection succeeded, then what we get out of this
|
|
// is also non-normalized (consider: it was derived from
|
|
// an impl, where-clause etc) and hence we must
|
|
// re-normalize it
|
|
|
|
debug!("normalize_projection_type: projected_ty={} depth={} obligations={}",
|
|
projected_ty.repr(selcx.tcx()),
|
|
depth,
|
|
obligations.repr(selcx.tcx()));
|
|
|
|
if ty::type_has_projection(projected_ty) {
|
|
let tcx = selcx.tcx();
|
|
let mut normalizer = AssociatedTypeNormalizer::new(selcx, cause, depth);
|
|
let normalized_ty = normalizer.fold(&projected_ty);
|
|
|
|
debug!("normalize_projection_type: normalized_ty={} depth={}",
|
|
normalized_ty.repr(tcx),
|
|
depth);
|
|
|
|
obligations.extend(normalizer.obligations.into_iter());
|
|
Some(Normalized {
|
|
value: normalized_ty,
|
|
obligations: obligations,
|
|
})
|
|
} else {
|
|
Some(Normalized {
|
|
value: projected_ty,
|
|
obligations: obligations,
|
|
})
|
|
}
|
|
}
|
|
Ok(ProjectedTy::NoProgress(projected_ty)) => {
|
|
Some(Normalized {
|
|
value: projected_ty,
|
|
obligations: vec!()
|
|
})
|
|
}
|
|
Err(ProjectionTyError::TooManyCandidates) => {
|
|
None
|
|
}
|
|
Err(ProjectionTyError::TraitSelectionError(_)) => {
|
|
// if we got an error processing the `T as Trait` part,
|
|
// just return `ty::err` but add the obligation `T :
|
|
// Trait`, which when processed will cause the error to be
|
|
// reported later
|
|
|
|
Some(normalize_to_error(selcx, projection_ty, cause, depth))
|
|
}
|
|
}
|
|
}
|
|
|
|
/// in various error cases, we just set ty_err and return an obligation
|
|
/// that, when fulfilled, will lead to an error
|
|
fn normalize_to_error<'a,'tcx>(selcx: &mut SelectionContext<'a,'tcx>,
|
|
projection_ty: ty::ProjectionTy<'tcx>,
|
|
cause: ObligationCause<'tcx>,
|
|
depth: uint)
|
|
-> NormalizedTy<'tcx>
|
|
{
|
|
let trait_ref = projection_ty.trait_ref.to_poly_trait_ref();
|
|
let trait_obligation = Obligation { cause: cause,
|
|
recursion_depth: depth,
|
|
predicate: trait_ref.as_predicate() };
|
|
Normalized {
|
|
value: selcx.tcx().types.err,
|
|
obligations: vec!(trait_obligation)
|
|
}
|
|
}
|
|
|
|
enum ProjectedTy<'tcx> {
|
|
Progress(Ty<'tcx>, Vec<PredicateObligation<'tcx>>),
|
|
NoProgress(Ty<'tcx>),
|
|
}
|
|
|
|
/// Compute the result of a projection type (if we can).
|
|
fn project_type<'cx,'tcx>(
|
|
selcx: &mut SelectionContext<'cx,'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>)
|
|
-> Result<ProjectedTy<'tcx>, ProjectionTyError<'tcx>>
|
|
{
|
|
debug!("project(obligation={})",
|
|
obligation.repr(selcx.tcx()));
|
|
|
|
let recursion_limit = selcx.tcx().sess.recursion_limit.get();
|
|
if obligation.recursion_depth >= recursion_limit {
|
|
debug!("project: overflow!");
|
|
return Err(ProjectionTyError::TraitSelectionError(Overflow));
|
|
}
|
|
|
|
let obligation_trait_ref =
|
|
selcx.infcx().resolve_type_vars_if_possible(&obligation.predicate.trait_ref);
|
|
|
|
debug!("project: obligation_trait_ref={}", obligation_trait_ref.repr(selcx.tcx()));
|
|
|
|
if obligation_trait_ref.references_error() {
|
|
return Ok(ProjectedTy::Progress(selcx.tcx().types.err, vec!()));
|
|
}
|
|
|
|
let mut candidates = ProjectionTyCandidateSet {
|
|
vec: Vec::new(),
|
|
ambiguous: false,
|
|
};
|
|
|
|
assemble_candidates_from_param_env(selcx,
|
|
obligation,
|
|
&obligation_trait_ref,
|
|
&mut candidates);
|
|
|
|
assemble_candidates_from_trait_def(selcx,
|
|
obligation,
|
|
&obligation_trait_ref,
|
|
&mut candidates);
|
|
|
|
if let Err(e) = assemble_candidates_from_impls(selcx,
|
|
obligation,
|
|
&obligation_trait_ref,
|
|
&mut candidates) {
|
|
return Err(ProjectionTyError::TraitSelectionError(e));
|
|
}
|
|
|
|
debug!("{} candidates, ambiguous={}",
|
|
candidates.vec.len(),
|
|
candidates.ambiguous);
|
|
|
|
// We probably need some winnowing logic similar to select here.
|
|
|
|
// Drop duplicates.
|
|
//
|
|
// Note: `candidates.vec` seems to be on the critical path of the
|
|
// compiler. Replacing it with an hash set was also tried, which would
|
|
// render the following dedup unnecessary. It led to cleaner code but
|
|
// prolonged compiling time of `librustc` from 5m30s to 6m in one test, or
|
|
// ~9% performance lost.
|
|
if candidates.vec.len() > 1 {
|
|
let mut i = 0;
|
|
while i < candidates.vec.len() {
|
|
let has_dup = (0..i).any(|j| candidates.vec[i] == candidates.vec[j]);
|
|
if has_dup {
|
|
candidates.vec.swap_remove(i);
|
|
} else {
|
|
i += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if candidates.ambiguous || candidates.vec.len() > 1 {
|
|
return Err(ProjectionTyError::TooManyCandidates);
|
|
}
|
|
|
|
match candidates.vec.pop() {
|
|
Some(candidate) => {
|
|
let (ty, obligations) = confirm_candidate(selcx, obligation, candidate);
|
|
Ok(ProjectedTy::Progress(ty, obligations))
|
|
}
|
|
None => {
|
|
Ok(ProjectedTy::NoProgress(ty::mk_projection(selcx.tcx(),
|
|
obligation.predicate.trait_ref.clone(),
|
|
obligation.predicate.item_name)))
|
|
}
|
|
}
|
|
}
|
|
|
|
/// The first thing we have to do is scan through the parameter
|
|
/// environment to see whether there are any projection predicates
|
|
/// there that can answer this question.
|
|
fn assemble_candidates_from_param_env<'cx,'tcx>(
|
|
selcx: &mut SelectionContext<'cx,'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
obligation_trait_ref: &Rc<ty::TraitRef<'tcx>>,
|
|
candidate_set: &mut ProjectionTyCandidateSet<'tcx>)
|
|
{
|
|
let env_predicates = selcx.param_env().caller_bounds.clone();
|
|
assemble_candidates_from_predicates(selcx, obligation, obligation_trait_ref,
|
|
candidate_set, env_predicates);
|
|
}
|
|
|
|
/// In the case of a nested projection like <<A as Foo>::FooT as Bar>::BarT, we may find
|
|
/// that the definition of `Foo` has some clues:
|
|
///
|
|
/// ```rust
|
|
/// trait Foo {
|
|
/// type FooT : Bar<BarT=i32>
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// Here, for example, we could conclude that the result is `i32`.
|
|
fn assemble_candidates_from_trait_def<'cx,'tcx>(
|
|
selcx: &mut SelectionContext<'cx,'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
obligation_trait_ref: &Rc<ty::TraitRef<'tcx>>,
|
|
candidate_set: &mut ProjectionTyCandidateSet<'tcx>)
|
|
{
|
|
// Check whether the self-type is itself a projection.
|
|
let trait_ref = match obligation_trait_ref.self_ty().sty {
|
|
ty::ty_projection(ref data) => data.trait_ref.clone(),
|
|
ty::ty_infer(ty::TyVar(_)) => {
|
|
// If the self-type is an inference variable, then it MAY wind up
|
|
// being a projected type, so induce an ambiguity.
|
|
candidate_set.ambiguous = true;
|
|
return;
|
|
}
|
|
_ => { return; }
|
|
};
|
|
|
|
// If so, extract what we know from the trait and try to come up with a good answer.
|
|
let trait_predicates = ty::lookup_predicates(selcx.tcx(), trait_ref.def_id);
|
|
let bounds = trait_predicates.instantiate(selcx.tcx(), trait_ref.substs);
|
|
assemble_candidates_from_predicates(selcx, obligation, obligation_trait_ref,
|
|
candidate_set, bounds.predicates.into_vec());
|
|
}
|
|
|
|
fn assemble_candidates_from_predicates<'cx,'tcx>(
|
|
selcx: &mut SelectionContext<'cx,'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
obligation_trait_ref: &Rc<ty::TraitRef<'tcx>>,
|
|
candidate_set: &mut ProjectionTyCandidateSet<'tcx>,
|
|
env_predicates: Vec<ty::Predicate<'tcx>>)
|
|
{
|
|
debug!("assemble_candidates_from_predicates(obligation={}, env_predicates={})",
|
|
obligation.repr(selcx.tcx()),
|
|
env_predicates.repr(selcx.tcx()));
|
|
let infcx = selcx.infcx();
|
|
for predicate in elaborate_predicates(selcx.tcx(), env_predicates) {
|
|
match predicate {
|
|
ty::Predicate::Projection(ref data) => {
|
|
let same_name = data.item_name() == obligation.predicate.item_name;
|
|
|
|
let is_match = same_name && infcx.probe(|_| {
|
|
let origin = infer::Misc(obligation.cause.span);
|
|
let data_poly_trait_ref =
|
|
data.to_poly_trait_ref();
|
|
let obligation_poly_trait_ref =
|
|
obligation_trait_ref.to_poly_trait_ref();
|
|
infcx.sub_poly_trait_refs(false,
|
|
origin,
|
|
data_poly_trait_ref,
|
|
obligation_poly_trait_ref).is_ok()
|
|
});
|
|
|
|
debug!("assemble_candidates_from_predicates: candidate {} is_match {} same_name {}",
|
|
data.repr(selcx.tcx()),
|
|
is_match,
|
|
same_name);
|
|
|
|
if is_match {
|
|
candidate_set.vec.push(
|
|
ProjectionTyCandidate::ParamEnv(data.clone()));
|
|
}
|
|
}
|
|
_ => { }
|
|
}
|
|
}
|
|
}
|
|
|
|
fn assemble_candidates_from_object_type<'cx,'tcx>(
|
|
selcx: &mut SelectionContext<'cx,'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
obligation_trait_ref: &Rc<ty::TraitRef<'tcx>>,
|
|
candidate_set: &mut ProjectionTyCandidateSet<'tcx>,
|
|
object_ty: Ty<'tcx>)
|
|
{
|
|
let infcx = selcx.infcx();
|
|
debug!("assemble_candidates_from_object_type(object_ty={})",
|
|
object_ty.repr(infcx.tcx));
|
|
let data = match object_ty.sty {
|
|
ty::ty_trait(ref data) => data,
|
|
_ => {
|
|
selcx.tcx().sess.span_bug(
|
|
obligation.cause.span,
|
|
&format!("assemble_candidates_from_object_type called with non-object: {}",
|
|
object_ty.repr(selcx.tcx())));
|
|
}
|
|
};
|
|
let projection_bounds = data.projection_bounds_with_self_ty(selcx.tcx(), object_ty);
|
|
let env_predicates = projection_bounds.iter()
|
|
.map(|p| p.as_predicate())
|
|
.collect();
|
|
assemble_candidates_from_predicates(selcx, obligation, obligation_trait_ref,
|
|
candidate_set, env_predicates)
|
|
}
|
|
|
|
fn assemble_candidates_from_impls<'cx,'tcx>(
|
|
selcx: &mut SelectionContext<'cx,'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
obligation_trait_ref: &Rc<ty::TraitRef<'tcx>>,
|
|
candidate_set: &mut ProjectionTyCandidateSet<'tcx>)
|
|
-> Result<(), SelectionError<'tcx>>
|
|
{
|
|
// If we are resolving `<T as TraitRef<...>>::Item == Type`,
|
|
// start out by selecting the predicate `T as TraitRef<...>`:
|
|
let poly_trait_ref = obligation_trait_ref.to_poly_trait_ref();
|
|
let trait_obligation = obligation.with(poly_trait_ref.to_poly_trait_predicate());
|
|
let vtable = match selcx.select(&trait_obligation) {
|
|
Ok(Some(vtable)) => vtable,
|
|
Ok(None) => {
|
|
candidate_set.ambiguous = true;
|
|
return Ok(());
|
|
}
|
|
Err(e) => {
|
|
debug!("assemble_candidates_from_impls: selection error {}",
|
|
e.repr(selcx.tcx()));
|
|
return Err(e);
|
|
}
|
|
};
|
|
|
|
match vtable {
|
|
super::VtableImpl(data) => {
|
|
debug!("assemble_candidates_from_impls: impl candidate {}",
|
|
data.repr(selcx.tcx()));
|
|
|
|
candidate_set.vec.push(
|
|
ProjectionTyCandidate::Impl(data));
|
|
}
|
|
super::VtableObject(data) => {
|
|
assemble_candidates_from_object_type(
|
|
selcx, obligation, obligation_trait_ref, candidate_set,
|
|
data.object_ty);
|
|
}
|
|
super::VtableClosure(closure_def_id, substs) => {
|
|
candidate_set.vec.push(
|
|
ProjectionTyCandidate::Closure(closure_def_id, substs));
|
|
}
|
|
super::VtableFnPointer(fn_type) => {
|
|
candidate_set.vec.push(
|
|
ProjectionTyCandidate::FnPointer(fn_type));
|
|
}
|
|
super::VtableParam(..) => {
|
|
// This case tell us nothing about the value of an
|
|
// associated type. Consider:
|
|
//
|
|
// ```
|
|
// trait SomeTrait { type Foo; }
|
|
// fn foo<T:SomeTrait>(...) { }
|
|
// ```
|
|
//
|
|
// If the user writes `<T as SomeTrait>::Foo`, then the `T
|
|
// : SomeTrait` binding does not help us decide what the
|
|
// type `Foo` is (at least, not more specifically than
|
|
// what we already knew).
|
|
//
|
|
// But wait, you say! What about an example like this:
|
|
//
|
|
// ```
|
|
// fn bar<T:SomeTrait<Foo=uint>>(...) { ... }
|
|
// ```
|
|
//
|
|
// Doesn't the `T : Sometrait<Foo=uint>` predicate help
|
|
// resolve `T::Foo`? And of course it does, but in fact
|
|
// that single predicate is desugared into two predicates
|
|
// in the compiler: a trait predicate (`T : SomeTrait`) and a
|
|
// projection. And the projection where clause is handled
|
|
// in `assemble_candidates_from_param_env`.
|
|
}
|
|
super::VtableDefaultImpl(..) |
|
|
super::VtableBuiltin(..) => {
|
|
// These traits have no associated types.
|
|
selcx.tcx().sess.span_bug(
|
|
obligation.cause.span,
|
|
&format!("Cannot project an associated type from `{}`",
|
|
vtable.repr(selcx.tcx())));
|
|
}
|
|
}
|
|
|
|
Ok(())
|
|
}
|
|
|
|
fn confirm_candidate<'cx,'tcx>(
|
|
selcx: &mut SelectionContext<'cx,'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
candidate: ProjectionTyCandidate<'tcx>)
|
|
-> (Ty<'tcx>, Vec<PredicateObligation<'tcx>>)
|
|
{
|
|
let infcx = selcx.infcx();
|
|
|
|
debug!("confirm_candidate(candidate={}, obligation={})",
|
|
candidate.repr(infcx.tcx),
|
|
obligation.repr(infcx.tcx));
|
|
|
|
match candidate {
|
|
ProjectionTyCandidate::ParamEnv(poly_projection) => {
|
|
confirm_param_env_candidate(selcx, obligation, poly_projection)
|
|
}
|
|
|
|
ProjectionTyCandidate::Impl(impl_vtable) => {
|
|
confirm_impl_candidate(selcx, obligation, impl_vtable)
|
|
}
|
|
|
|
ProjectionTyCandidate::Closure(def_id, substs) => {
|
|
confirm_closure_candidate(selcx, obligation, def_id, &substs)
|
|
}
|
|
|
|
ProjectionTyCandidate::FnPointer(fn_type) => {
|
|
confirm_fn_pointer_candidate(selcx, obligation, fn_type)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn confirm_fn_pointer_candidate<'cx,'tcx>(
|
|
selcx: &mut SelectionContext<'cx,'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
fn_type: Ty<'tcx>)
|
|
-> (Ty<'tcx>, Vec<PredicateObligation<'tcx>>)
|
|
{
|
|
let fn_type = selcx.infcx().shallow_resolve(fn_type);
|
|
let sig = ty::ty_fn_sig(fn_type);
|
|
confirm_callable_candidate(selcx, obligation, sig, util::TupleArgumentsFlag::Yes)
|
|
}
|
|
|
|
fn confirm_closure_candidate<'cx,'tcx>(
|
|
selcx: &mut SelectionContext<'cx,'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
closure_def_id: ast::DefId,
|
|
substs: &Substs<'tcx>)
|
|
-> (Ty<'tcx>, Vec<PredicateObligation<'tcx>>)
|
|
{
|
|
let closure_typer = selcx.closure_typer();
|
|
let closure_type = closure_typer.closure_type(closure_def_id, substs);
|
|
confirm_callable_candidate(selcx, obligation, &closure_type.sig, util::TupleArgumentsFlag::No)
|
|
}
|
|
|
|
fn confirm_callable_candidate<'cx,'tcx>(
|
|
selcx: &mut SelectionContext<'cx,'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
fn_sig: &ty::PolyFnSig<'tcx>,
|
|
flag: util::TupleArgumentsFlag)
|
|
-> (Ty<'tcx>, Vec<PredicateObligation<'tcx>>)
|
|
{
|
|
let tcx = selcx.tcx();
|
|
|
|
debug!("confirm_closure_candidate({},{})",
|
|
obligation.repr(tcx),
|
|
fn_sig.repr(tcx));
|
|
|
|
// Note: we unwrap the binder here but re-create it below (1)
|
|
let ty::Binder((trait_ref, ret_type)) =
|
|
util::closure_trait_ref_and_return_type(tcx,
|
|
obligation.predicate.trait_ref.def_id,
|
|
obligation.predicate.trait_ref.self_ty(),
|
|
fn_sig,
|
|
flag);
|
|
|
|
let predicate = ty::Binder(ty::ProjectionPredicate { // (1) recreate binder here
|
|
projection_ty: ty::ProjectionTy {
|
|
trait_ref: trait_ref,
|
|
item_name: token::intern(FN_OUTPUT_NAME),
|
|
},
|
|
ty: ret_type
|
|
});
|
|
|
|
confirm_param_env_candidate(selcx, obligation, predicate)
|
|
}
|
|
|
|
fn confirm_param_env_candidate<'cx,'tcx>(
|
|
selcx: &mut SelectionContext<'cx,'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
poly_projection: ty::PolyProjectionPredicate<'tcx>)
|
|
-> (Ty<'tcx>, Vec<PredicateObligation<'tcx>>)
|
|
{
|
|
let infcx = selcx.infcx();
|
|
|
|
let projection =
|
|
infcx.replace_late_bound_regions_with_fresh_var(
|
|
obligation.cause.span,
|
|
infer::LateBoundRegionConversionTime::HigherRankedType,
|
|
&poly_projection).0;
|
|
|
|
assert_eq!(projection.projection_ty.item_name,
|
|
obligation.predicate.item_name);
|
|
|
|
let origin = infer::RelateOutputImplTypes(obligation.cause.span);
|
|
match infcx.sub_trait_refs(false,
|
|
origin,
|
|
obligation.predicate.trait_ref.clone(),
|
|
projection.projection_ty.trait_ref.clone()) {
|
|
Ok(()) => { }
|
|
Err(e) => {
|
|
selcx.tcx().sess.span_bug(
|
|
obligation.cause.span,
|
|
&format!("Failed to unify `{}` and `{}` in projection: {}",
|
|
obligation.repr(selcx.tcx()),
|
|
projection.repr(selcx.tcx()),
|
|
ty::type_err_to_str(selcx.tcx(), &e)));
|
|
}
|
|
}
|
|
|
|
(projection.ty, vec!())
|
|
}
|
|
|
|
fn confirm_impl_candidate<'cx,'tcx>(
|
|
selcx: &mut SelectionContext<'cx,'tcx>,
|
|
obligation: &ProjectionTyObligation<'tcx>,
|
|
impl_vtable: VtableImplData<'tcx, PredicateObligation<'tcx>>)
|
|
-> (Ty<'tcx>, Vec<PredicateObligation<'tcx>>)
|
|
{
|
|
// there don't seem to be nicer accessors to these:
|
|
let impl_items_map = selcx.tcx().impl_items.borrow();
|
|
let impl_or_trait_items_map = selcx.tcx().impl_or_trait_items.borrow();
|
|
|
|
let impl_items = &impl_items_map[impl_vtable.impl_def_id];
|
|
let mut impl_ty = None;
|
|
for impl_item in impl_items {
|
|
let assoc_type = match impl_or_trait_items_map[impl_item.def_id()] {
|
|
ty::TypeTraitItem(ref assoc_type) => assoc_type.clone(),
|
|
ty::MethodTraitItem(..) => { continue; }
|
|
};
|
|
|
|
if assoc_type.name != obligation.predicate.item_name {
|
|
continue;
|
|
}
|
|
|
|
let impl_poly_ty = ty::lookup_item_type(selcx.tcx(), assoc_type.def_id);
|
|
impl_ty = Some(impl_poly_ty.ty.subst(selcx.tcx(), &impl_vtable.substs));
|
|
break;
|
|
}
|
|
|
|
match impl_ty {
|
|
Some(ty) => (ty, impl_vtable.nested.into_vec()),
|
|
None => {
|
|
// This means that the impl is missing a
|
|
// definition for the associated type. This error
|
|
// ought to be reported by the type checker method
|
|
// `check_impl_items_against_trait`, so here we
|
|
// just return ty_err.
|
|
(selcx.tcx().types.err, vec!())
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx> Repr<'tcx> for ProjectionTyError<'tcx> {
|
|
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
|
|
match *self {
|
|
ProjectionTyError::TooManyCandidates =>
|
|
format!("NoCandidate"),
|
|
ProjectionTyError::TraitSelectionError(ref e) =>
|
|
format!("TraitSelectionError({})", e.repr(tcx)),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx> Repr<'tcx> for ProjectionTyCandidate<'tcx> {
|
|
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
|
|
match *self {
|
|
ProjectionTyCandidate::ParamEnv(ref data) =>
|
|
format!("ParamEnv({})", data.repr(tcx)),
|
|
ProjectionTyCandidate::Impl(ref data) =>
|
|
format!("Impl({})", data.repr(tcx)),
|
|
ProjectionTyCandidate::Closure(ref a, ref b) =>
|
|
format!("Closure(({},{}))", a.repr(tcx), b.repr(tcx)),
|
|
ProjectionTyCandidate::FnPointer(a) =>
|
|
format!("FnPointer(({}))", a.repr(tcx)),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx, T: TypeFoldable<'tcx>> TypeFoldable<'tcx> for Normalized<'tcx, T> {
|
|
fn fold_with<F: TypeFolder<'tcx>>(&self, folder: &mut F) -> Normalized<'tcx, T> {
|
|
Normalized {
|
|
value: self.value.fold_with(folder),
|
|
obligations: self.obligations.fold_with(folder),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<'tcx, T:Repr<'tcx>> Repr<'tcx> for Normalized<'tcx, T> {
|
|
fn repr(&self, tcx: &ty::ctxt<'tcx>) -> String {
|
|
format!("Normalized({},{})",
|
|
self.value.repr(tcx),
|
|
self.obligations.repr(tcx))
|
|
}
|
|
}
|