2015-02-02 13:40:18 -05:00

1128 lines
38 KiB
Rust

// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
pub use self::Node::*;
pub use self::PathElem::*;
use self::MapEntry::*;
use abi;
use ast::*;
use ast_util;
use codemap::{DUMMY_SP, Span, Spanned};
use fold::Folder;
use parse::token;
use print::pprust;
use ptr::P;
use visit::{self, Visitor};
use arena::TypedArena;
use std::cell::RefCell;
use std::fmt;
use std::old_io::IoResult;
use std::iter::{self, repeat};
use std::mem;
use std::slice;
pub mod blocks;
#[derive(Clone, Copy, PartialEq, Debug)]
pub enum PathElem {
PathMod(Name),
PathName(Name)
}
impl PathElem {
pub fn name(&self) -> Name {
match *self {
PathMod(name) | PathName(name) => name
}
}
}
impl fmt::Display for PathElem {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let slot = token::get_name(self.name());
write!(f, "{}", slot)
}
}
#[derive(Clone)]
struct LinkedPathNode<'a> {
node: PathElem,
next: LinkedPath<'a>,
}
type LinkedPath<'a> = Option<&'a LinkedPathNode<'a>>;
impl<'a> Iterator for LinkedPath<'a> {
type Item = PathElem;
fn next(&mut self) -> Option<PathElem> {
match *self {
Some(node) => {
*self = node.next;
Some(node.node)
}
None => None
}
}
}
/// The type of the iterator used by with_path.
pub type PathElems<'a, 'b> = iter::Chain<iter::Cloned<slice::Iter<'a, PathElem>>, LinkedPath<'b>>;
pub fn path_to_string<PI: Iterator<Item=PathElem>>(path: PI) -> String {
let itr = token::get_ident_interner();
path.fold(String::new(), |mut s, e| {
let e = itr.get(e.name());
if !s.is_empty() {
s.push_str("::");
}
s.push_str(&e[]);
s
})
}
#[derive(Copy, Debug)]
pub enum Node<'ast> {
NodeItem(&'ast Item),
NodeForeignItem(&'ast ForeignItem),
NodeTraitItem(&'ast TraitItem),
NodeImplItem(&'ast ImplItem),
NodeVariant(&'ast Variant),
NodeExpr(&'ast Expr),
NodeStmt(&'ast Stmt),
NodeArg(&'ast Pat),
NodeLocal(&'ast Pat),
NodePat(&'ast Pat),
NodeBlock(&'ast Block),
/// NodeStructCtor represents a tuple struct.
NodeStructCtor(&'ast StructDef),
NodeLifetime(&'ast Lifetime),
}
/// Represents an entry and its parent Node ID
/// The odd layout is to bring down the total size.
#[derive(Copy, Debug)]
enum MapEntry<'ast> {
/// Placeholder for holes in the map.
NotPresent,
/// All the node types, with a parent ID.
EntryItem(NodeId, &'ast Item),
EntryForeignItem(NodeId, &'ast ForeignItem),
EntryTraitItem(NodeId, &'ast TraitItem),
EntryImplItem(NodeId, &'ast ImplItem),
EntryVariant(NodeId, &'ast Variant),
EntryExpr(NodeId, &'ast Expr),
EntryStmt(NodeId, &'ast Stmt),
EntryArg(NodeId, &'ast Pat),
EntryLocal(NodeId, &'ast Pat),
EntryPat(NodeId, &'ast Pat),
EntryBlock(NodeId, &'ast Block),
EntryStructCtor(NodeId, &'ast StructDef),
EntryLifetime(NodeId, &'ast Lifetime),
/// Roots for node trees.
RootCrate,
RootInlinedParent(&'ast InlinedParent)
}
impl<'ast> Clone for MapEntry<'ast> {
fn clone(&self) -> MapEntry<'ast> {
*self
}
}
#[derive(Debug)]
struct InlinedParent {
path: Vec<PathElem>,
ii: InlinedItem
}
impl<'ast> MapEntry<'ast> {
fn from_node(p: NodeId, node: Node<'ast>) -> MapEntry<'ast> {
match node {
NodeItem(n) => EntryItem(p, n),
NodeForeignItem(n) => EntryForeignItem(p, n),
NodeTraitItem(n) => EntryTraitItem(p, n),
NodeImplItem(n) => EntryImplItem(p, n),
NodeVariant(n) => EntryVariant(p, n),
NodeExpr(n) => EntryExpr(p, n),
NodeStmt(n) => EntryStmt(p, n),
NodeArg(n) => EntryArg(p, n),
NodeLocal(n) => EntryLocal(p, n),
NodePat(n) => EntryPat(p, n),
NodeBlock(n) => EntryBlock(p, n),
NodeStructCtor(n) => EntryStructCtor(p, n),
NodeLifetime(n) => EntryLifetime(p, n)
}
}
fn parent(self) -> Option<NodeId> {
Some(match self {
EntryItem(id, _) => id,
EntryForeignItem(id, _) => id,
EntryTraitItem(id, _) => id,
EntryImplItem(id, _) => id,
EntryVariant(id, _) => id,
EntryExpr(id, _) => id,
EntryStmt(id, _) => id,
EntryArg(id, _) => id,
EntryLocal(id, _) => id,
EntryPat(id, _) => id,
EntryBlock(id, _) => id,
EntryStructCtor(id, _) => id,
EntryLifetime(id, _) => id,
_ => return None
})
}
fn to_node(self) -> Option<Node<'ast>> {
Some(match self {
EntryItem(_, n) => NodeItem(n),
EntryForeignItem(_, n) => NodeForeignItem(n),
EntryTraitItem(_, n) => NodeTraitItem(n),
EntryImplItem(_, n) => NodeImplItem(n),
EntryVariant(_, n) => NodeVariant(n),
EntryExpr(_, n) => NodeExpr(n),
EntryStmt(_, n) => NodeStmt(n),
EntryArg(_, n) => NodeArg(n),
EntryLocal(_, n) => NodeLocal(n),
EntryPat(_, n) => NodePat(n),
EntryBlock(_, n) => NodeBlock(n),
EntryStructCtor(_, n) => NodeStructCtor(n),
EntryLifetime(_, n) => NodeLifetime(n),
_ => return None
})
}
}
/// Stores a crate and any number of inlined items from other crates.
pub struct Forest {
krate: Crate,
inlined_items: TypedArena<InlinedParent>
}
impl Forest {
pub fn new(krate: Crate) -> Forest {
Forest {
krate: krate,
inlined_items: TypedArena::new()
}
}
pub fn krate<'ast>(&'ast self) -> &'ast Crate {
&self.krate
}
}
/// Represents a mapping from Node IDs to AST elements and their parent
/// Node IDs
pub struct Map<'ast> {
/// The backing storage for all the AST nodes.
forest: &'ast Forest,
/// NodeIds are sequential integers from 0, so we can be
/// super-compact by storing them in a vector. Not everything with
/// a NodeId is in the map, but empirically the occupancy is about
/// 75-80%, so there's not too much overhead (certainly less than
/// a hashmap, since they (at the time of writing) have a maximum
/// of 75% occupancy).
///
/// Also, indexing is pretty quick when you've got a vector and
/// plain old integers.
map: RefCell<Vec<MapEntry<'ast>>>
}
impl<'ast> Map<'ast> {
fn entry_count(&self) -> usize {
self.map.borrow().len()
}
fn find_entry(&self, id: NodeId) -> Option<MapEntry<'ast>> {
self.map.borrow().get(id as usize).map(|e| *e)
}
pub fn krate(&self) -> &'ast Crate {
&self.forest.krate
}
/// Retrieve the Node corresponding to `id`, panicking if it cannot
/// be found.
pub fn get(&self, id: NodeId) -> Node<'ast> {
match self.find(id) {
Some(node) => node,
None => panic!("couldn't find node id {} in the AST map", id)
}
}
/// Retrieve the Node corresponding to `id`, returning None if
/// cannot be found.
pub fn find(&self, id: NodeId) -> Option<Node<'ast>> {
self.find_entry(id).and_then(|x| x.to_node())
}
/// Retrieve the parent NodeId for `id`, or `id` itself if no
/// parent is registered in this map.
pub fn get_parent(&self, id: NodeId) -> NodeId {
self.find_entry(id).and_then(|x| x.parent()).unwrap_or(id)
}
pub fn get_parent_did(&self, id: NodeId) -> DefId {
let parent = self.get_parent(id);
match self.find_entry(parent) {
Some(RootInlinedParent(&InlinedParent {ii: IITraitItem(did, _), ..})) => did,
Some(RootInlinedParent(&InlinedParent {ii: IIImplItem(did, _), ..})) => did,
_ => ast_util::local_def(parent)
}
}
pub fn get_foreign_abi(&self, id: NodeId) -> abi::Abi {
let parent = self.get_parent(id);
let abi = match self.find_entry(parent) {
Some(EntryItem(_, i)) => {
match i.node {
ItemForeignMod(ref nm) => Some(nm.abi),
_ => None
}
}
/// Wrong but OK, because the only inlined foreign items are intrinsics.
Some(RootInlinedParent(_)) => Some(abi::RustIntrinsic),
_ => None
};
match abi {
Some(abi) => abi,
None => panic!("expected foreign mod or inlined parent, found {}",
self.node_to_string(parent))
}
}
pub fn get_foreign_vis(&self, id: NodeId) -> Visibility {
let vis = self.expect_foreign_item(id).vis;
match self.find(self.get_parent(id)) {
Some(NodeItem(i)) => vis.inherit_from(i.vis),
_ => vis
}
}
pub fn expect_item(&self, id: NodeId) -> &'ast Item {
match self.find(id) {
Some(NodeItem(item)) => item,
_ => panic!("expected item, found {}", self.node_to_string(id))
}
}
pub fn expect_struct(&self, id: NodeId) -> &'ast StructDef {
match self.find(id) {
Some(NodeItem(i)) => {
match i.node {
ItemStruct(ref struct_def, _) => &**struct_def,
_ => panic!("struct ID bound to non-struct")
}
}
Some(NodeVariant(variant)) => {
match variant.node.kind {
StructVariantKind(ref struct_def) => &**struct_def,
_ => panic!("struct ID bound to enum variant that isn't struct-like"),
}
}
_ => panic!(format!("expected struct, found {}", self.node_to_string(id))),
}
}
pub fn expect_variant(&self, id: NodeId) -> &'ast Variant {
match self.find(id) {
Some(NodeVariant(variant)) => variant,
_ => panic!(format!("expected variant, found {}", self.node_to_string(id))),
}
}
pub fn expect_foreign_item(&self, id: NodeId) -> &'ast ForeignItem {
match self.find(id) {
Some(NodeForeignItem(item)) => item,
_ => panic!("expected foreign item, found {}", self.node_to_string(id))
}
}
pub fn expect_expr(&self, id: NodeId) -> &'ast Expr {
match self.find(id) {
Some(NodeExpr(expr)) => expr,
_ => panic!("expected expr, found {}", self.node_to_string(id))
}
}
/// returns the name associated with the given NodeId's AST
pub fn get_path_elem(&self, id: NodeId) -> PathElem {
let node = self.get(id);
match node {
NodeItem(item) => {
match item.node {
ItemMod(_) | ItemForeignMod(_) => {
PathMod(item.ident.name)
}
_ => PathName(item.ident.name)
}
}
NodeForeignItem(i) => PathName(i.ident.name),
NodeImplItem(ii) => {
match *ii {
MethodImplItem(ref m) => {
match m.node {
MethDecl(ident, _, _, _, _, _, _, _) => {
PathName(ident.name)
}
MethMac(_) => {
panic!("no path elem for {:?}", node)
}
}
}
TypeImplItem(ref t) => PathName(t.ident.name),
}
},
NodeTraitItem(tm) => match *tm {
RequiredMethod(ref m) => PathName(m.ident.name),
ProvidedMethod(ref m) => {
match m.node {
MethDecl(ident, _, _, _, _, _, _, _) => {
PathName(ident.name)
}
MethMac(_) => panic!("no path elem for {:?}", node),
}
}
TypeTraitItem(ref m) => {
PathName(m.ty_param.ident.name)
}
},
NodeVariant(v) => PathName(v.node.name.name),
_ => panic!("no path elem for {:?}", node)
}
}
pub fn with_path<T, F>(&self, id: NodeId, f: F) -> T where
F: FnOnce(PathElems) -> T,
{
self.with_path_next(id, None, f)
}
pub fn path_to_string(&self, id: NodeId) -> String {
self.with_path(id, |path| path_to_string(path))
}
fn path_to_str_with_ident(&self, id: NodeId, i: Ident) -> String {
self.with_path(id, |path| {
path_to_string(path.chain(Some(PathName(i.name)).into_iter()))
})
}
fn with_path_next<T, F>(&self, id: NodeId, next: LinkedPath, f: F) -> T where
F: FnOnce(PathElems) -> T,
{
let parent = self.get_parent(id);
let parent = match self.find_entry(id) {
Some(EntryForeignItem(..)) | Some(EntryVariant(..)) => {
// Anonymous extern items, enum variants and struct ctors
// go in the parent scope.
self.get_parent(parent)
}
// But tuple struct ctors don't have names, so use the path of its
// parent, the struct item. Similarly with closure expressions.
Some(EntryStructCtor(..)) | Some(EntryExpr(..)) => {
return self.with_path_next(parent, next, f);
}
_ => parent
};
if parent == id {
match self.find_entry(id) {
Some(RootInlinedParent(data)) => {
f(data.path.iter().cloned().chain(next))
}
_ => f([].iter().cloned().chain(next))
}
} else {
self.with_path_next(parent, Some(&LinkedPathNode {
node: self.get_path_elem(id),
next: next
}), f)
}
}
/// Given a node ID and a closure, apply the closure to the array
/// of attributes associated with the AST corresponding to the Node ID
pub fn with_attrs<T, F>(&self, id: NodeId, f: F) -> T where
F: FnOnce(Option<&[Attribute]>) -> T,
{
let attrs = match self.get(id) {
NodeItem(i) => Some(&i.attrs[]),
NodeForeignItem(fi) => Some(&fi.attrs[]),
NodeTraitItem(ref tm) => match **tm {
RequiredMethod(ref type_m) => Some(&type_m.attrs[]),
ProvidedMethod(ref m) => Some(&m.attrs[]),
TypeTraitItem(ref typ) => Some(&typ.attrs[]),
},
NodeImplItem(ref ii) => {
match **ii {
MethodImplItem(ref m) => Some(&m.attrs[]),
TypeImplItem(ref t) => Some(&t.attrs[]),
}
}
NodeVariant(ref v) => Some(&v.node.attrs[]),
// unit/tuple structs take the attributes straight from
// the struct definition.
// FIXME(eddyb) make this work again (requires access to the map).
NodeStructCtor(_) => {
return self.with_attrs(self.get_parent(id), f);
}
_ => None
};
f(attrs)
}
/// Returns an iterator that yields the node id's with paths that
/// match `parts`. (Requires `parts` is non-empty.)
///
/// For example, if given `parts` equal to `["bar", "quux"]`, then
/// the iterator will produce node id's for items with paths
/// such as `foo::bar::quux`, `bar::quux`, `other::bar::quux`, and
/// any other such items it can find in the map.
pub fn nodes_matching_suffix<'a>(&'a self, parts: &'a [String])
-> NodesMatchingSuffix<'a, 'ast> {
NodesMatchingSuffix {
map: self,
item_name: parts.last().unwrap(),
in_which: &parts[..parts.len() - 1],
idx: 0,
}
}
pub fn opt_span(&self, id: NodeId) -> Option<Span> {
let sp = match self.find(id) {
Some(NodeItem(item)) => item.span,
Some(NodeForeignItem(foreign_item)) => foreign_item.span,
Some(NodeTraitItem(trait_method)) => {
match *trait_method {
RequiredMethod(ref type_method) => type_method.span,
ProvidedMethod(ref method) => method.span,
TypeTraitItem(ref typedef) => typedef.ty_param.span,
}
}
Some(NodeImplItem(ref impl_item)) => {
match **impl_item {
MethodImplItem(ref method) => method.span,
TypeImplItem(ref typedef) => typedef.span,
}
}
Some(NodeVariant(variant)) => variant.span,
Some(NodeExpr(expr)) => expr.span,
Some(NodeStmt(stmt)) => stmt.span,
Some(NodeArg(pat)) | Some(NodeLocal(pat)) => pat.span,
Some(NodePat(pat)) => pat.span,
Some(NodeBlock(block)) => block.span,
Some(NodeStructCtor(_)) => self.expect_item(self.get_parent(id)).span,
_ => return None,
};
Some(sp)
}
pub fn span(&self, id: NodeId) -> Span {
self.opt_span(id)
.unwrap_or_else(|| panic!("AstMap.span: could not find span for id {:?}", id))
}
pub fn def_id_span(&self, def_id: DefId, fallback: Span) -> Span {
if def_id.krate == LOCAL_CRATE {
self.opt_span(def_id.node).unwrap_or(fallback)
} else {
fallback
}
}
pub fn node_to_string(&self, id: NodeId) -> String {
node_id_to_string(self, id, true)
}
pub fn node_to_user_string(&self, id: NodeId) -> String {
node_id_to_string(self, id, false)
}
}
pub struct NodesMatchingSuffix<'a, 'ast:'a> {
map: &'a Map<'ast>,
item_name: &'a String,
in_which: &'a [String],
idx: NodeId,
}
impl<'a, 'ast> NodesMatchingSuffix<'a, 'ast> {
/// Returns true only if some suffix of the module path for parent
/// matches `self.in_which`.
///
/// In other words: let `[x_0,x_1,...,x_k]` be `self.in_which`;
/// returns true if parent's path ends with the suffix
/// `x_0::x_1::...::x_k`.
fn suffix_matches(&self, parent: NodeId) -> bool {
let mut cursor = parent;
for part in self.in_which.iter().rev() {
let (mod_id, mod_name) = match find_first_mod_parent(self.map, cursor) {
None => return false,
Some((node_id, name)) => (node_id, name),
};
if &part[] != mod_name.as_str() {
return false;
}
cursor = self.map.get_parent(mod_id);
}
return true;
// Finds the first mod in parent chain for `id`, along with
// that mod's name.
//
// If `id` itself is a mod named `m` with parent `p`, then
// returns `Some(id, m, p)`. If `id` has no mod in its parent
// chain, then returns `None`.
fn find_first_mod_parent<'a>(map: &'a Map, mut id: NodeId) -> Option<(NodeId, Name)> {
loop {
match map.find(id) {
None => return None,
Some(NodeItem(item)) if item_is_mod(&*item) =>
return Some((id, item.ident.name)),
_ => {}
}
let parent = map.get_parent(id);
if parent == id { return None }
id = parent;
}
fn item_is_mod(item: &Item) -> bool {
match item.node {
ItemMod(_) => true,
_ => false,
}
}
}
}
// We are looking at some node `n` with a given name and parent
// id; do their names match what I am seeking?
fn matches_names(&self, parent_of_n: NodeId, name: Name) -> bool {
name.as_str() == &self.item_name[] &&
self.suffix_matches(parent_of_n)
}
}
impl<'a, 'ast> Iterator for NodesMatchingSuffix<'a, 'ast> {
type Item = NodeId;
fn next(&mut self) -> Option<NodeId> {
loop {
let idx = self.idx;
if idx as usize >= self.map.entry_count() {
return None;
}
self.idx += 1;
let (p, name) = match self.map.find_entry(idx) {
Some(EntryItem(p, n)) => (p, n.name()),
Some(EntryForeignItem(p, n))=> (p, n.name()),
Some(EntryTraitItem(p, n)) => (p, n.name()),
Some(EntryImplItem(p, n)) => (p, n.name()),
Some(EntryVariant(p, n)) => (p, n.name()),
_ => continue,
};
if self.matches_names(p, name) {
return Some(idx)
}
}
}
}
trait Named {
fn name(&self) -> Name;
}
impl<T:Named> Named for Spanned<T> { fn name(&self) -> Name { self.node.name() } }
impl Named for Item { fn name(&self) -> Name { self.ident.name } }
impl Named for ForeignItem { fn name(&self) -> Name { self.ident.name } }
impl Named for Variant_ { fn name(&self) -> Name { self.name.name } }
impl Named for TraitItem {
fn name(&self) -> Name {
match *self {
RequiredMethod(ref tm) => tm.ident.name,
ProvidedMethod(ref m) => m.name(),
TypeTraitItem(ref at) => at.ty_param.ident.name,
}
}
}
impl Named for ImplItem {
fn name(&self) -> Name {
match *self {
MethodImplItem(ref m) => m.name(),
TypeImplItem(ref td) => td.ident.name,
}
}
}
impl Named for Method {
fn name(&self) -> Name {
match self.node {
MethDecl(i, _, _, _, _, _, _, _) => i.name,
MethMac(_) => panic!("encountered unexpanded method macro."),
}
}
}
pub trait FoldOps {
fn new_id(&self, id: NodeId) -> NodeId {
id
}
fn new_def_id(&self, def_id: DefId) -> DefId {
def_id
}
fn new_span(&self, span: Span) -> Span {
span
}
}
/// A Folder that updates IDs and Span's according to fold_ops.
struct IdAndSpanUpdater<F> {
fold_ops: F
}
impl<F: FoldOps> Folder for IdAndSpanUpdater<F> {
fn new_id(&mut self, id: NodeId) -> NodeId {
self.fold_ops.new_id(id)
}
fn new_span(&mut self, span: Span) -> Span {
self.fold_ops.new_span(span)
}
}
/// A Visitor that walks over an AST and collects Node's into an AST Map.
struct NodeCollector<'ast> {
map: Vec<MapEntry<'ast>>,
/// The node in which we are currently mapping (an item or a method).
parent: NodeId
}
impl<'ast> NodeCollector<'ast> {
fn insert_entry(&mut self, id: NodeId, entry: MapEntry<'ast>) {
debug!("ast_map: {:?} => {:?}", id, entry);
let len = self.map.len();
if id as usize >= len {
self.map.extend(repeat(NotPresent).take(id as usize - len + 1));
}
self.map[id as usize] = entry;
}
fn insert(&mut self, id: NodeId, node: Node<'ast>) {
let entry = MapEntry::from_node(self.parent, node);
self.insert_entry(id, entry);
}
fn visit_fn_decl(&mut self, decl: &'ast FnDecl) {
for a in &decl.inputs {
self.insert(a.id, NodeArg(&*a.pat));
}
}
}
impl<'ast> Visitor<'ast> for NodeCollector<'ast> {
fn visit_item(&mut self, i: &'ast Item) {
self.insert(i.id, NodeItem(i));
let parent = self.parent;
self.parent = i.id;
match i.node {
ItemImpl(_, _, _, _, _, ref impl_items) => {
for impl_item in impl_items {
match *impl_item {
MethodImplItem(ref m) => {
self.insert(m.id, NodeImplItem(impl_item));
}
TypeImplItem(ref t) => {
self.insert(t.id, NodeImplItem(impl_item));
}
}
}
}
ItemEnum(ref enum_definition, _) => {
for v in &enum_definition.variants {
self.insert(v.node.id, NodeVariant(&**v));
}
}
ItemForeignMod(ref nm) => {
for nitem in &nm.items {
self.insert(nitem.id, NodeForeignItem(&**nitem));
}
}
ItemStruct(ref struct_def, _) => {
// If this is a tuple-like struct, register the constructor.
match struct_def.ctor_id {
Some(ctor_id) => {
self.insert(ctor_id, NodeStructCtor(&**struct_def));
}
None => {}
}
}
ItemTrait(_, _, ref bounds, ref trait_items) => {
for b in &**bounds {
if let TraitTyParamBound(ref t, TraitBoundModifier::None) = *b {
self.insert(t.trait_ref.ref_id, NodeItem(i));
}
}
for tm in trait_items {
match *tm {
RequiredMethod(ref m) => {
self.insert(m.id, NodeTraitItem(tm));
}
ProvidedMethod(ref m) => {
self.insert(m.id, NodeTraitItem(tm));
}
TypeTraitItem(ref typ) => {
self.insert(typ.ty_param.id, NodeTraitItem(tm));
}
}
}
}
_ => {}
}
visit::walk_item(self, i);
self.parent = parent;
}
fn visit_pat(&mut self, pat: &'ast Pat) {
self.insert(pat.id, match pat.node {
// Note: this is at least *potentially* a pattern...
PatIdent(..) => NodeLocal(pat),
_ => NodePat(pat)
});
visit::walk_pat(self, pat);
}
fn visit_expr(&mut self, expr: &'ast Expr) {
self.insert(expr.id, NodeExpr(expr));
visit::walk_expr(self, expr);
}
fn visit_stmt(&mut self, stmt: &'ast Stmt) {
self.insert(ast_util::stmt_id(stmt), NodeStmt(stmt));
visit::walk_stmt(self, stmt);
}
fn visit_ty_method(&mut self, m: &'ast TypeMethod) {
let parent = self.parent;
self.parent = m.id;
self.visit_fn_decl(&*m.decl);
visit::walk_ty_method(self, m);
self.parent = parent;
}
fn visit_fn(&mut self, fk: visit::FnKind<'ast>, fd: &'ast FnDecl,
b: &'ast Block, s: Span, id: NodeId) {
match fk {
visit::FkMethod(..) => {
let parent = self.parent;
self.parent = id;
self.visit_fn_decl(fd);
visit::walk_fn(self, fk, fd, b, s);
self.parent = parent;
}
_ => {
self.visit_fn_decl(fd);
visit::walk_fn(self, fk, fd, b, s);
}
}
}
fn visit_ty(&mut self, ty: &'ast Ty) {
match ty.node {
TyBareFn(ref fd) => {
self.visit_fn_decl(&*fd.decl);
}
_ => {}
}
visit::walk_ty(self, ty);
}
fn visit_block(&mut self, block: &'ast Block) {
self.insert(block.id, NodeBlock(block));
visit::walk_block(self, block);
}
fn visit_lifetime_ref(&mut self, lifetime: &'ast Lifetime) {
self.insert(lifetime.id, NodeLifetime(lifetime));
}
fn visit_lifetime_def(&mut self, def: &'ast LifetimeDef) {
self.visit_lifetime_ref(&def.lifetime);
}
}
pub fn map_crate<'ast, F: FoldOps>(forest: &'ast mut Forest, fold_ops: F) -> Map<'ast> {
// Replace the crate with an empty one to take it out.
let krate = mem::replace(&mut forest.krate, Crate {
module: Mod {
inner: DUMMY_SP,
items: vec![],
},
attrs: vec![],
config: vec![],
exported_macros: vec![],
span: DUMMY_SP
});
forest.krate = IdAndSpanUpdater { fold_ops: fold_ops }.fold_crate(krate);
let mut collector = NodeCollector {
map: vec![],
parent: CRATE_NODE_ID
};
collector.insert_entry(CRATE_NODE_ID, RootCrate);
visit::walk_crate(&mut collector, &forest.krate);
let map = collector.map;
if log_enabled!(::log::DEBUG) {
// This only makes sense for ordered stores; note the
// enumerate to count the number of entries.
let (entries_less_1, _) = map.iter().filter(|&x| {
match *x {
NotPresent => false,
_ => true
}
}).enumerate().last().expect("AST map was empty after folding?");
let entries = entries_less_1 + 1;
let vector_length = map.len();
debug!("The AST map has {} entries with a maximum of {}: occupancy {:.1}%",
entries, vector_length, (entries as f64 / vector_length as f64) * 100.);
}
Map {
forest: forest,
map: RefCell::new(map)
}
}
/// Used for items loaded from external crate that are being inlined into this
/// crate. The `path` should be the path to the item but should not include
/// the item itself.
pub fn map_decoded_item<'ast, F: FoldOps>(map: &Map<'ast>,
path: Vec<PathElem>,
ii: InlinedItem,
fold_ops: F)
-> &'ast InlinedItem {
let mut fld = IdAndSpanUpdater { fold_ops: fold_ops };
let ii = match ii {
IIItem(i) => IIItem(fld.fold_item(i).expect_one("expected one item")),
IITraitItem(d, ti) => match ti {
ProvidedMethod(m) => {
IITraitItem(fld.fold_ops.new_def_id(d),
ProvidedMethod(fld.fold_method(m)
.expect_one("expected one method")))
}
RequiredMethod(ty_m) => {
IITraitItem(fld.fold_ops.new_def_id(d),
RequiredMethod(fld.fold_type_method(ty_m)))
}
TypeTraitItem(at) => {
IITraitItem(
fld.fold_ops.new_def_id(d),
TypeTraitItem(P(fld.fold_associated_type((*at).clone()))))
}
},
IIImplItem(d, m) => match m {
MethodImplItem(m) => {
IIImplItem(fld.fold_ops.new_def_id(d),
MethodImplItem(fld.fold_method(m)
.expect_one("expected one method")))
}
TypeImplItem(t) => {
IIImplItem(fld.fold_ops.new_def_id(d),
TypeImplItem(P(fld.fold_typedef((*t).clone()))))
}
},
IIForeign(i) => IIForeign(fld.fold_foreign_item(i))
};
let ii_parent = map.forest.inlined_items.alloc(InlinedParent {
path: path,
ii: ii
});
let mut collector = NodeCollector {
map: mem::replace(&mut *map.map.borrow_mut(), vec![]),
parent: fld.new_id(DUMMY_NODE_ID)
};
let ii_parent_id = collector.parent;
collector.insert_entry(ii_parent_id, RootInlinedParent(ii_parent));
visit::walk_inlined_item(&mut collector, &ii_parent.ii);
// Methods get added to the AST map when their impl is visited. Since we
// don't decode and instantiate the impl, but just the method, we have to
// add it to the table now. Likewise with foreign items.
match ii_parent.ii {
IIItem(_) => {}
IITraitItem(_, ref trait_item) => {
let trait_item_id = match *trait_item {
ProvidedMethod(ref m) => m.id,
RequiredMethod(ref m) => m.id,
TypeTraitItem(ref ty) => ty.ty_param.id,
};
collector.insert(trait_item_id, NodeTraitItem(trait_item));
}
IIImplItem(_, ref impl_item) => {
let impl_item_id = match *impl_item {
MethodImplItem(ref m) => m.id,
TypeImplItem(ref ti) => ti.id,
};
collector.insert(impl_item_id, NodeImplItem(impl_item));
}
IIForeign(ref i) => {
collector.insert(i.id, NodeForeignItem(&**i));
}
}
*map.map.borrow_mut() = collector.map;
&ii_parent.ii
}
pub trait NodePrinter {
fn print_node(&mut self, node: &Node) -> IoResult<()>;
}
impl<'a> NodePrinter for pprust::State<'a> {
fn print_node(&mut self, node: &Node) -> IoResult<()> {
match *node {
NodeItem(a) => self.print_item(&*a),
NodeForeignItem(a) => self.print_foreign_item(&*a),
NodeTraitItem(a) => self.print_trait_method(&*a),
NodeImplItem(a) => self.print_impl_item(&*a),
NodeVariant(a) => self.print_variant(&*a),
NodeExpr(a) => self.print_expr(&*a),
NodeStmt(a) => self.print_stmt(&*a),
NodePat(a) => self.print_pat(&*a),
NodeBlock(a) => self.print_block(&*a),
NodeLifetime(a) => self.print_lifetime(&*a),
// these cases do not carry enough information in the
// ast_map to reconstruct their full structure for pretty
// printing.
NodeLocal(_) => panic!("cannot print isolated Local"),
NodeArg(_) => panic!("cannot print isolated Arg"),
NodeStructCtor(_) => panic!("cannot print isolated StructCtor"),
}
}
}
fn node_id_to_string(map: &Map, id: NodeId, include_id: bool) -> String {
let id_str = format!(" (id={})", id);
let id_str = if include_id { &id_str[] } else { "" };
match map.find(id) {
Some(NodeItem(item)) => {
let path_str = map.path_to_str_with_ident(id, item.ident);
let item_str = match item.node {
ItemExternCrate(..) => "extern crate",
ItemUse(..) => "use",
ItemStatic(..) => "static",
ItemConst(..) => "const",
ItemFn(..) => "fn",
ItemMod(..) => "mod",
ItemForeignMod(..) => "foreign mod",
ItemTy(..) => "ty",
ItemEnum(..) => "enum",
ItemStruct(..) => "struct",
ItemTrait(..) => "trait",
ItemImpl(..) => "impl",
ItemMac(..) => "macro"
};
format!("{} {}{}", item_str, path_str, id_str)
}
Some(NodeForeignItem(item)) => {
let path_str = map.path_to_str_with_ident(id, item.ident);
format!("foreign item {}{}", path_str, id_str)
}
Some(NodeImplItem(ref ii)) => {
match **ii {
MethodImplItem(ref m) => {
match m.node {
MethDecl(ident, _, _, _, _, _, _, _) =>
format!("method {} in {}{}",
token::get_ident(ident),
map.path_to_string(id), id_str),
MethMac(ref mac) =>
format!("method macro {}{}",
pprust::mac_to_string(mac), id_str)
}
}
TypeImplItem(ref t) => {
format!("typedef {} in {}{}",
token::get_ident(t.ident),
map.path_to_string(id),
id_str)
}
}
}
Some(NodeTraitItem(ref tm)) => {
match **tm {
RequiredMethod(_) | ProvidedMethod(_) => {
let m = ast_util::trait_item_to_ty_method(&**tm);
format!("method {} in {}{}",
token::get_ident(m.ident),
map.path_to_string(id),
id_str)
}
TypeTraitItem(ref t) => {
format!("type item {} in {}{}",
token::get_ident(t.ty_param.ident),
map.path_to_string(id),
id_str)
}
}
}
Some(NodeVariant(ref variant)) => {
format!("variant {} in {}{}",
token::get_ident(variant.node.name),
map.path_to_string(id), id_str)
}
Some(NodeExpr(ref expr)) => {
format!("expr {}{}", pprust::expr_to_string(&**expr), id_str)
}
Some(NodeStmt(ref stmt)) => {
format!("stmt {}{}", pprust::stmt_to_string(&**stmt), id_str)
}
Some(NodeArg(ref pat)) => {
format!("arg {}{}", pprust::pat_to_string(&**pat), id_str)
}
Some(NodeLocal(ref pat)) => {
format!("local {}{}", pprust::pat_to_string(&**pat), id_str)
}
Some(NodePat(ref pat)) => {
format!("pat {}{}", pprust::pat_to_string(&**pat), id_str)
}
Some(NodeBlock(ref block)) => {
format!("block {}{}", pprust::block_to_string(&**block), id_str)
}
Some(NodeStructCtor(_)) => {
format!("struct_ctor {}{}", map.path_to_string(id), id_str)
}
Some(NodeLifetime(ref l)) => {
format!("lifetime {}{}",
pprust::lifetime_to_string(&**l), id_str)
}
None => {
format!("unknown node{}", id_str)
}
}
}