4702 lines
134 KiB
Rust
4702 lines
134 KiB
Rust
// Copyright 2012-2013 The Rust Project Developers. See the COPYRIGHT
|
||
// file at the top-level directory of this distribution and at
|
||
// http://rust-lang.org/COPYRIGHT.
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
||
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
||
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
||
// option. This file may not be copied, modified, or distributed
|
||
// except according to those terms.
|
||
|
||
/*!
|
||
|
||
Utilities for vector manipulation
|
||
|
||
The `vec` module contains useful code to help work with vector values.
|
||
Vectors are Rust's list type. Vectors contain zero or more values of
|
||
homogeneous types:
|
||
|
||
```rust
|
||
let int_vector = [1,2,3];
|
||
let str_vector = ["one", "two", "three"];
|
||
```
|
||
|
||
This is a big module, but for a high-level overview:
|
||
|
||
## Structs
|
||
|
||
Several structs that are useful for vectors, such as `VecIterator`, which
|
||
represents iteration over a vector.
|
||
|
||
## Traits
|
||
|
||
A number of traits add methods that allow you to accomplish tasks with vectors.
|
||
|
||
Traits defined for the `&[T]` type (a vector slice), have methods that can be
|
||
called on either owned vectors, denoted `~[T]`, or on vector slices themselves.
|
||
These traits include `ImmutableVector`, and `MutableVector` for the `&mut [T]`
|
||
case.
|
||
|
||
An example is the method `.slice(a, b)` that returns an immutable "view" into
|
||
a vector or a vector slice from the index interval `[a, b)`:
|
||
|
||
```rust
|
||
let numbers = [0, 1, 2];
|
||
let last_numbers = numbers.slice(1, 3);
|
||
// last_numbers is now &[1, 2]
|
||
```
|
||
|
||
Traits defined for the `~[T]` type, like `OwnedVector`, can only be called
|
||
on such vectors. These methods deal with adding elements or otherwise changing
|
||
the allocation of the vector.
|
||
|
||
An example is the method `.push(element)` that will add an element at the end
|
||
of the vector:
|
||
|
||
```rust
|
||
let mut numbers = ~[0, 1, 2];
|
||
numbers.push(7);
|
||
// numbers is now ~[0, 1, 2, 7];
|
||
```
|
||
|
||
## Implementations of other traits
|
||
|
||
Vectors are a very useful type, and so there's several implementations of
|
||
traits from other modules. Some notable examples:
|
||
|
||
* `Clone`
|
||
* `Eq`, `Ord`, `TotalEq`, `TotalOrd` -- vectors can be compared,
|
||
if the element type defines the corresponding trait.
|
||
|
||
## Iteration
|
||
|
||
The method `iter()` returns an iteration value for a vector or a vector slice.
|
||
The iterator yields references to the vector's elements, so if the element
|
||
type of the vector is `int`, the element type of the iterator is `&int`.
|
||
|
||
```rust
|
||
let numbers = [0, 1, 2];
|
||
for &x in numbers.iter() {
|
||
println!("{} is a number!", x);
|
||
}
|
||
```
|
||
|
||
* `.rev_iter()` returns an iterator with the same values as `.iter()`,
|
||
but going in the reverse order, starting with the back element.
|
||
* `.mut_iter()` returns an iterator that allows modifying each value.
|
||
* `.move_iter()` converts an owned vector into an iterator that
|
||
moves out a value from the vector each iteration.
|
||
* Further iterators exist that split, chunk or permute the vector.
|
||
|
||
## Function definitions
|
||
|
||
There are a number of free functions that create or take vectors, for example:
|
||
|
||
* Creating a vector, like `from_elem` and `from_fn`
|
||
* Creating a vector with a given size: `with_capacity`
|
||
* Modifying a vector and returning it, like `append`
|
||
* Operations on paired elements, like `unzip`.
|
||
|
||
*/
|
||
|
||
#[warn(non_camel_case_types)];
|
||
|
||
use cast;
|
||
use ops::Drop;
|
||
use clone::{Clone, DeepClone};
|
||
use container::{Container, Mutable};
|
||
use cmp::{Eq, TotalOrd, Ordering, Less, Equal, Greater};
|
||
use cmp;
|
||
use default::Default;
|
||
use iter::*;
|
||
use libc::{c_char, c_void};
|
||
use num::{Integer, CheckedAdd, Saturating};
|
||
use option::{None, Option, Some};
|
||
use ptr::to_unsafe_ptr;
|
||
use ptr;
|
||
use ptr::RawPtr;
|
||
use rt::global_heap::{malloc_raw, realloc_raw, exchange_free};
|
||
use rt::local_heap::local_free;
|
||
use mem;
|
||
use mem::size_of;
|
||
use uint;
|
||
use unstable::finally::Finally;
|
||
use unstable::intrinsics;
|
||
use unstable::intrinsics::{get_tydesc, owns_managed};
|
||
use unstable::raw::{Box, Repr, Slice, Vec};
|
||
use util;
|
||
|
||
/**
|
||
* Creates and initializes an owned vector.
|
||
*
|
||
* Creates an owned vector of size `n_elts` and initializes the elements
|
||
* to the value returned by the function `op`.
|
||
*/
|
||
pub fn from_fn<T>(n_elts: uint, op: |uint| -> T) -> ~[T] {
|
||
unsafe {
|
||
let mut v = with_capacity(n_elts);
|
||
let p = v.as_mut_ptr();
|
||
let mut i: uint = 0u;
|
||
(|| {
|
||
while i < n_elts {
|
||
intrinsics::move_val_init(&mut(*ptr::mut_offset(p, i as int)), op(i));
|
||
i += 1u;
|
||
}
|
||
}).finally(|| {
|
||
v.set_len(i);
|
||
});
|
||
v
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Creates and initializes an owned vector.
|
||
*
|
||
* Creates an owned vector of size `n_elts` and initializes the elements
|
||
* to the value `t`.
|
||
*/
|
||
pub fn from_elem<T:Clone>(n_elts: uint, t: T) -> ~[T] {
|
||
// FIXME (#7136): manually inline from_fn for 2x plus speedup (sadly very
|
||
// important, from_elem is a bottleneck in borrowck!). Unfortunately it
|
||
// still is substantially slower than using the unsafe
|
||
// vec::with_capacity/ptr::set_memory for primitive types.
|
||
unsafe {
|
||
let mut v = with_capacity(n_elts);
|
||
let p = v.as_mut_ptr();
|
||
let mut i = 0u;
|
||
(|| {
|
||
while i < n_elts {
|
||
intrinsics::move_val_init(&mut(*ptr::mut_offset(p, i as int)), t.clone());
|
||
i += 1u;
|
||
}
|
||
}).finally(|| {
|
||
v.set_len(i);
|
||
});
|
||
v
|
||
}
|
||
}
|
||
|
||
/// Creates a new vector with a capacity of `capacity`
|
||
#[inline]
|
||
pub fn with_capacity<T>(capacity: uint) -> ~[T] {
|
||
unsafe {
|
||
if owns_managed::<T>() {
|
||
let mut vec = ~[];
|
||
vec.reserve(capacity);
|
||
vec
|
||
} else {
|
||
let alloc = capacity * mem::nonzero_size_of::<T>();
|
||
let size = alloc + mem::size_of::<Vec<()>>();
|
||
if alloc / mem::nonzero_size_of::<T>() != capacity || size < alloc {
|
||
fail!("vector size is too large: {}", capacity);
|
||
}
|
||
let ptr = malloc_raw(size) as *mut Vec<()>;
|
||
(*ptr).alloc = alloc;
|
||
(*ptr).fill = 0;
|
||
cast::transmute(ptr)
|
||
}
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Builds a vector by calling a provided function with an argument
|
||
* function that pushes an element to the back of a vector.
|
||
* The initial capacity for the vector may optionally be specified.
|
||
*
|
||
* # Arguments
|
||
*
|
||
* * size - An option, maybe containing initial size of the vector to reserve
|
||
* * builder - A function that will construct the vector. It receives
|
||
* as an argument a function that will push an element
|
||
* onto the vector being constructed.
|
||
*/
|
||
#[inline]
|
||
pub fn build<A>(size: Option<uint>, builder: |push: |v: A||) -> ~[A] {
|
||
let mut vec = with_capacity(size.unwrap_or(4));
|
||
builder(|x| vec.push(x));
|
||
vec
|
||
}
|
||
|
||
/// An iterator over the slices of a vector separated by elements that
|
||
/// match a predicate function.
|
||
pub struct SplitIterator<'a, T> {
|
||
priv v: &'a [T],
|
||
priv n: uint,
|
||
priv pred: 'a |t: &T| -> bool,
|
||
priv finished: bool
|
||
}
|
||
|
||
impl<'a, T> Iterator<&'a [T]> for SplitIterator<'a, T> {
|
||
#[inline]
|
||
fn next(&mut self) -> Option<&'a [T]> {
|
||
if self.finished { return None; }
|
||
|
||
if self.n == 0 {
|
||
self.finished = true;
|
||
return Some(self.v);
|
||
}
|
||
|
||
match self.v.iter().position(|x| (self.pred)(x)) {
|
||
None => {
|
||
self.finished = true;
|
||
Some(self.v)
|
||
}
|
||
Some(idx) => {
|
||
let ret = Some(self.v.slice(0, idx));
|
||
self.v = self.v.slice(idx + 1, self.v.len());
|
||
self.n -= 1;
|
||
ret
|
||
}
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (uint, Option<uint>) {
|
||
if self.finished {
|
||
return (0, Some(0))
|
||
}
|
||
// if the predicate doesn't match anything, we yield one slice
|
||
// if it matches every element, we yield N+1 empty slices where
|
||
// N is either the number of elements or the number of splits.
|
||
match (self.v.len(), self.n) {
|
||
(0,_) => (1, Some(1)),
|
||
(_,0) => (1, Some(1)),
|
||
(l,n) => (1, cmp::min(l,n).checked_add(&1u))
|
||
}
|
||
}
|
||
}
|
||
|
||
/// An iterator over the slices of a vector separated by elements that
|
||
/// match a predicate function, from back to front.
|
||
pub struct RSplitIterator<'a, T> {
|
||
priv v: &'a [T],
|
||
priv n: uint,
|
||
priv pred: 'a |t: &T| -> bool,
|
||
priv finished: bool
|
||
}
|
||
|
||
impl<'a, T> Iterator<&'a [T]> for RSplitIterator<'a, T> {
|
||
#[inline]
|
||
fn next(&mut self) -> Option<&'a [T]> {
|
||
if self.finished { return None; }
|
||
|
||
if self.n == 0 {
|
||
self.finished = true;
|
||
return Some(self.v);
|
||
}
|
||
|
||
match self.v.iter().rposition(|x| (self.pred)(x)) {
|
||
None => {
|
||
self.finished = true;
|
||
Some(self.v)
|
||
}
|
||
Some(idx) => {
|
||
let ret = Some(self.v.slice(idx + 1, self.v.len()));
|
||
self.v = self.v.slice(0, idx);
|
||
self.n -= 1;
|
||
ret
|
||
}
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (uint, Option<uint>) {
|
||
if self.finished {
|
||
return (0, Some(0))
|
||
}
|
||
match (self.v.len(), self.n) {
|
||
(0,_) => (1, Some(1)),
|
||
(_,0) => (1, Some(1)),
|
||
(l,n) => (1, cmp::min(l,n).checked_add(&1u))
|
||
}
|
||
}
|
||
}
|
||
|
||
// Appending
|
||
|
||
/// Iterates over the `rhs` vector, copying each element and appending it to the
|
||
/// `lhs`. Afterwards, the `lhs` is then returned for use again.
|
||
#[inline]
|
||
pub fn append<T:Clone>(lhs: ~[T], rhs: &[T]) -> ~[T] {
|
||
let mut v = lhs;
|
||
v.push_all(rhs);
|
||
v
|
||
}
|
||
|
||
/// Appends one element to the vector provided. The vector itself is then
|
||
/// returned for use again.
|
||
#[inline]
|
||
pub fn append_one<T>(lhs: ~[T], x: T) -> ~[T] {
|
||
let mut v = lhs;
|
||
v.push(x);
|
||
v
|
||
}
|
||
|
||
// Functional utilities
|
||
|
||
/**
|
||
* Apply a function to each element of a vector and return a concatenation
|
||
* of each result vector
|
||
*/
|
||
pub fn flat_map<T, U>(v: &[T], f: |t: &T| -> ~[U]) -> ~[U] {
|
||
let mut result = ~[];
|
||
for elem in v.iter() { result.push_all_move(f(elem)); }
|
||
result
|
||
}
|
||
|
||
#[allow(missing_doc)]
|
||
pub trait VectorVector<T> {
|
||
// FIXME #5898: calling these .concat and .connect conflicts with
|
||
// StrVector::con{cat,nect}, since they have generic contents.
|
||
/// Flattens a vector of vectors of T into a single vector of T.
|
||
fn concat_vec(&self) -> ~[T];
|
||
|
||
/// Concatenate a vector of vectors, placing a given separator between each.
|
||
fn connect_vec(&self, sep: &T) -> ~[T];
|
||
}
|
||
|
||
impl<'a, T: Clone, V: Vector<T>> VectorVector<T> for &'a [V] {
|
||
fn concat_vec(&self) -> ~[T] {
|
||
let size = self.iter().fold(0u, |acc, v| acc + v.as_slice().len());
|
||
let mut result = with_capacity(size);
|
||
for v in self.iter() {
|
||
result.push_all(v.as_slice())
|
||
}
|
||
result
|
||
}
|
||
|
||
fn connect_vec(&self, sep: &T) -> ~[T] {
|
||
let size = self.iter().fold(0u, |acc, v| acc + v.as_slice().len());
|
||
let mut result = with_capacity(size + self.len());
|
||
let mut first = true;
|
||
for v in self.iter() {
|
||
if first { first = false } else { result.push(sep.clone()) }
|
||
result.push_all(v.as_slice())
|
||
}
|
||
result
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Convert an iterator of pairs into a pair of vectors.
|
||
*
|
||
* Returns a tuple containing two vectors where the i-th element of the first
|
||
* vector contains the first element of the i-th tuple of the input iterator,
|
||
* and the i-th element of the second vector contains the second element
|
||
* of the i-th tuple of the input iterator.
|
||
*/
|
||
pub fn unzip<T, U, V: Iterator<(T, U)>>(mut iter: V) -> (~[T], ~[U]) {
|
||
let (lo, _) = iter.size_hint();
|
||
let mut ts = with_capacity(lo);
|
||
let mut us = with_capacity(lo);
|
||
for (t, u) in iter {
|
||
ts.push(t);
|
||
us.push(u);
|
||
}
|
||
(ts, us)
|
||
}
|
||
|
||
/// An Iterator that yields the element swaps needed to produce
|
||
/// a sequence of all possible permutations for an indexed sequence of
|
||
/// elements. Each permutation is only a single swap apart.
|
||
///
|
||
/// The Steinhaus–Johnson–Trotter algorithm is used.
|
||
///
|
||
/// Generates even and odd permutations alternately.
|
||
///
|
||
/// The last generated swap is always (0, 1), and it returns the
|
||
/// sequence to its initial order.
|
||
pub struct ElementSwaps {
|
||
priv sdir: ~[SizeDirection],
|
||
/// If true, emit the last swap that returns the sequence to initial state
|
||
priv emit_reset: bool,
|
||
}
|
||
|
||
impl ElementSwaps {
|
||
/// Create an `ElementSwaps` iterator for a sequence of `length` elements
|
||
pub fn new(length: uint) -> ElementSwaps {
|
||
// Initialize `sdir` with a direction that position should move in
|
||
// (all negative at the beginning) and the `size` of the
|
||
// element (equal to the original index).
|
||
ElementSwaps{
|
||
emit_reset: true,
|
||
sdir: range(0, length)
|
||
.map(|i| SizeDirection{ size: i, dir: Neg })
|
||
.to_owned_vec()
|
||
}
|
||
}
|
||
}
|
||
|
||
enum Direction { Pos, Neg }
|
||
|
||
/// An Index and Direction together
|
||
struct SizeDirection {
|
||
size: uint,
|
||
dir: Direction,
|
||
}
|
||
|
||
impl Iterator<(uint, uint)> for ElementSwaps {
|
||
#[inline]
|
||
fn next(&mut self) -> Option<(uint, uint)> {
|
||
fn new_pos(i: uint, s: Direction) -> uint {
|
||
i + match s { Pos => 1, Neg => -1 }
|
||
}
|
||
|
||
// Find the index of the largest mobile element:
|
||
// The direction should point into the vector, and the
|
||
// swap should be with a smaller `size` element.
|
||
let max = self.sdir.iter().map(|&x| x).enumerate()
|
||
.filter(|&(i, sd)|
|
||
new_pos(i, sd.dir) < self.sdir.len() &&
|
||
self.sdir[new_pos(i, sd.dir)].size < sd.size)
|
||
.max_by(|&(_, sd)| sd.size);
|
||
match max {
|
||
Some((i, sd)) => {
|
||
let j = new_pos(i, sd.dir);
|
||
self.sdir.swap(i, j);
|
||
|
||
// Swap the direction of each larger SizeDirection
|
||
for x in self.sdir.mut_iter() {
|
||
if x.size > sd.size {
|
||
x.dir = match x.dir { Pos => Neg, Neg => Pos };
|
||
}
|
||
}
|
||
Some((i, j))
|
||
},
|
||
None => if self.emit_reset && self.sdir.len() > 1 {
|
||
self.emit_reset = false;
|
||
Some((0, 1))
|
||
} else {
|
||
None
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/// An Iterator that uses `ElementSwaps` to iterate through
|
||
/// all possible permutations of a vector.
|
||
///
|
||
/// The first iteration yields a clone of the vector as it is,
|
||
/// then each successive element is the vector with one
|
||
/// swap applied.
|
||
///
|
||
/// Generates even and odd permutations alternately.
|
||
pub struct Permutations<T> {
|
||
priv swaps: ElementSwaps,
|
||
priv v: ~[T],
|
||
}
|
||
|
||
impl<T: Clone> Iterator<~[T]> for Permutations<T> {
|
||
#[inline]
|
||
fn next(&mut self) -> Option<~[T]> {
|
||
match self.swaps.next() {
|
||
None => None,
|
||
Some((a, b)) => {
|
||
let elt = self.v.clone();
|
||
self.v.swap(a, b);
|
||
Some(elt)
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/// An iterator over the (overlapping) slices of length `size` within
|
||
/// a vector.
|
||
#[deriving(Clone)]
|
||
pub struct WindowIter<'a, T> {
|
||
priv v: &'a [T],
|
||
priv size: uint
|
||
}
|
||
|
||
impl<'a, T> Iterator<&'a [T]> for WindowIter<'a, T> {
|
||
#[inline]
|
||
fn next(&mut self) -> Option<&'a [T]> {
|
||
if self.size > self.v.len() {
|
||
None
|
||
} else {
|
||
let ret = Some(self.v.slice(0, self.size));
|
||
self.v = self.v.slice(1, self.v.len());
|
||
ret
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (uint, Option<uint>) {
|
||
if self.size > self.v.len() {
|
||
(0, Some(0))
|
||
} else {
|
||
let x = self.v.len() - self.size;
|
||
(x.saturating_add(1), x.checked_add(&1u))
|
||
}
|
||
}
|
||
}
|
||
|
||
/// An iterator over a vector in (non-overlapping) chunks (`size`
|
||
/// elements at a time).
|
||
///
|
||
/// When the vector len is not evenly divided by the chunk size,
|
||
/// the last slice of the iteration will be the remainder.
|
||
#[deriving(Clone)]
|
||
pub struct ChunkIter<'a, T> {
|
||
priv v: &'a [T],
|
||
priv size: uint
|
||
}
|
||
|
||
impl<'a, T> Iterator<&'a [T]> for ChunkIter<'a, T> {
|
||
#[inline]
|
||
fn next(&mut self) -> Option<&'a [T]> {
|
||
if self.v.len() == 0 {
|
||
None
|
||
} else {
|
||
let chunksz = cmp::min(self.v.len(), self.size);
|
||
let (fst, snd) = (self.v.slice_to(chunksz),
|
||
self.v.slice_from(chunksz));
|
||
self.v = snd;
|
||
Some(fst)
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (uint, Option<uint>) {
|
||
if self.v.len() == 0 {
|
||
(0, Some(0))
|
||
} else {
|
||
let (n, rem) = self.v.len().div_rem(&self.size);
|
||
let n = if rem > 0 { n+1 } else { n };
|
||
(n, Some(n))
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<'a, T> DoubleEndedIterator<&'a [T]> for ChunkIter<'a, T> {
|
||
#[inline]
|
||
fn next_back(&mut self) -> Option<&'a [T]> {
|
||
if self.v.len() == 0 {
|
||
None
|
||
} else {
|
||
let remainder = self.v.len() % self.size;
|
||
let chunksz = if remainder != 0 { remainder } else { self.size };
|
||
let (fst, snd) = (self.v.slice_to(self.v.len() - chunksz),
|
||
self.v.slice_from(self.v.len() - chunksz));
|
||
self.v = fst;
|
||
Some(snd)
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<'a, T> RandomAccessIterator<&'a [T]> for ChunkIter<'a, T> {
|
||
#[inline]
|
||
fn indexable(&self) -> uint {
|
||
self.v.len()/self.size + if self.v.len() % self.size != 0 { 1 } else { 0 }
|
||
}
|
||
|
||
#[inline]
|
||
fn idx(&self, index: uint) -> Option<&'a [T]> {
|
||
if index < self.indexable() {
|
||
let lo = index * self.size;
|
||
let mut hi = lo + self.size;
|
||
if hi < lo || hi > self.v.len() { hi = self.v.len(); }
|
||
|
||
Some(self.v.slice(lo, hi))
|
||
} else {
|
||
None
|
||
}
|
||
}
|
||
}
|
||
|
||
// Equality
|
||
|
||
#[cfg(not(test))]
|
||
#[allow(missing_doc)]
|
||
pub mod traits {
|
||
use super::*;
|
||
|
||
use clone::Clone;
|
||
use cmp::{Eq, Ord, TotalEq, TotalOrd, Ordering, Equiv};
|
||
use iter::order;
|
||
use ops::Add;
|
||
|
||
impl<'a,T:Eq> Eq for &'a [T] {
|
||
fn eq(&self, other: & &'a [T]) -> bool {
|
||
self.len() == other.len() &&
|
||
order::eq(self.iter(), other.iter())
|
||
}
|
||
fn ne(&self, other: & &'a [T]) -> bool {
|
||
self.len() != other.len() ||
|
||
order::ne(self.iter(), other.iter())
|
||
}
|
||
}
|
||
|
||
impl<T:Eq> Eq for ~[T] {
|
||
#[inline]
|
||
fn eq(&self, other: &~[T]) -> bool { self.as_slice() == *other }
|
||
#[inline]
|
||
fn ne(&self, other: &~[T]) -> bool { !self.eq(other) }
|
||
}
|
||
|
||
impl<T:Eq> Eq for @[T] {
|
||
#[inline]
|
||
fn eq(&self, other: &@[T]) -> bool { self.as_slice() == *other }
|
||
#[inline]
|
||
fn ne(&self, other: &@[T]) -> bool { !self.eq(other) }
|
||
}
|
||
|
||
impl<'a,T:TotalEq> TotalEq for &'a [T] {
|
||
fn equals(&self, other: & &'a [T]) -> bool {
|
||
self.len() == other.len() &&
|
||
order::equals(self.iter(), other.iter())
|
||
}
|
||
}
|
||
|
||
impl<T:TotalEq> TotalEq for ~[T] {
|
||
#[inline]
|
||
fn equals(&self, other: &~[T]) -> bool { self.as_slice().equals(&other.as_slice()) }
|
||
}
|
||
|
||
impl<T:TotalEq> TotalEq for @[T] {
|
||
#[inline]
|
||
fn equals(&self, other: &@[T]) -> bool { self.as_slice().equals(&other.as_slice()) }
|
||
}
|
||
|
||
impl<'a,T:Eq, V: Vector<T>> Equiv<V> for &'a [T] {
|
||
#[inline]
|
||
fn equiv(&self, other: &V) -> bool { self.as_slice() == other.as_slice() }
|
||
}
|
||
|
||
impl<'a,T:Eq, V: Vector<T>> Equiv<V> for ~[T] {
|
||
#[inline]
|
||
fn equiv(&self, other: &V) -> bool { self.as_slice() == other.as_slice() }
|
||
}
|
||
|
||
impl<'a,T:Eq, V: Vector<T>> Equiv<V> for @[T] {
|
||
#[inline]
|
||
fn equiv(&self, other: &V) -> bool { self.as_slice() == other.as_slice() }
|
||
}
|
||
|
||
impl<'a,T:TotalOrd> TotalOrd for &'a [T] {
|
||
fn cmp(&self, other: & &'a [T]) -> Ordering {
|
||
order::cmp(self.iter(), other.iter())
|
||
}
|
||
}
|
||
|
||
impl<T: TotalOrd> TotalOrd for ~[T] {
|
||
#[inline]
|
||
fn cmp(&self, other: &~[T]) -> Ordering { self.as_slice().cmp(&other.as_slice()) }
|
||
}
|
||
|
||
impl<T: TotalOrd> TotalOrd for @[T] {
|
||
#[inline]
|
||
fn cmp(&self, other: &@[T]) -> Ordering { self.as_slice().cmp(&other.as_slice()) }
|
||
}
|
||
|
||
impl<'a, T: Eq + Ord> Ord for &'a [T] {
|
||
fn lt(&self, other: & &'a [T]) -> bool {
|
||
order::lt(self.iter(), other.iter())
|
||
}
|
||
#[inline]
|
||
fn le(&self, other: & &'a [T]) -> bool {
|
||
order::le(self.iter(), other.iter())
|
||
}
|
||
#[inline]
|
||
fn ge(&self, other: & &'a [T]) -> bool {
|
||
order::ge(self.iter(), other.iter())
|
||
}
|
||
#[inline]
|
||
fn gt(&self, other: & &'a [T]) -> bool {
|
||
order::gt(self.iter(), other.iter())
|
||
}
|
||
}
|
||
|
||
impl<T: Eq + Ord> Ord for ~[T] {
|
||
#[inline]
|
||
fn lt(&self, other: &~[T]) -> bool { self.as_slice() < other.as_slice() }
|
||
#[inline]
|
||
fn le(&self, other: &~[T]) -> bool { self.as_slice() <= other.as_slice() }
|
||
#[inline]
|
||
fn ge(&self, other: &~[T]) -> bool { self.as_slice() >= other.as_slice() }
|
||
#[inline]
|
||
fn gt(&self, other: &~[T]) -> bool { self.as_slice() > other.as_slice() }
|
||
}
|
||
|
||
impl<T: Eq + Ord> Ord for @[T] {
|
||
#[inline]
|
||
fn lt(&self, other: &@[T]) -> bool { self.as_slice() < other.as_slice() }
|
||
#[inline]
|
||
fn le(&self, other: &@[T]) -> bool { self.as_slice() <= other.as_slice() }
|
||
#[inline]
|
||
fn ge(&self, other: &@[T]) -> bool { self.as_slice() >= other.as_slice() }
|
||
#[inline]
|
||
fn gt(&self, other: &@[T]) -> bool { self.as_slice() > other.as_slice() }
|
||
}
|
||
|
||
impl<'a,T:Clone, V: Vector<T>> Add<V, ~[T]> for &'a [T] {
|
||
#[inline]
|
||
fn add(&self, rhs: &V) -> ~[T] {
|
||
let mut res = with_capacity(self.len() + rhs.as_slice().len());
|
||
res.push_all(*self);
|
||
res.push_all(rhs.as_slice());
|
||
res
|
||
}
|
||
}
|
||
|
||
impl<T:Clone, V: Vector<T>> Add<V, ~[T]> for ~[T] {
|
||
#[inline]
|
||
fn add(&self, rhs: &V) -> ~[T] {
|
||
self.as_slice() + rhs.as_slice()
|
||
}
|
||
}
|
||
}
|
||
|
||
#[cfg(test)]
|
||
pub mod traits {}
|
||
|
||
/// Any vector that can be represented as a slice.
|
||
pub trait Vector<T> {
|
||
/// Work with `self` as a slice.
|
||
fn as_slice<'a>(&'a self) -> &'a [T];
|
||
}
|
||
|
||
impl<'a,T> Vector<T> for &'a [T] {
|
||
#[inline(always)]
|
||
fn as_slice<'a>(&'a self) -> &'a [T] { *self }
|
||
}
|
||
|
||
impl<T> Vector<T> for ~[T] {
|
||
#[inline(always)]
|
||
fn as_slice<'a>(&'a self) -> &'a [T] { let v: &'a [T] = *self; v }
|
||
}
|
||
|
||
impl<T> Vector<T> for @[T] {
|
||
#[inline(always)]
|
||
fn as_slice<'a>(&'a self) -> &'a [T] { let v: &'a [T] = *self; v }
|
||
}
|
||
|
||
impl<'a, T> Container for &'a [T] {
|
||
/// Returns the length of a vector
|
||
#[inline]
|
||
fn len(&self) -> uint {
|
||
self.repr().len
|
||
}
|
||
}
|
||
|
||
impl<T> Container for ~[T] {
|
||
/// Returns the length of a vector
|
||
#[inline]
|
||
fn len(&self) -> uint {
|
||
self.repr().len
|
||
}
|
||
}
|
||
|
||
/// Extension methods for vector slices with copyable elements
|
||
pub trait CopyableVector<T> {
|
||
/// Copy `self` into a new owned vector
|
||
fn to_owned(&self) -> ~[T];
|
||
|
||
/// Convert `self` into a owned vector, not making a copy if possible.
|
||
fn into_owned(self) -> ~[T];
|
||
}
|
||
|
||
/// Extension methods for vector slices
|
||
impl<'a, T: Clone> CopyableVector<T> for &'a [T] {
|
||
/// Returns a copy of `v`.
|
||
#[inline]
|
||
fn to_owned(&self) -> ~[T] {
|
||
let mut result = with_capacity(self.len());
|
||
for e in self.iter() {
|
||
result.push((*e).clone());
|
||
}
|
||
result
|
||
}
|
||
|
||
#[inline(always)]
|
||
fn into_owned(self) -> ~[T] { self.to_owned() }
|
||
}
|
||
|
||
/// Extension methods for owned vectors
|
||
impl<T: Clone> CopyableVector<T> for ~[T] {
|
||
#[inline]
|
||
fn to_owned(&self) -> ~[T] { self.clone() }
|
||
|
||
#[inline(always)]
|
||
fn into_owned(self) -> ~[T] { self }
|
||
}
|
||
|
||
/// Extension methods for managed vectors
|
||
impl<T: Clone> CopyableVector<T> for @[T] {
|
||
#[inline]
|
||
fn to_owned(&self) -> ~[T] { self.as_slice().to_owned() }
|
||
|
||
#[inline(always)]
|
||
fn into_owned(self) -> ~[T] { self.to_owned() }
|
||
}
|
||
|
||
/// Extension methods for vectors
|
||
pub trait ImmutableVector<'a, T> {
|
||
/**
|
||
* Returns a slice of self between `start` and `end`.
|
||
*
|
||
* Fails when `start` or `end` point outside the bounds of self,
|
||
* or when `start` > `end`.
|
||
*/
|
||
fn slice(&self, start: uint, end: uint) -> &'a [T];
|
||
|
||
/**
|
||
* Returns a slice of self from `start` to the end of the vec.
|
||
*
|
||
* Fails when `start` points outside the bounds of self.
|
||
*/
|
||
fn slice_from(&self, start: uint) -> &'a [T];
|
||
|
||
/**
|
||
* Returns a slice of self from the start of the vec to `end`.
|
||
*
|
||
* Fails when `end` points outside the bounds of self.
|
||
*/
|
||
fn slice_to(&self, end: uint) -> &'a [T];
|
||
/// Returns an iterator over the vector
|
||
fn iter(self) -> VecIterator<'a, T>;
|
||
/// Returns a reversed iterator over a vector
|
||
fn rev_iter(self) -> RevIterator<'a, T>;
|
||
/// Returns an iterator over the subslices of the vector which are
|
||
/// separated by elements that match `pred`. The matched element
|
||
/// is not contained in the subslices.
|
||
fn split(self, pred: 'a |&T| -> bool) -> SplitIterator<'a, T>;
|
||
/// Returns an iterator over the subslices of the vector which are
|
||
/// separated by elements that match `pred`, limited to splitting
|
||
/// at most `n` times. The matched element is not contained in
|
||
/// the subslices.
|
||
fn splitn(self, n: uint, pred: 'a |&T| -> bool) -> SplitIterator<'a, T>;
|
||
/// Returns an iterator over the subslices of the vector which are
|
||
/// separated by elements that match `pred`. This starts at the
|
||
/// end of the vector and works backwards. The matched element is
|
||
/// not contained in the subslices.
|
||
fn rsplit(self, pred: 'a |&T| -> bool) -> RSplitIterator<'a, T>;
|
||
/// Returns an iterator over the subslices of the vector which are
|
||
/// separated by elements that match `pred` limited to splitting
|
||
/// at most `n` times. This starts at the end of the vector and
|
||
/// works backwards. The matched element is not contained in the
|
||
/// subslices.
|
||
fn rsplitn(self, n: uint, pred: 'a |&T| -> bool) -> RSplitIterator<'a, T>;
|
||
|
||
/**
|
||
* Returns an iterator over all contiguous windows of length
|
||
* `size`. The windows overlap. If the vector is shorter than
|
||
* `size`, the iterator returns no values.
|
||
*
|
||
* # Failure
|
||
*
|
||
* Fails if `size` is 0.
|
||
*
|
||
* # Example
|
||
*
|
||
* Print the adjacent pairs of a vector (i.e. `[1,2]`, `[2,3]`,
|
||
* `[3,4]`):
|
||
*
|
||
* ```rust
|
||
* let v = &[1,2,3,4];
|
||
* for win in v.windows(2) {
|
||
* println!("{:?}", win);
|
||
* }
|
||
* ```
|
||
*
|
||
*/
|
||
fn windows(self, size: uint) -> WindowIter<'a, T>;
|
||
/**
|
||
*
|
||
* Returns an iterator over `size` elements of the vector at a
|
||
* time. The chunks do not overlap. If `size` does not divide the
|
||
* length of the vector, then the last chunk will not have length
|
||
* `size`.
|
||
*
|
||
* # Failure
|
||
*
|
||
* Fails if `size` is 0.
|
||
*
|
||
* # Example
|
||
*
|
||
* Print the vector two elements at a time (i.e. `[1,2]`,
|
||
* `[3,4]`, `[5]`):
|
||
*
|
||
* ```rust
|
||
* let v = &[1,2,3,4,5];
|
||
* for win in v.chunks(2) {
|
||
* println!("{:?}", win);
|
||
* }
|
||
* ```
|
||
*
|
||
*/
|
||
fn chunks(self, size: uint) -> ChunkIter<'a, T>;
|
||
|
||
/// Returns the element of a vector at the given index, or `None` if the
|
||
/// index is out of bounds
|
||
fn get_opt(&self, index: uint) -> Option<&'a T>;
|
||
/// Returns the first element of a vector, failing if the vector is empty.
|
||
fn head(&self) -> &'a T;
|
||
/// Returns the first element of a vector, or `None` if it is empty
|
||
fn head_opt(&self) -> Option<&'a T>;
|
||
/// Returns all but the first element of a vector
|
||
fn tail(&self) -> &'a [T];
|
||
/// Returns all but the first `n' elements of a vector
|
||
fn tailn(&self, n: uint) -> &'a [T];
|
||
/// Returns all but the last element of a vector
|
||
fn init(&self) -> &'a [T];
|
||
/// Returns all but the last `n' elements of a vector
|
||
fn initn(&self, n: uint) -> &'a [T];
|
||
/// Returns the last element of a vector, failing if the vector is empty.
|
||
fn last(&self) -> &'a T;
|
||
/// Returns the last element of a vector, or `None` if it is empty.
|
||
fn last_opt(&self) -> Option<&'a T>;
|
||
/**
|
||
* Apply a function to each element of a vector and return a concatenation
|
||
* of each result vector
|
||
*/
|
||
fn flat_map<U>(&self, f: |t: &T| -> ~[U]) -> ~[U];
|
||
/// Returns a pointer to the element at the given index, without doing
|
||
/// bounds checking.
|
||
unsafe fn unsafe_ref(&self, index: uint) -> *T;
|
||
|
||
/**
|
||
* Returns an unsafe pointer to the vector's buffer
|
||
*
|
||
* The caller must ensure that the vector outlives the pointer this
|
||
* function returns, or else it will end up pointing to garbage.
|
||
*
|
||
* Modifying the vector may cause its buffer to be reallocated, which
|
||
* would also make any pointers to it invalid.
|
||
*/
|
||
fn as_ptr(&self) -> *T;
|
||
|
||
/**
|
||
* Binary search a sorted vector with a comparator function.
|
||
*
|
||
* The comparator function should implement an order consistent
|
||
* with the sort order of the underlying vector, returning an
|
||
* order code that indicates whether its argument is `Less`,
|
||
* `Equal` or `Greater` the desired target.
|
||
*
|
||
* Returns the index where the comparator returned `Equal`, or `None` if
|
||
* not found.
|
||
*/
|
||
fn bsearch(&self, f: |&T| -> Ordering) -> Option<uint>;
|
||
|
||
/// Deprecated, use iterators where possible
|
||
/// (`self.iter().map(f)`). Apply a function to each element
|
||
/// of a vector and return the results.
|
||
fn map<U>(&self, |t: &T| -> U) -> ~[U];
|
||
|
||
/**
|
||
* Returns a mutable reference to the first element in this slice
|
||
* and adjusts the slice in place so that it no longer contains
|
||
* that element. O(1).
|
||
*
|
||
* Equivalent to:
|
||
*
|
||
* ```
|
||
* let head = &self[0];
|
||
* *self = self.slice_from(1);
|
||
* head
|
||
* ```
|
||
*
|
||
* Fails if slice is empty.
|
||
*/
|
||
fn shift_ref(&mut self) -> &'a T;
|
||
|
||
/**
|
||
* Returns a mutable reference to the last element in this slice
|
||
* and adjusts the slice in place so that it no longer contains
|
||
* that element. O(1).
|
||
*
|
||
* Equivalent to:
|
||
*
|
||
* ```
|
||
* let tail = &self[self.len() - 1];
|
||
* *self = self.slice_to(self.len() - 1);
|
||
* tail
|
||
* ```
|
||
*
|
||
* Fails if slice is empty.
|
||
*/
|
||
fn pop_ref(&mut self) -> &'a T;
|
||
}
|
||
|
||
impl<'a,T> ImmutableVector<'a, T> for &'a [T] {
|
||
#[inline]
|
||
fn slice(&self, start: uint, end: uint) -> &'a [T] {
|
||
assert!(start <= end);
|
||
assert!(end <= self.len());
|
||
unsafe {
|
||
cast::transmute(Slice {
|
||
data: self.as_ptr().offset(start as int),
|
||
len: (end - start)
|
||
})
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn slice_from(&self, start: uint) -> &'a [T] {
|
||
self.slice(start, self.len())
|
||
}
|
||
|
||
#[inline]
|
||
fn slice_to(&self, end: uint) -> &'a [T] {
|
||
self.slice(0, end)
|
||
}
|
||
|
||
#[inline]
|
||
fn iter(self) -> VecIterator<'a, T> {
|
||
unsafe {
|
||
let p = self.as_ptr();
|
||
if mem::size_of::<T>() == 0 {
|
||
VecIterator{ptr: p,
|
||
end: (p as uint + self.len()) as *T,
|
||
lifetime: None}
|
||
} else {
|
||
VecIterator{ptr: p,
|
||
end: p.offset(self.len() as int),
|
||
lifetime: None}
|
||
}
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn rev_iter(self) -> RevIterator<'a, T> {
|
||
self.iter().invert()
|
||
}
|
||
|
||
#[inline]
|
||
fn split(self, pred: 'a |&T| -> bool) -> SplitIterator<'a, T> {
|
||
self.splitn(uint::max_value, pred)
|
||
}
|
||
|
||
#[inline]
|
||
fn splitn(self, n: uint, pred: 'a |&T| -> bool) -> SplitIterator<'a, T> {
|
||
SplitIterator {
|
||
v: self,
|
||
n: n,
|
||
pred: pred,
|
||
finished: false
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn rsplit(self, pred: 'a |&T| -> bool) -> RSplitIterator<'a, T> {
|
||
self.rsplitn(uint::max_value, pred)
|
||
}
|
||
|
||
#[inline]
|
||
fn rsplitn(self, n: uint, pred: 'a |&T| -> bool) -> RSplitIterator<'a, T> {
|
||
RSplitIterator {
|
||
v: self,
|
||
n: n,
|
||
pred: pred,
|
||
finished: false
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn windows(self, size: uint) -> WindowIter<'a, T> {
|
||
assert!(size != 0);
|
||
WindowIter { v: self, size: size }
|
||
}
|
||
|
||
#[inline]
|
||
fn chunks(self, size: uint) -> ChunkIter<'a, T> {
|
||
assert!(size != 0);
|
||
ChunkIter { v: self, size: size }
|
||
}
|
||
|
||
#[inline]
|
||
fn get_opt(&self, index: uint) -> Option<&'a T> {
|
||
if index < self.len() { Some(&self[index]) } else { None }
|
||
}
|
||
|
||
#[inline]
|
||
fn head(&self) -> &'a T {
|
||
if self.len() == 0 { fail!("head: empty vector") }
|
||
&self[0]
|
||
}
|
||
|
||
#[inline]
|
||
fn head_opt(&self) -> Option<&'a T> {
|
||
if self.len() == 0 { None } else { Some(&self[0]) }
|
||
}
|
||
|
||
#[inline]
|
||
fn tail(&self) -> &'a [T] { self.slice(1, self.len()) }
|
||
|
||
#[inline]
|
||
fn tailn(&self, n: uint) -> &'a [T] { self.slice(n, self.len()) }
|
||
|
||
#[inline]
|
||
fn init(&self) -> &'a [T] {
|
||
self.slice(0, self.len() - 1)
|
||
}
|
||
|
||
#[inline]
|
||
fn initn(&self, n: uint) -> &'a [T] {
|
||
self.slice(0, self.len() - n)
|
||
}
|
||
|
||
#[inline]
|
||
fn last(&self) -> &'a T {
|
||
if self.len() == 0 { fail!("last: empty vector") }
|
||
&self[self.len() - 1]
|
||
}
|
||
|
||
#[inline]
|
||
fn last_opt(&self) -> Option<&'a T> {
|
||
if self.len() == 0 { None } else { Some(&self[self.len() - 1]) }
|
||
}
|
||
|
||
#[inline]
|
||
fn flat_map<U>(&self, f: |t: &T| -> ~[U]) -> ~[U] {
|
||
flat_map(*self, f)
|
||
}
|
||
|
||
#[inline]
|
||
unsafe fn unsafe_ref(&self, index: uint) -> *T {
|
||
self.repr().data.offset(index as int)
|
||
}
|
||
|
||
#[inline]
|
||
fn as_ptr(&self) -> *T {
|
||
self.repr().data
|
||
}
|
||
|
||
|
||
fn bsearch(&self, f: |&T| -> Ordering) -> Option<uint> {
|
||
let mut base : uint = 0;
|
||
let mut lim : uint = self.len();
|
||
|
||
while lim != 0 {
|
||
let ix = base + (lim >> 1);
|
||
match f(&self[ix]) {
|
||
Equal => return Some(ix),
|
||
Less => {
|
||
base = ix + 1;
|
||
lim -= 1;
|
||
}
|
||
Greater => ()
|
||
}
|
||
lim >>= 1;
|
||
}
|
||
return None;
|
||
}
|
||
|
||
fn map<U>(&self, f: |t: &T| -> U) -> ~[U] {
|
||
self.iter().map(f).collect()
|
||
}
|
||
|
||
fn shift_ref(&mut self) -> &'a T {
|
||
unsafe {
|
||
let s: &mut Slice<T> = cast::transmute(self);
|
||
&*raw::shift_ptr(s)
|
||
}
|
||
}
|
||
|
||
fn pop_ref(&mut self) -> &'a T {
|
||
unsafe {
|
||
let s: &mut Slice<T> = cast::transmute(self);
|
||
&*raw::pop_ptr(s)
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Extension methods for vectors contain `Eq` elements.
|
||
pub trait ImmutableEqVector<T:Eq> {
|
||
/// Find the first index containing a matching value
|
||
fn position_elem(&self, t: &T) -> Option<uint>;
|
||
|
||
/// Find the last index containing a matching value
|
||
fn rposition_elem(&self, t: &T) -> Option<uint>;
|
||
|
||
/// Return true if a vector contains an element with the given value
|
||
fn contains(&self, x: &T) -> bool;
|
||
|
||
/// Returns true if `needle` is a prefix of the vector.
|
||
fn starts_with(&self, needle: &[T]) -> bool;
|
||
|
||
/// Returns true if `needle` is a suffix of the vector.
|
||
fn ends_with(&self, needle: &[T]) -> bool;
|
||
}
|
||
|
||
impl<'a,T:Eq> ImmutableEqVector<T> for &'a [T] {
|
||
#[inline]
|
||
fn position_elem(&self, x: &T) -> Option<uint> {
|
||
self.iter().position(|y| *x == *y)
|
||
}
|
||
|
||
#[inline]
|
||
fn rposition_elem(&self, t: &T) -> Option<uint> {
|
||
self.iter().rposition(|x| *x == *t)
|
||
}
|
||
|
||
#[inline]
|
||
fn contains(&self, x: &T) -> bool {
|
||
self.iter().any(|elt| *x == *elt)
|
||
}
|
||
|
||
#[inline]
|
||
fn starts_with(&self, needle: &[T]) -> bool {
|
||
let n = needle.len();
|
||
self.len() >= n && needle == self.slice_to(n)
|
||
}
|
||
|
||
#[inline]
|
||
fn ends_with(&self, needle: &[T]) -> bool {
|
||
let (m, n) = (self.len(), needle.len());
|
||
m >= n && needle == self.slice_from(m - n)
|
||
}
|
||
}
|
||
|
||
/// Extension methods for vectors containing `TotalOrd` elements.
|
||
pub trait ImmutableTotalOrdVector<T: TotalOrd> {
|
||
/**
|
||
* Binary search a sorted vector for a given element.
|
||
*
|
||
* Returns the index of the element or None if not found.
|
||
*/
|
||
fn bsearch_elem(&self, x: &T) -> Option<uint>;
|
||
}
|
||
|
||
impl<'a, T: TotalOrd> ImmutableTotalOrdVector<T> for &'a [T] {
|
||
fn bsearch_elem(&self, x: &T) -> Option<uint> {
|
||
self.bsearch(|p| p.cmp(x))
|
||
}
|
||
}
|
||
|
||
/// Extension methods for vectors containing `Clone` elements.
|
||
pub trait ImmutableCopyableVector<T> {
|
||
/**
|
||
* Partitions the vector into those that satisfies the predicate, and
|
||
* those that do not.
|
||
*/
|
||
fn partitioned(&self, f: |&T| -> bool) -> (~[T], ~[T]);
|
||
|
||
/// Create an iterator that yields every possible permutation of the
|
||
/// vector in succession.
|
||
fn permutations(self) -> Permutations<T>;
|
||
}
|
||
|
||
impl<'a,T:Clone> ImmutableCopyableVector<T> for &'a [T] {
|
||
#[inline]
|
||
fn partitioned(&self, f: |&T| -> bool) -> (~[T], ~[T]) {
|
||
let mut lefts = ~[];
|
||
let mut rights = ~[];
|
||
|
||
for elt in self.iter() {
|
||
if f(elt) {
|
||
lefts.push((*elt).clone());
|
||
} else {
|
||
rights.push((*elt).clone());
|
||
}
|
||
}
|
||
|
||
(lefts, rights)
|
||
}
|
||
|
||
fn permutations(self) -> Permutations<T> {
|
||
Permutations{
|
||
swaps: ElementSwaps::new(self.len()),
|
||
v: self.to_owned(),
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
/// Extension methods for owned vectors.
|
||
pub trait OwnedVector<T> {
|
||
/// Creates a consuming iterator, that is, one that moves each
|
||
/// value out of the vector (from start to end). The vector cannot
|
||
/// be used after calling this.
|
||
///
|
||
/// # Examples
|
||
///
|
||
/// ```rust
|
||
/// let v = ~[~"a", ~"b"];
|
||
/// for s in v.move_iter() {
|
||
/// // s has type ~str, not &~str
|
||
/// println(s);
|
||
/// }
|
||
/// ```
|
||
fn move_iter(self) -> MoveIterator<T>;
|
||
/// Creates a consuming iterator that moves out of the vector in
|
||
/// reverse order.
|
||
fn move_rev_iter(self) -> MoveRevIterator<T>;
|
||
|
||
/**
|
||
* Reserves capacity for exactly `n` elements in the given vector.
|
||
*
|
||
* If the capacity for `self` is already equal to or greater than the requested
|
||
* capacity, then no action is taken.
|
||
*
|
||
* # Arguments
|
||
*
|
||
* * n - The number of elements to reserve space for
|
||
*
|
||
* # Failure
|
||
*
|
||
* This method always succeeds in reserving space for `n` elements, or it does
|
||
* not return.
|
||
*/
|
||
fn reserve(&mut self, n: uint);
|
||
/**
|
||
* Reserves capacity for at least `n` elements in the given vector.
|
||
*
|
||
* This function will over-allocate in order to amortize the allocation costs
|
||
* in scenarios where the caller may need to repeatedly reserve additional
|
||
* space.
|
||
*
|
||
* If the capacity for `self` is already equal to or greater than the requested
|
||
* capacity, then no action is taken.
|
||
*
|
||
* # Arguments
|
||
*
|
||
* * n - The number of elements to reserve space for
|
||
*/
|
||
fn reserve_at_least(&mut self, n: uint);
|
||
/**
|
||
* Reserves capacity for at least `n` additional elements in the given vector.
|
||
*
|
||
* # Failure
|
||
*
|
||
* Fails if the new required capacity overflows uint.
|
||
*
|
||
* May also fail if `reserve` fails.
|
||
*/
|
||
fn reserve_additional(&mut self, n: uint);
|
||
/// Returns the number of elements the vector can hold without reallocating.
|
||
fn capacity(&self) -> uint;
|
||
/// Shrink the capacity of the vector to match the length
|
||
fn shrink_to_fit(&mut self);
|
||
|
||
/// Append an element to a vector
|
||
fn push(&mut self, t: T);
|
||
/// Takes ownership of the vector `rhs`, moving all elements into
|
||
/// the current vector. This does not copy any elements, and it is
|
||
/// illegal to use the `rhs` vector after calling this method
|
||
/// (because it is moved here).
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```rust
|
||
/// let mut a = ~[~1];
|
||
/// a.push_all_move(~[~2, ~3, ~4]);
|
||
/// assert!(a == ~[~1, ~2, ~3, ~4]);
|
||
/// ```
|
||
fn push_all_move(&mut self, rhs: ~[T]);
|
||
/// Remove the last element from a vector and return it, failing if it is empty
|
||
fn pop(&mut self) -> T;
|
||
/// Remove the last element from a vector and return it, or `None` if it is empty
|
||
fn pop_opt(&mut self) -> Option<T>;
|
||
/// Removes the first element from a vector and return it
|
||
fn shift(&mut self) -> T;
|
||
/// Removes the first element from a vector and return it, or `None` if it is empty
|
||
fn shift_opt(&mut self) -> Option<T>;
|
||
/// Prepend an element to the vector
|
||
fn unshift(&mut self, x: T);
|
||
|
||
/// Insert an element at position i within v, shifting all
|
||
/// elements after position i one position to the right.
|
||
fn insert(&mut self, i: uint, x:T);
|
||
|
||
/// Remove and return the element at position `i` within `v`,
|
||
/// shifting all elements after position `i` one position to the
|
||
/// left. Returns `None` if `i` is out of bounds.
|
||
///
|
||
/// # Example
|
||
/// ```rust
|
||
/// let mut v = ~[1, 2, 3];
|
||
/// assert_eq!(v.remove_opt(1), Some(2));
|
||
/// assert_eq!(v, ~[1, 3]);
|
||
///
|
||
/// assert_eq!(v.remove_opt(4), None);
|
||
/// // v is unchanged:
|
||
/// assert_eq!(v, ~[1, 3]);
|
||
/// ```
|
||
fn remove_opt(&mut self, i: uint) -> Option<T>;
|
||
|
||
/// Remove and return the element at position i within v, shifting
|
||
/// all elements after position i one position to the left.
|
||
fn remove(&mut self, i: uint) -> T;
|
||
|
||
/**
|
||
* Remove an element from anywhere in the vector and return it, replacing it
|
||
* with the last element. This does not preserve ordering, but is O(1).
|
||
*
|
||
* Fails if index >= length.
|
||
*/
|
||
fn swap_remove(&mut self, index: uint) -> T;
|
||
|
||
/// Shorten a vector, dropping excess elements.
|
||
fn truncate(&mut self, newlen: uint);
|
||
|
||
/**
|
||
* Like `filter()`, but in place. Preserves order of `v`. Linear time.
|
||
*/
|
||
fn retain(&mut self, f: |t: &T| -> bool);
|
||
/**
|
||
* Partitions the vector into those that satisfies the predicate, and
|
||
* those that do not.
|
||
*/
|
||
fn partition(self, f: |&T| -> bool) -> (~[T], ~[T]);
|
||
|
||
/**
|
||
* Expands a vector in place, initializing the new elements to the result of
|
||
* a function.
|
||
*
|
||
* Function `init_op` is called `n` times with the values [0..`n`)
|
||
*
|
||
* # Arguments
|
||
*
|
||
* * n - The number of elements to add
|
||
* * init_op - A function to call to retrieve each appended element's
|
||
* value
|
||
*/
|
||
fn grow_fn(&mut self, n: uint, op: |uint| -> T);
|
||
|
||
/**
|
||
* Sets the length of a vector
|
||
*
|
||
* This will explicitly set the size of the vector, without actually
|
||
* modifying its buffers, so it is up to the caller to ensure that
|
||
* the vector is actually the specified size.
|
||
*/
|
||
unsafe fn set_len(&mut self, new_len: uint);
|
||
}
|
||
|
||
impl<T> OwnedVector<T> for ~[T] {
|
||
#[inline]
|
||
fn move_iter(self) -> MoveIterator<T> {
|
||
unsafe {
|
||
let iter = cast::transmute(self.iter());
|
||
let ptr = cast::transmute(self);
|
||
MoveIterator { allocation: ptr, iter: iter }
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn move_rev_iter(self) -> MoveRevIterator<T> {
|
||
self.move_iter().invert()
|
||
}
|
||
|
||
fn reserve(&mut self, n: uint) {
|
||
// Only make the (slow) call into the runtime if we have to
|
||
if self.capacity() < n {
|
||
unsafe {
|
||
let td = get_tydesc::<T>();
|
||
if owns_managed::<T>() {
|
||
let ptr: *mut *mut Box<Vec<()>> = cast::transmute(self);
|
||
::at_vec::raw::reserve_raw(td, ptr, n);
|
||
} else {
|
||
let ptr: *mut *mut Vec<()> = cast::transmute(self);
|
||
let alloc = n * mem::nonzero_size_of::<T>();
|
||
let size = alloc + mem::size_of::<Vec<()>>();
|
||
if alloc / mem::nonzero_size_of::<T>() != n || size < alloc {
|
||
fail!("vector size is too large: {}", n);
|
||
}
|
||
*ptr = realloc_raw(*ptr as *mut c_void, size)
|
||
as *mut Vec<()>;
|
||
(**ptr).alloc = alloc;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn reserve_at_least(&mut self, n: uint) {
|
||
self.reserve(uint::next_power_of_two_opt(n).unwrap_or(n));
|
||
}
|
||
|
||
#[inline]
|
||
fn reserve_additional(&mut self, n: uint) {
|
||
if self.capacity() - self.len() < n {
|
||
match self.len().checked_add(&n) {
|
||
None => fail!("vec::reserve_additional: `uint` overflow"),
|
||
Some(new_cap) => self.reserve_at_least(new_cap)
|
||
}
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn capacity(&self) -> uint {
|
||
unsafe {
|
||
if owns_managed::<T>() {
|
||
let repr: **Box<Vec<()>> = cast::transmute(self);
|
||
(**repr).data.alloc / mem::nonzero_size_of::<T>()
|
||
} else {
|
||
let repr: **Vec<()> = cast::transmute(self);
|
||
(**repr).alloc / mem::nonzero_size_of::<T>()
|
||
}
|
||
}
|
||
}
|
||
|
||
fn shrink_to_fit(&mut self) {
|
||
unsafe {
|
||
let ptr: *mut *mut Vec<()> = cast::transmute(self);
|
||
let alloc = (**ptr).fill;
|
||
let size = alloc + mem::size_of::<Vec<()>>();
|
||
*ptr = realloc_raw(*ptr as *mut c_void, size) as *mut Vec<()>;
|
||
(**ptr).alloc = alloc;
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn push(&mut self, t: T) {
|
||
unsafe {
|
||
if owns_managed::<T>() {
|
||
let repr: **Box<Vec<()>> = cast::transmute(&mut *self);
|
||
let fill = (**repr).data.fill;
|
||
if (**repr).data.alloc <= fill {
|
||
self.reserve_additional(1);
|
||
}
|
||
|
||
push_fast(self, t);
|
||
} else {
|
||
let repr: **Vec<()> = cast::transmute(&mut *self);
|
||
let fill = (**repr).fill;
|
||
if (**repr).alloc <= fill {
|
||
self.reserve_additional(1);
|
||
}
|
||
|
||
push_fast(self, t);
|
||
}
|
||
}
|
||
|
||
// This doesn't bother to make sure we have space.
|
||
#[inline] // really pretty please
|
||
unsafe fn push_fast<T>(this: &mut ~[T], t: T) {
|
||
if owns_managed::<T>() {
|
||
let repr: **mut Box<Vec<u8>> = cast::transmute(this);
|
||
let fill = (**repr).data.fill;
|
||
(**repr).data.fill += mem::nonzero_size_of::<T>();
|
||
let p = to_unsafe_ptr(&((**repr).data.data));
|
||
let p = ptr::offset(p, fill as int) as *mut T;
|
||
intrinsics::move_val_init(&mut(*p), t);
|
||
} else {
|
||
let repr: **mut Vec<u8> = cast::transmute(this);
|
||
let fill = (**repr).fill;
|
||
(**repr).fill += mem::nonzero_size_of::<T>();
|
||
let p = to_unsafe_ptr(&((**repr).data));
|
||
let p = ptr::offset(p, fill as int) as *mut T;
|
||
intrinsics::move_val_init(&mut(*p), t);
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
#[inline]
|
||
fn push_all_move(&mut self, mut rhs: ~[T]) {
|
||
let self_len = self.len();
|
||
let rhs_len = rhs.len();
|
||
let new_len = self_len + rhs_len;
|
||
self.reserve_additional(rhs.len());
|
||
unsafe { // Note: infallible.
|
||
let self_p = self.as_mut_ptr();
|
||
let rhs_p = rhs.as_ptr();
|
||
ptr::copy_memory(ptr::mut_offset(self_p, self_len as int), rhs_p, rhs_len);
|
||
self.set_len(new_len);
|
||
rhs.set_len(0);
|
||
}
|
||
}
|
||
|
||
fn pop_opt(&mut self) -> Option<T> {
|
||
match self.len() {
|
||
0 => None,
|
||
ln => {
|
||
let valptr = ptr::to_mut_unsafe_ptr(&mut self[ln - 1u]);
|
||
unsafe {
|
||
self.set_len(ln - 1u);
|
||
Some(ptr::read_ptr(&*valptr))
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
#[inline]
|
||
fn pop(&mut self) -> T {
|
||
self.pop_opt().expect("pop: empty vector")
|
||
}
|
||
|
||
#[inline]
|
||
fn shift(&mut self) -> T {
|
||
self.shift_opt().expect("shift: empty vector")
|
||
}
|
||
|
||
fn shift_opt(&mut self) -> Option<T> {
|
||
self.remove_opt(0)
|
||
}
|
||
|
||
fn unshift(&mut self, x: T) {
|
||
self.insert(0, x)
|
||
}
|
||
|
||
fn insert(&mut self, i: uint, x: T) {
|
||
let len = self.len();
|
||
assert!(i <= len);
|
||
// space for the new element
|
||
self.reserve_additional(1);
|
||
|
||
unsafe { // infallible
|
||
// The spot to put the new value
|
||
let p = self.as_mut_ptr().offset(i as int);
|
||
// Shift everything over to make space. (Duplicating the
|
||
// `i`th element into two consecutive places.)
|
||
ptr::copy_memory(p.offset(1), p, len - i);
|
||
// Write it in, overwriting the first copy of the `i`th
|
||
// element.
|
||
intrinsics::move_val_init(&mut *p, x);
|
||
self.set_len(len + 1);
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn remove(&mut self, i: uint) -> T {
|
||
match self.remove_opt(i) {
|
||
Some(t) => t,
|
||
None => fail!("remove: the len is {} but the index is {}", self.len(), i)
|
||
}
|
||
}
|
||
|
||
fn remove_opt(&mut self, i: uint) -> Option<T> {
|
||
let len = self.len();
|
||
if i < len {
|
||
unsafe { // infallible
|
||
// the place we are taking from.
|
||
let ptr = self.as_mut_ptr().offset(i as int);
|
||
// copy it out, unsafely having a copy of the value on
|
||
// the stack and in the vector at the same time.
|
||
let ret = Some(ptr::read_ptr(ptr as *T));
|
||
|
||
// Shift everything down to fill in that spot.
|
||
ptr::copy_memory(ptr, ptr.offset(1), len - i - 1);
|
||
self.set_len(len - 1);
|
||
|
||
ret
|
||
}
|
||
} else {
|
||
None
|
||
}
|
||
}
|
||
fn swap_remove(&mut self, index: uint) -> T {
|
||
let ln = self.len();
|
||
if index >= ln {
|
||
fail!("vec::swap_remove - index {} >= length {}", index, ln);
|
||
}
|
||
if index < ln - 1 {
|
||
self.swap(index, ln - 1);
|
||
}
|
||
self.pop()
|
||
}
|
||
fn truncate(&mut self, newlen: uint) {
|
||
let oldlen = self.len();
|
||
assert!(newlen <= oldlen);
|
||
|
||
unsafe {
|
||
let p = self.as_mut_ptr();
|
||
// This loop is optimized out for non-drop types.
|
||
for i in range(newlen, oldlen) {
|
||
ptr::read_and_zero_ptr(p.offset(i as int));
|
||
}
|
||
}
|
||
unsafe { self.set_len(newlen); }
|
||
}
|
||
|
||
fn retain(&mut self, f: |t: &T| -> bool) {
|
||
let len = self.len();
|
||
let mut deleted: uint = 0;
|
||
|
||
for i in range(0u, len) {
|
||
if !f(&self[i]) {
|
||
deleted += 1;
|
||
} else if deleted > 0 {
|
||
self.swap(i - deleted, i);
|
||
}
|
||
}
|
||
|
||
if deleted > 0 {
|
||
self.truncate(len - deleted);
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn partition(self, f: |&T| -> bool) -> (~[T], ~[T]) {
|
||
let mut lefts = ~[];
|
||
let mut rights = ~[];
|
||
|
||
for elt in self.move_iter() {
|
||
if f(&elt) {
|
||
lefts.push(elt);
|
||
} else {
|
||
rights.push(elt);
|
||
}
|
||
}
|
||
|
||
(lefts, rights)
|
||
}
|
||
fn grow_fn(&mut self, n: uint, op: |uint| -> T) {
|
||
let new_len = self.len() + n;
|
||
self.reserve_at_least(new_len);
|
||
let mut i: uint = 0u;
|
||
while i < n {
|
||
self.push(op(i));
|
||
i += 1u;
|
||
}
|
||
}
|
||
#[inline]
|
||
unsafe fn set_len(&mut self, new_len: uint) {
|
||
if owns_managed::<T>() {
|
||
let repr: **mut Box<Vec<()>> = cast::transmute(self);
|
||
(**repr).data.fill = new_len * mem::nonzero_size_of::<T>();
|
||
} else {
|
||
let repr: **mut Vec<()> = cast::transmute(self);
|
||
(**repr).fill = new_len * mem::nonzero_size_of::<T>();
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<T> Mutable for ~[T] {
|
||
/// Clear the vector, removing all values.
|
||
fn clear(&mut self) { self.truncate(0) }
|
||
}
|
||
|
||
/// Extension methods for owned vectors containing `Clone` elements.
|
||
pub trait OwnedCopyableVector<T:Clone> {
|
||
/// Iterates over the slice `rhs`, copies each element, and then appends it to
|
||
/// the vector provided `v`. The `rhs` vector is traversed in-order.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```rust
|
||
/// let mut a = ~[1];
|
||
/// a.push_all([2, 3, 4]);
|
||
/// assert!(a == ~[1, 2, 3, 4]);
|
||
/// ```
|
||
fn push_all(&mut self, rhs: &[T]);
|
||
|
||
/**
|
||
* Expands a vector in place, initializing the new elements to a given value
|
||
*
|
||
* # Arguments
|
||
*
|
||
* * n - The number of elements to add
|
||
* * initval - The value for the new elements
|
||
*/
|
||
fn grow(&mut self, n: uint, initval: &T);
|
||
|
||
/**
|
||
* Sets the value of a vector element at a given index, growing the vector as
|
||
* needed
|
||
*
|
||
* Sets the element at position `index` to `val`. If `index` is past the end
|
||
* of the vector, expands the vector by replicating `initval` to fill the
|
||
* intervening space.
|
||
*/
|
||
fn grow_set(&mut self, index: uint, initval: &T, val: T);
|
||
}
|
||
|
||
impl<T:Clone> OwnedCopyableVector<T> for ~[T] {
|
||
#[inline]
|
||
fn push_all(&mut self, rhs: &[T]) {
|
||
let new_len = self.len() + rhs.len();
|
||
self.reserve(new_len);
|
||
|
||
for elt in rhs.iter() {
|
||
self.push((*elt).clone())
|
||
}
|
||
}
|
||
fn grow(&mut self, n: uint, initval: &T) {
|
||
let new_len = self.len() + n;
|
||
self.reserve_at_least(new_len);
|
||
let mut i: uint = 0u;
|
||
|
||
while i < n {
|
||
self.push((*initval).clone());
|
||
i += 1u;
|
||
}
|
||
}
|
||
fn grow_set(&mut self, index: uint, initval: &T, val: T) {
|
||
let l = self.len();
|
||
if index >= l { self.grow(index - l + 1u, initval); }
|
||
self[index] = val;
|
||
}
|
||
}
|
||
|
||
/// Extension methods for owned vectors containing `Eq` elements.
|
||
pub trait OwnedEqVector<T:Eq> {
|
||
/**
|
||
* Remove consecutive repeated elements from a vector; if the vector is
|
||
* sorted, this removes all duplicates.
|
||
*/
|
||
fn dedup(&mut self);
|
||
}
|
||
|
||
impl<T:Eq> OwnedEqVector<T> for ~[T] {
|
||
fn dedup(&mut self) {
|
||
unsafe {
|
||
// Although we have a mutable reference to `self`, we cannot make
|
||
// *arbitrary* changes. There exists the possibility that this
|
||
// vector is contained with an `@mut` box and hence is still
|
||
// readable by the outside world during the `Eq` comparisons.
|
||
// Moreover, those comparisons could fail, so we must ensure
|
||
// that the vector is in a valid state at all time.
|
||
//
|
||
// The way that we handle this is by using swaps; we iterate
|
||
// over all the elements, swapping as we go so that at the end
|
||
// the elements we wish to keep are in the front, and those we
|
||
// wish to reject are at the back. We can then truncate the
|
||
// vector. This operation is still O(n).
|
||
//
|
||
// Example: We start in this state, where `r` represents "next
|
||
// read" and `w` represents "next_write`.
|
||
//
|
||
// r
|
||
// +---+---+---+---+---+---+
|
||
// | 0 | 1 | 1 | 2 | 3 | 3 |
|
||
// +---+---+---+---+---+---+
|
||
// w
|
||
//
|
||
// Comparing self[r] against self[w-1], tis is not a duplicate, so
|
||
// we swap self[r] and self[w] (no effect as r==w) and then increment both
|
||
// r and w, leaving us with:
|
||
//
|
||
// r
|
||
// +---+---+---+---+---+---+
|
||
// | 0 | 1 | 1 | 2 | 3 | 3 |
|
||
// +---+---+---+---+---+---+
|
||
// w
|
||
//
|
||
// Comparing self[r] against self[w-1], this value is a duplicate,
|
||
// so we increment `r` but leave everything else unchanged:
|
||
//
|
||
// r
|
||
// +---+---+---+---+---+---+
|
||
// | 0 | 1 | 1 | 2 | 3 | 3 |
|
||
// +---+---+---+---+---+---+
|
||
// w
|
||
//
|
||
// Comparing self[r] against self[w-1], this is not a duplicate,
|
||
// so swap self[r] and self[w] and advance r and w:
|
||
//
|
||
// r
|
||
// +---+---+---+---+---+---+
|
||
// | 0 | 1 | 2 | 1 | 3 | 3 |
|
||
// +---+---+---+---+---+---+
|
||
// w
|
||
//
|
||
// Not a duplicate, repeat:
|
||
//
|
||
// r
|
||
// +---+---+---+---+---+---+
|
||
// | 0 | 1 | 2 | 3 | 1 | 3 |
|
||
// +---+---+---+---+---+---+
|
||
// w
|
||
//
|
||
// Duplicate, advance r. End of vec. Truncate to w.
|
||
|
||
let ln = self.len();
|
||
if ln < 1 { return; }
|
||
|
||
// Avoid bounds checks by using unsafe pointers.
|
||
let p = self.as_mut_ptr();
|
||
let mut r = 1;
|
||
let mut w = 1;
|
||
|
||
while r < ln {
|
||
let p_r = ptr::mut_offset(p, r as int);
|
||
let p_wm1 = ptr::mut_offset(p, (w - 1) as int);
|
||
if *p_r != *p_wm1 {
|
||
if r != w {
|
||
let p_w = ptr::mut_offset(p_wm1, 1);
|
||
util::swap(&mut *p_r, &mut *p_w);
|
||
}
|
||
w += 1;
|
||
}
|
||
r += 1;
|
||
}
|
||
|
||
self.truncate(w);
|
||
}
|
||
}
|
||
}
|
||
|
||
fn merge_sort<T>(v: &mut [T], compare: |&T, &T| -> Ordering) {
|
||
// warning: this wildly uses unsafe.
|
||
static INSERTION: uint = 8;
|
||
|
||
let len = v.len();
|
||
|
||
// allocate some memory to use as scratch memory, we keep the
|
||
// length 0 so we can keep shallow copies of the contents of `v`
|
||
// without risking the dtors running on an object twice if
|
||
// `compare` fails.
|
||
let mut working_space = with_capacity(2 * len);
|
||
// these both are buffers of length `len`.
|
||
let mut buf_dat = working_space.as_mut_ptr();
|
||
let mut buf_tmp = unsafe {buf_dat.offset(len as int)};
|
||
|
||
// length `len`.
|
||
let buf_v = v.as_ptr();
|
||
|
||
// step 1. sort short runs with insertion sort. This takes the
|
||
// values from `v` and sorts them into `buf_dat`, leaving that
|
||
// with sorted runs of length INSERTION.
|
||
|
||
// We could hardcode the sorting comparisons here, and we could
|
||
// manipulate/step the pointers themselves, rather than repeatedly
|
||
// .offset-ing.
|
||
for start in range_step(0, len, INSERTION) {
|
||
// start <= i <= len;
|
||
for i in range(start, cmp::min(start + INSERTION, len)) {
|
||
// j satisfies: start <= j <= i;
|
||
let mut j = i as int;
|
||
unsafe {
|
||
// `i` is in bounds.
|
||
let read_ptr = buf_v.offset(i as int);
|
||
|
||
// find where to insert, we need to do strict <,
|
||
// rather than <=, to maintain stability.
|
||
|
||
// start <= j - 1 < len, so .offset(j - 1) is in
|
||
// bounds.
|
||
while j > start as int &&
|
||
compare(&*read_ptr, &*buf_dat.offset(j - 1)) == Less {
|
||
j -= 1;
|
||
}
|
||
|
||
// shift everything to the right, to make space to
|
||
// insert this value.
|
||
|
||
// j + 1 could be `len` (for the last `i`), but in
|
||
// that case, `i == j` so we don't copy. The
|
||
// `.offset(j)` is always in bounds.
|
||
ptr::copy_memory(buf_dat.offset(j + 1),
|
||
buf_dat.offset(j),
|
||
i - j as uint);
|
||
ptr::copy_nonoverlapping_memory(buf_dat.offset(j), read_ptr, 1);
|
||
}
|
||
}
|
||
}
|
||
|
||
// step 2. merge the sorted runs.
|
||
let mut width = INSERTION;
|
||
while width < len {
|
||
// merge the sorted runs of length `width` in `buf_dat` two at
|
||
// a time, placing the result in `buf_tmp`.
|
||
|
||
// 0 <= start <= len.
|
||
for start in range_step(0, len, 2 * width) {
|
||
// manipulate pointers directly for speed (rather than
|
||
// using a `for` loop with `range` and `.offset` inside
|
||
// that loop).
|
||
unsafe {
|
||
// the end of the first run & start of the
|
||
// second. Offset of `len` is defined, since this is
|
||
// precisely one byte past the end of the object.
|
||
let right_start = buf_dat.offset(cmp::min(start + width, len) as int);
|
||
// end of the second. Similar reasoning to the above re safety.
|
||
let right_end_idx = cmp::min(start + 2 * width, len);
|
||
let right_end = buf_dat.offset(right_end_idx as int);
|
||
|
||
// the pointers to the elements under consideration
|
||
// from the two runs.
|
||
|
||
// both of these are in bounds.
|
||
let mut left = buf_dat.offset(start as int);
|
||
let mut right = right_start;
|
||
|
||
// where we're putting the results, it is a run of
|
||
// length `2*width`, so we step it once for each step
|
||
// of either `left` or `right`. `buf_tmp` has length
|
||
// `len`, so these are in bounds.
|
||
let mut out = buf_tmp.offset(start as int);
|
||
let out_end = buf_tmp.offset(right_end_idx as int);
|
||
|
||
while out < out_end {
|
||
// Either the left or the right run are exhausted,
|
||
// so just copy the remainder from the other run
|
||
// and move on; this gives a huge speed-up (order
|
||
// of 25%) for mostly sorted vectors (the best
|
||
// case).
|
||
if left == right_start {
|
||
// the number remaining in this run.
|
||
let elems = (right_end as uint - right as uint) / mem::size_of::<T>();
|
||
ptr::copy_nonoverlapping_memory(out, right, elems);
|
||
break;
|
||
} else if right == right_end {
|
||
let elems = (right_start as uint - left as uint) / mem::size_of::<T>();
|
||
ptr::copy_nonoverlapping_memory(out, left, elems);
|
||
break;
|
||
}
|
||
|
||
// check which side is smaller, and that's the
|
||
// next element for the new run.
|
||
|
||
// `left < right_start` and `right < right_end`,
|
||
// so these are valid.
|
||
let to_copy = if compare(&*left, &*right) == Greater {
|
||
step(&mut right)
|
||
} else {
|
||
step(&mut left)
|
||
};
|
||
ptr::copy_nonoverlapping_memory(out, to_copy, 1);
|
||
step(&mut out);
|
||
}
|
||
}
|
||
}
|
||
|
||
util::swap(&mut buf_dat, &mut buf_tmp);
|
||
|
||
width *= 2;
|
||
}
|
||
|
||
// write the result to `v` in one go, so that there are never two copies
|
||
// of the same object in `v`.
|
||
unsafe {
|
||
ptr::copy_nonoverlapping_memory(v.as_mut_ptr(), buf_dat, len);
|
||
}
|
||
|
||
// increment the pointer, returning the old pointer.
|
||
#[inline(always)]
|
||
unsafe fn step<T>(ptr: &mut *mut T) -> *mut T {
|
||
let old = *ptr;
|
||
*ptr = ptr.offset(1);
|
||
old
|
||
}
|
||
}
|
||
|
||
/// Extension methods for vectors such that their elements are
|
||
/// mutable.
|
||
pub trait MutableVector<'a, T> {
|
||
/// Work with `self` as a mut slice.
|
||
/// Primarily intended for getting a &mut [T] from a [T, ..N].
|
||
fn as_mut_slice(self) -> &'a mut [T];
|
||
|
||
/// Return a slice that points into another slice.
|
||
fn mut_slice(self, start: uint, end: uint) -> &'a mut [T];
|
||
|
||
/**
|
||
* Returns a slice of self from `start` to the end of the vec.
|
||
*
|
||
* Fails when `start` points outside the bounds of self.
|
||
*/
|
||
fn mut_slice_from(self, start: uint) -> &'a mut [T];
|
||
|
||
/**
|
||
* Returns a slice of self from the start of the vec to `end`.
|
||
*
|
||
* Fails when `end` points outside the bounds of self.
|
||
*/
|
||
fn mut_slice_to(self, end: uint) -> &'a mut [T];
|
||
|
||
/// Returns an iterator that allows modifying each value
|
||
fn mut_iter(self) -> VecMutIterator<'a, T>;
|
||
|
||
/// Returns a reversed iterator that allows modifying each value
|
||
fn mut_rev_iter(self) -> MutRevIterator<'a, T>;
|
||
|
||
/// Returns an iterator over the mutable subslices of the vector
|
||
/// which are separated by elements that match `pred`. The
|
||
/// matched element is not contained in the subslices.
|
||
fn mut_split(self, pred: 'a |&T| -> bool) -> MutSplitIterator<'a, T>;
|
||
|
||
/**
|
||
* Returns an iterator over `size` elements of the vector at a time.
|
||
* The chunks are mutable and do not overlap. If `size` does not divide the
|
||
* length of the vector, then the last chunk will not have length
|
||
* `size`.
|
||
*
|
||
* # Failure
|
||
*
|
||
* Fails if `size` is 0.
|
||
*/
|
||
fn mut_chunks(self, chunk_size: uint) -> MutChunkIter<'a, T>;
|
||
|
||
/**
|
||
* Returns a mutable reference to the first element in this slice
|
||
* and adjusts the slice in place so that it no longer contains
|
||
* that element. O(1).
|
||
*
|
||
* Equivalent to:
|
||
*
|
||
* ```
|
||
* let head = &mut self[0];
|
||
* *self = self.mut_slice_from(1);
|
||
* head
|
||
* ```
|
||
*
|
||
* Fails if slice is empty.
|
||
*/
|
||
fn mut_shift_ref(&mut self) -> &'a mut T;
|
||
|
||
/**
|
||
* Returns a mutable reference to the last element in this slice
|
||
* and adjusts the slice in place so that it no longer contains
|
||
* that element. O(1).
|
||
*
|
||
* Equivalent to:
|
||
*
|
||
* ```
|
||
* let tail = &mut self[self.len() - 1];
|
||
* *self = self.mut_slice_to(self.len() - 1);
|
||
* tail
|
||
* ```
|
||
*
|
||
* Fails if slice is empty.
|
||
*/
|
||
fn mut_pop_ref(&mut self) -> &'a mut T;
|
||
|
||
/// Swaps two elements in a vector.
|
||
///
|
||
/// Fails if `a` or `b` are out of bounds.
|
||
///
|
||
/// # Arguments
|
||
///
|
||
/// * a - The index of the first element
|
||
/// * b - The index of the second element
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```rust
|
||
/// let mut v = ["a", "b", "c", "d"];
|
||
/// v.swap(1, 3);
|
||
/// assert_eq!(v, ["a", "d", "c", "b"]);
|
||
/// ```
|
||
fn swap(self, a: uint, b: uint);
|
||
|
||
|
||
/// Divides one `&mut` into two at an index.
|
||
///
|
||
/// The first will contain all indices from `[0, mid)` (excluding
|
||
/// the index `mid` itself) and the second will contain all
|
||
/// indices from `[mid, len)` (excluding the index `len` itself).
|
||
///
|
||
/// Fails if `mid > len`.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```rust
|
||
/// let mut v = [1, 2, 3, 4, 5, 6];
|
||
///
|
||
/// // scoped to restrict the lifetime of the borrows
|
||
/// {
|
||
/// let (left, right) = v.mut_split_at(0);
|
||
/// assert_eq!(left, &mut []);
|
||
/// assert_eq!(right, &mut [1, 2, 3, 4, 5, 6]);
|
||
/// }
|
||
///
|
||
/// {
|
||
/// let (left, right) = v.mut_split_at(2);
|
||
/// assert_eq!(left, &mut [1, 2]);
|
||
/// assert_eq!(right, &mut [3, 4, 5, 6]);
|
||
/// }
|
||
///
|
||
/// {
|
||
/// let (left, right) = v.mut_split_at(6);
|
||
/// assert_eq!(left, &mut [1, 2, 3, 4, 5, 6]);
|
||
/// assert_eq!(right, &mut []);
|
||
/// }
|
||
/// ```
|
||
fn mut_split_at(self, mid: uint) -> (&'a mut [T],
|
||
&'a mut [T]);
|
||
|
||
/// Reverse the order of elements in a vector, in place.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```rust
|
||
/// let mut v = [1, 2, 3];
|
||
/// v.reverse();
|
||
/// assert_eq!(v, [3, 2, 1]);
|
||
/// ```
|
||
fn reverse(self);
|
||
|
||
/// Sort the vector, in place, using `compare` to compare
|
||
/// elements.
|
||
///
|
||
/// This sort is `O(n log n)` worst-case and stable, but allocates
|
||
/// approximately `2 * n`, where `n` is the length of `self`.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```rust
|
||
/// let mut v = [5i, 4, 1, 3, 2];
|
||
/// v.sort_by(|a, b| a.cmp(b));
|
||
/// assert_eq!(v, [1, 2, 3, 4, 5]);
|
||
///
|
||
/// // reverse sorting
|
||
/// v.sort_by(|a, b| b.cmp(a));
|
||
/// assert_eq!(v, [5, 4, 3, 2, 1]);
|
||
/// ```
|
||
fn sort_by(self, compare: |&T, &T| -> Ordering);
|
||
|
||
/**
|
||
* Consumes `src` and moves as many elements as it can into `self`
|
||
* from the range [start,end).
|
||
*
|
||
* Returns the number of elements copied (the shorter of self.len()
|
||
* and end - start).
|
||
*
|
||
* # Arguments
|
||
*
|
||
* * src - A mutable vector of `T`
|
||
* * start - The index into `src` to start copying from
|
||
* * end - The index into `str` to stop copying from
|
||
*/
|
||
fn move_from(self, src: ~[T], start: uint, end: uint) -> uint;
|
||
|
||
/// Returns an unsafe mutable pointer to the element in index
|
||
unsafe fn unsafe_mut_ref(self, index: uint) -> *mut T;
|
||
|
||
/// Return an unsafe mutable pointer to the vector's buffer.
|
||
///
|
||
/// The caller must ensure that the vector outlives the pointer this
|
||
/// function returns, or else it will end up pointing to garbage.
|
||
///
|
||
/// Modifying the vector may cause its buffer to be reallocated, which
|
||
/// would also make any pointers to it invalid.
|
||
#[inline]
|
||
fn as_mut_ptr(self) -> *mut T;
|
||
|
||
/// Unsafely sets the element in index to the value.
|
||
///
|
||
/// This performs no bounds checks, and it is undefined behaviour
|
||
/// if `index` is larger than the length of `self`. However, it
|
||
/// does run the destructor at `index`. It is equivalent to
|
||
/// `self[index] = val`.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```rust
|
||
/// let mut v = ~[~"foo", ~"bar", ~"baz"];
|
||
///
|
||
/// unsafe {
|
||
/// // `~"baz"` is deallocated.
|
||
/// v.unsafe_set(2, ~"qux");
|
||
///
|
||
/// // Out of bounds: could cause a crash, or overwriting
|
||
/// // other data, or something else.
|
||
/// // v.unsafe_set(10, ~"oops");
|
||
/// }
|
||
/// ```
|
||
unsafe fn unsafe_set(self, index: uint, val: T);
|
||
|
||
/// Unchecked vector index assignment. Does not drop the
|
||
/// old value and hence is only suitable when the vector
|
||
/// is newly allocated.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```rust
|
||
/// let mut v = [~"foo", ~"bar"];
|
||
///
|
||
/// // memory leak! `~"bar"` is not deallocated.
|
||
/// unsafe { v.init_elem(1, ~"baz"); }
|
||
/// ```
|
||
unsafe fn init_elem(self, i: uint, val: T);
|
||
|
||
/// Copies raw bytes from `src` to `self`.
|
||
///
|
||
/// This does not run destructors on the overwritten elements, and
|
||
/// ignores move semantics. `self` and `src` must not
|
||
/// overlap. Fails if `self` is shorter than `src`.
|
||
unsafe fn copy_memory(self, src: &[T]);
|
||
}
|
||
|
||
impl<'a,T> MutableVector<'a, T> for &'a mut [T] {
|
||
#[inline]
|
||
fn as_mut_slice(self) -> &'a mut [T] { self }
|
||
|
||
fn mut_slice(self, start: uint, end: uint) -> &'a mut [T] {
|
||
assert!(start <= end);
|
||
assert!(end <= self.len());
|
||
unsafe {
|
||
cast::transmute(Slice {
|
||
data: self.as_mut_ptr().offset(start as int) as *T,
|
||
len: (end - start)
|
||
})
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn mut_slice_from(self, start: uint) -> &'a mut [T] {
|
||
let len = self.len();
|
||
self.mut_slice(start, len)
|
||
}
|
||
|
||
#[inline]
|
||
fn mut_slice_to(self, end: uint) -> &'a mut [T] {
|
||
self.mut_slice(0, end)
|
||
}
|
||
|
||
#[inline]
|
||
fn mut_split_at(self, mid: uint) -> (&'a mut [T], &'a mut [T]) {
|
||
unsafe {
|
||
let len = self.len();
|
||
let self2: &'a mut [T] = cast::transmute_copy(&self);
|
||
(self.mut_slice(0, mid), self2.mut_slice(mid, len))
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn mut_iter(self) -> VecMutIterator<'a, T> {
|
||
unsafe {
|
||
let p = self.as_mut_ptr();
|
||
if mem::size_of::<T>() == 0 {
|
||
VecMutIterator{ptr: p,
|
||
end: (p as uint + self.len()) as *mut T,
|
||
lifetime: None}
|
||
} else {
|
||
VecMutIterator{ptr: p,
|
||
end: p.offset(self.len() as int),
|
||
lifetime: None}
|
||
}
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn mut_rev_iter(self) -> MutRevIterator<'a, T> {
|
||
self.mut_iter().invert()
|
||
}
|
||
|
||
#[inline]
|
||
fn mut_split(self, pred: 'a |&T| -> bool) -> MutSplitIterator<'a, T> {
|
||
MutSplitIterator { v: self, pred: pred, finished: false }
|
||
}
|
||
|
||
#[inline]
|
||
fn mut_chunks(self, chunk_size: uint) -> MutChunkIter<'a, T> {
|
||
assert!(chunk_size > 0);
|
||
MutChunkIter { v: self, chunk_size: chunk_size }
|
||
}
|
||
|
||
fn mut_shift_ref(&mut self) -> &'a mut T {
|
||
unsafe {
|
||
let s: &mut Slice<T> = cast::transmute(self);
|
||
cast::transmute_mut(&*raw::shift_ptr(s))
|
||
}
|
||
}
|
||
|
||
fn mut_pop_ref(&mut self) -> &'a mut T {
|
||
unsafe {
|
||
let s: &mut Slice<T> = cast::transmute(self);
|
||
cast::transmute_mut(&*raw::pop_ptr(s))
|
||
}
|
||
}
|
||
|
||
fn swap(self, a: uint, b: uint) {
|
||
unsafe {
|
||
// Can't take two mutable loans from one vector, so instead just cast
|
||
// them to their raw pointers to do the swap
|
||
let pa: *mut T = &mut self[a];
|
||
let pb: *mut T = &mut self[b];
|
||
ptr::swap_ptr(pa, pb);
|
||
}
|
||
}
|
||
|
||
fn reverse(self) {
|
||
let mut i: uint = 0;
|
||
let ln = self.len();
|
||
while i < ln / 2 {
|
||
self.swap(i, ln - i - 1);
|
||
i += 1;
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn sort_by(self, compare: |&T, &T| -> Ordering) {
|
||
merge_sort(self, compare)
|
||
}
|
||
|
||
#[inline]
|
||
fn move_from(self, mut src: ~[T], start: uint, end: uint) -> uint {
|
||
for (a, b) in self.mut_iter().zip(src.mut_slice(start, end).mut_iter()) {
|
||
util::swap(a, b);
|
||
}
|
||
cmp::min(self.len(), end-start)
|
||
}
|
||
|
||
#[inline]
|
||
unsafe fn unsafe_mut_ref(self, index: uint) -> *mut T {
|
||
ptr::mut_offset(self.repr().data as *mut T, index as int)
|
||
}
|
||
|
||
#[inline]
|
||
fn as_mut_ptr(self) -> *mut T {
|
||
self.repr().data as *mut T
|
||
}
|
||
|
||
#[inline]
|
||
unsafe fn unsafe_set(self, index: uint, val: T) {
|
||
*self.unsafe_mut_ref(index) = val;
|
||
}
|
||
|
||
#[inline]
|
||
unsafe fn init_elem(self, i: uint, val: T) {
|
||
intrinsics::move_val_init(&mut (*self.as_mut_ptr().offset(i as int)), val);
|
||
}
|
||
|
||
#[inline]
|
||
unsafe fn copy_memory(self, src: &[T]) {
|
||
let len_src = src.len();
|
||
assert!(self.len() >= len_src);
|
||
ptr::copy_nonoverlapping_memory(self.as_mut_ptr(), src.as_ptr(), len_src)
|
||
}
|
||
}
|
||
|
||
/// Trait for &[T] where T is Cloneable
|
||
pub trait MutableCloneableVector<T> {
|
||
/// Copies as many elements from `src` as it can into `self` (the
|
||
/// shorter of `self.len()` and `src.len()`). Returns the number
|
||
/// of elements copied.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```rust
|
||
/// use std::vec::MutableCloneableVector;
|
||
///
|
||
/// let mut dst = [0, 0, 0];
|
||
/// let src = [1, 2];
|
||
///
|
||
/// assert_eq!(dst.copy_from(src), 2);
|
||
/// assert_eq!(dst, [1, 2, 0]);
|
||
///
|
||
/// let src2 = [3, 4, 5, 6];
|
||
/// assert_eq!(dst.copy_from(src2), 3);
|
||
/// assert_eq!(dst, [3, 4, 5]);
|
||
/// ```
|
||
fn copy_from(self, &[T]) -> uint;
|
||
}
|
||
|
||
impl<'a, T:Clone> MutableCloneableVector<T> for &'a mut [T] {
|
||
#[inline]
|
||
fn copy_from(self, src: &[T]) -> uint {
|
||
for (a, b) in self.mut_iter().zip(src.iter()) {
|
||
a.clone_from(b);
|
||
}
|
||
cmp::min(self.len(), src.len())
|
||
}
|
||
}
|
||
|
||
/// Methods for mutable vectors with orderable elements, such as
|
||
/// in-place sorting.
|
||
pub trait MutableTotalOrdVector<T> {
|
||
/// Sort the vector, in place.
|
||
///
|
||
/// This is equivalent to `self.sort_by(|a, b| a.cmp(b))`.
|
||
///
|
||
/// # Example
|
||
///
|
||
/// ```rust
|
||
/// let mut v = [-5, 4, 1, -3, 2];
|
||
///
|
||
/// v.sort();
|
||
/// assert_eq!(v, [-5, -3, 1, 2, 4]);
|
||
/// ```
|
||
fn sort(self);
|
||
}
|
||
impl<'a, T: TotalOrd> MutableTotalOrdVector<T> for &'a mut [T] {
|
||
#[inline]
|
||
fn sort(self) {
|
||
self.sort_by(|a,b| a.cmp(b))
|
||
}
|
||
}
|
||
|
||
/**
|
||
* Constructs a vector from an unsafe pointer to a buffer
|
||
*
|
||
* # Arguments
|
||
*
|
||
* * ptr - An unsafe pointer to a buffer of `T`
|
||
* * elts - The number of elements in the buffer
|
||
*/
|
||
// Wrapper for fn in raw: needs to be called by net_tcp::on_tcp_read_cb
|
||
pub unsafe fn from_buf<T>(ptr: *T, elts: uint) -> ~[T] {
|
||
raw::from_buf_raw(ptr, elts)
|
||
}
|
||
|
||
/// Unsafe operations
|
||
pub mod raw {
|
||
use cast;
|
||
use ptr;
|
||
use vec::{with_capacity, MutableVector};
|
||
use unstable::raw::Slice;
|
||
|
||
/**
|
||
* Form a slice from a pointer and length (as a number of units,
|
||
* not bytes).
|
||
*/
|
||
#[inline]
|
||
pub unsafe fn buf_as_slice<T,U>(p: *T, len: uint, f: |v: &[T]| -> U)
|
||
-> U {
|
||
f(cast::transmute(Slice {
|
||
data: p,
|
||
len: len
|
||
}))
|
||
}
|
||
|
||
/**
|
||
* Form a slice from a pointer and length (as a number of units,
|
||
* not bytes).
|
||
*/
|
||
#[inline]
|
||
pub unsafe fn mut_buf_as_slice<T,
|
||
U>(
|
||
p: *mut T,
|
||
len: uint,
|
||
f: |v: &mut [T]| -> U)
|
||
-> U {
|
||
f(cast::transmute(Slice {
|
||
data: p as *T,
|
||
len: len
|
||
}))
|
||
}
|
||
|
||
/**
|
||
* Constructs a vector from an unsafe pointer to a buffer
|
||
*
|
||
* # Arguments
|
||
*
|
||
* * ptr - An unsafe pointer to a buffer of `T`
|
||
* * elts - The number of elements in the buffer
|
||
*/
|
||
// Was in raw, but needs to be called by net_tcp::on_tcp_read_cb
|
||
#[inline]
|
||
pub unsafe fn from_buf_raw<T>(ptr: *T, elts: uint) -> ~[T] {
|
||
let mut dst = with_capacity(elts);
|
||
dst.set_len(elts);
|
||
ptr::copy_memory(dst.as_mut_ptr(), ptr, elts);
|
||
dst
|
||
}
|
||
|
||
/**
|
||
* Returns a pointer to first element in slice and adjusts
|
||
* slice so it no longer contains that element. Fails if
|
||
* slice is empty. O(1).
|
||
*/
|
||
pub unsafe fn shift_ptr<T>(slice: &mut Slice<T>) -> *T {
|
||
if slice.len == 0 { fail!("shift on empty slice"); }
|
||
let head: *T = slice.data;
|
||
slice.data = ptr::offset(slice.data, 1);
|
||
slice.len -= 1;
|
||
head
|
||
}
|
||
|
||
/**
|
||
* Returns a pointer to last element in slice and adjusts
|
||
* slice so it no longer contains that element. Fails if
|
||
* slice is empty. O(1).
|
||
*/
|
||
pub unsafe fn pop_ptr<T>(slice: &mut Slice<T>) -> *T {
|
||
if slice.len == 0 { fail!("pop on empty slice"); }
|
||
let tail: *T = ptr::offset(slice.data, (slice.len - 1) as int);
|
||
slice.len -= 1;
|
||
tail
|
||
}
|
||
}
|
||
|
||
/// Operations on `[u8]`.
|
||
pub mod bytes {
|
||
use container::Container;
|
||
use vec::MutableVector;
|
||
use ptr;
|
||
|
||
/// A trait for operations on mutable `[u8]`s.
|
||
pub trait MutableByteVector {
|
||
/// Sets all bytes of the receiver to the given value.
|
||
fn set_memory(self, value: u8);
|
||
}
|
||
|
||
impl<'a> MutableByteVector for &'a mut [u8] {
|
||
#[inline]
|
||
fn set_memory(self, value: u8) {
|
||
unsafe { ptr::set_memory(self.as_mut_ptr(), value, self.len()) };
|
||
}
|
||
}
|
||
|
||
/// Copies data from `src` to `dst`
|
||
///
|
||
/// `src` and `dst` must not overlap. Fails if the length of `dst`
|
||
/// is less than the length of `src`.
|
||
#[inline]
|
||
pub fn copy_memory(dst: &mut [u8], src: &[u8]) {
|
||
// Bound checks are done at .copy_memory.
|
||
unsafe { dst.copy_memory(src) }
|
||
}
|
||
|
||
/**
|
||
* Allocate space in `dst` and append the data to `src`.
|
||
*/
|
||
#[inline]
|
||
pub fn push_bytes(dst: &mut ~[u8], src: &[u8]) {
|
||
let old_len = dst.len();
|
||
dst.reserve_additional(src.len());
|
||
unsafe {
|
||
ptr::copy_memory(dst.as_mut_ptr().offset(old_len as int), src.as_ptr(), src.len());
|
||
dst.set_len(old_len + src.len());
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<A: Clone> Clone for ~[A] {
|
||
#[inline]
|
||
fn clone(&self) -> ~[A] {
|
||
self.iter().map(|item| item.clone()).collect()
|
||
}
|
||
|
||
fn clone_from(&mut self, source: &~[A]) {
|
||
if self.len() < source.len() {
|
||
*self = source.clone()
|
||
} else {
|
||
self.truncate(source.len());
|
||
for (x, y) in self.mut_iter().zip(source.iter()) {
|
||
x.clone_from(y);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<A: DeepClone> DeepClone for ~[A] {
|
||
#[inline]
|
||
fn deep_clone(&self) -> ~[A] {
|
||
self.iter().map(|item| item.deep_clone()).collect()
|
||
}
|
||
|
||
fn deep_clone_from(&mut self, source: &~[A]) {
|
||
if self.len() < source.len() {
|
||
*self = source.deep_clone()
|
||
} else {
|
||
self.truncate(source.len());
|
||
for (x, y) in self.mut_iter().zip(source.iter()) {
|
||
x.deep_clone_from(y);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
// This works because every lifetime is a sub-lifetime of 'static
|
||
impl<'a, A> Default for &'a [A] {
|
||
fn default() -> &'a [A] { &'a [] }
|
||
}
|
||
|
||
impl<A> Default for ~[A] {
|
||
fn default() -> ~[A] { ~[] }
|
||
}
|
||
|
||
impl<A> Default for @[A] {
|
||
fn default() -> @[A] { @[] }
|
||
}
|
||
|
||
macro_rules! iterator {
|
||
(struct $name:ident -> $ptr:ty, $elem:ty) => {
|
||
/// An iterator for iterating over a vector.
|
||
pub struct $name<'a, T> {
|
||
priv ptr: $ptr,
|
||
priv end: $ptr,
|
||
priv lifetime: Option<$elem> // FIXME: #5922
|
||
}
|
||
|
||
impl<'a, T> Iterator<$elem> for $name<'a, T> {
|
||
#[inline]
|
||
fn next(&mut self) -> Option<$elem> {
|
||
// could be implemented with slices, but this avoids bounds checks
|
||
unsafe {
|
||
if self.ptr == self.end {
|
||
None
|
||
} else {
|
||
let old = self.ptr;
|
||
self.ptr = if mem::size_of::<T>() == 0 {
|
||
// purposefully don't use 'ptr.offset' because for
|
||
// vectors with 0-size elements this would return the
|
||
// same pointer.
|
||
cast::transmute(self.ptr as uint + 1)
|
||
} else {
|
||
self.ptr.offset(1)
|
||
};
|
||
|
||
Some(cast::transmute(old))
|
||
}
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (uint, Option<uint>) {
|
||
let diff = (self.end as uint) - (self.ptr as uint);
|
||
let exact = diff / mem::nonzero_size_of::<T>();
|
||
(exact, Some(exact))
|
||
}
|
||
}
|
||
|
||
impl<'a, T> DoubleEndedIterator<$elem> for $name<'a, T> {
|
||
#[inline]
|
||
fn next_back(&mut self) -> Option<$elem> {
|
||
// could be implemented with slices, but this avoids bounds checks
|
||
unsafe {
|
||
if self.end == self.ptr {
|
||
None
|
||
} else {
|
||
self.end = if mem::size_of::<T>() == 0 {
|
||
// See above for why 'ptr.offset' isn't used
|
||
cast::transmute(self.end as uint - 1)
|
||
} else {
|
||
self.end.offset(-1)
|
||
};
|
||
Some(cast::transmute(self.end))
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<'a, T> RandomAccessIterator<&'a T> for VecIterator<'a, T> {
|
||
#[inline]
|
||
fn indexable(&self) -> uint {
|
||
let (exact, _) = self.size_hint();
|
||
exact
|
||
}
|
||
|
||
#[inline]
|
||
fn idx(&self, index: uint) -> Option<&'a T> {
|
||
unsafe {
|
||
if index < self.indexable() {
|
||
cast::transmute(self.ptr.offset(index as int))
|
||
} else {
|
||
None
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
iterator!{struct VecIterator -> *T, &'a T}
|
||
pub type RevIterator<'a, T> = Invert<VecIterator<'a, T>>;
|
||
|
||
impl<'a, T> ExactSize<&'a T> for VecIterator<'a, T> {}
|
||
impl<'a, T> ExactSize<&'a mut T> for VecMutIterator<'a, T> {}
|
||
|
||
impl<'a, T> Clone for VecIterator<'a, T> {
|
||
fn clone(&self) -> VecIterator<'a, T> { *self }
|
||
}
|
||
|
||
iterator!{struct VecMutIterator -> *mut T, &'a mut T}
|
||
pub type MutRevIterator<'a, T> = Invert<VecMutIterator<'a, T>>;
|
||
|
||
/// An iterator over the subslices of the vector which are separated
|
||
/// by elements that match `pred`.
|
||
pub struct MutSplitIterator<'a, T> {
|
||
priv v: &'a mut [T],
|
||
priv pred: 'a |t: &T| -> bool,
|
||
priv finished: bool
|
||
}
|
||
|
||
impl<'a, T> Iterator<&'a mut [T]> for MutSplitIterator<'a, T> {
|
||
#[inline]
|
||
fn next(&mut self) -> Option<&'a mut [T]> {
|
||
if self.finished { return None; }
|
||
|
||
match self.v.iter().position(|x| (self.pred)(x)) {
|
||
None => {
|
||
self.finished = true;
|
||
let tmp = util::replace(&mut self.v, &mut []);
|
||
let len = tmp.len();
|
||
let (head, tail) = tmp.mut_split_at(len);
|
||
self.v = tail;
|
||
Some(head)
|
||
}
|
||
Some(idx) => {
|
||
let tmp = util::replace(&mut self.v, &mut []);
|
||
let (head, tail) = tmp.mut_split_at(idx);
|
||
self.v = tail.mut_slice_from(1);
|
||
Some(head)
|
||
}
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (uint, Option<uint>) {
|
||
if self.finished {
|
||
(0, Some(0))
|
||
} else {
|
||
// if the predicate doesn't match anything, we yield one slice
|
||
// if it matches every element, we yield len+1 empty slices.
|
||
(1, Some(self.v.len() + 1))
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<'a, T> DoubleEndedIterator<&'a mut [T]> for MutSplitIterator<'a, T> {
|
||
#[inline]
|
||
fn next_back(&mut self) -> Option<&'a mut [T]> {
|
||
if self.finished { return None; }
|
||
|
||
match self.v.iter().rposition(|x| (self.pred)(x)) {
|
||
None => {
|
||
self.finished = true;
|
||
let tmp = util::replace(&mut self.v, &mut []);
|
||
Some(tmp)
|
||
}
|
||
Some(idx) => {
|
||
let tmp = util::replace(&mut self.v, &mut []);
|
||
let (head, tail) = tmp.mut_split_at(idx);
|
||
self.v = head;
|
||
Some(tail.mut_slice_from(1))
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/// An iterator over a vector in (non-overlapping) mutable chunks (`size` elements at a time). When
|
||
/// the vector len is not evenly divided by the chunk size, the last slice of the iteration will be
|
||
/// the remainder.
|
||
pub struct MutChunkIter<'a, T> {
|
||
priv v: &'a mut [T],
|
||
priv chunk_size: uint
|
||
}
|
||
|
||
impl<'a, T> Iterator<&'a mut [T]> for MutChunkIter<'a, T> {
|
||
#[inline]
|
||
fn next(&mut self) -> Option<&'a mut [T]> {
|
||
if self.v.len() == 0 {
|
||
None
|
||
} else {
|
||
let sz = cmp::min(self.v.len(), self.chunk_size);
|
||
let tmp = util::replace(&mut self.v, &mut []);
|
||
let (head, tail) = tmp.mut_split_at(sz);
|
||
self.v = tail;
|
||
Some(head)
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (uint, Option<uint>) {
|
||
if self.v.len() == 0 {
|
||
(0, Some(0))
|
||
} else {
|
||
let (n, rem) = self.v.len().div_rem(&self.chunk_size);
|
||
let n = if rem > 0 { n + 1 } else { n };
|
||
(n, Some(n))
|
||
}
|
||
}
|
||
}
|
||
|
||
impl<'a, T> DoubleEndedIterator<&'a mut [T]> for MutChunkIter<'a, T> {
|
||
#[inline]
|
||
fn next_back(&mut self) -> Option<&'a mut [T]> {
|
||
if self.v.len() == 0 {
|
||
None
|
||
} else {
|
||
let remainder = self.v.len() % self.chunk_size;
|
||
let sz = if remainder != 0 { remainder } else { self.chunk_size };
|
||
let tmp = util::replace(&mut self.v, &mut []);
|
||
let tmp_len = tmp.len();
|
||
let (head, tail) = tmp.mut_split_at(tmp_len - sz);
|
||
self.v = head;
|
||
Some(tail)
|
||
}
|
||
}
|
||
}
|
||
|
||
/// An iterator that moves out of a vector.
|
||
pub struct MoveIterator<T> {
|
||
priv allocation: *mut u8, // the block of memory allocated for the vector
|
||
priv iter: VecIterator<'static, T>
|
||
}
|
||
|
||
impl<T> Iterator<T> for MoveIterator<T> {
|
||
#[inline]
|
||
fn next(&mut self) -> Option<T> {
|
||
unsafe {
|
||
self.iter.next().map(|x| ptr::read_ptr(x))
|
||
}
|
||
}
|
||
|
||
#[inline]
|
||
fn size_hint(&self) -> (uint, Option<uint>) {
|
||
self.iter.size_hint()
|
||
}
|
||
}
|
||
|
||
impl<T> DoubleEndedIterator<T> for MoveIterator<T> {
|
||
#[inline]
|
||
fn next_back(&mut self) -> Option<T> {
|
||
unsafe {
|
||
self.iter.next_back().map(|x| ptr::read_ptr(x))
|
||
}
|
||
}
|
||
}
|
||
|
||
#[unsafe_destructor]
|
||
impl<T> Drop for MoveIterator<T> {
|
||
fn drop(&mut self) {
|
||
// destroy the remaining elements
|
||
for _x in *self {}
|
||
unsafe {
|
||
if owns_managed::<T>() {
|
||
local_free(self.allocation as *u8 as *c_char)
|
||
} else {
|
||
exchange_free(self.allocation as *u8 as *c_char)
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/// An iterator that moves out of a vector in reverse order.
|
||
pub type MoveRevIterator<T> = Invert<MoveIterator<T>>;
|
||
|
||
impl<A> FromIterator<A> for ~[A] {
|
||
fn from_iterator<T: Iterator<A>>(iterator: &mut T) -> ~[A] {
|
||
let (lower, _) = iterator.size_hint();
|
||
let mut xs = with_capacity(lower);
|
||
for x in *iterator {
|
||
xs.push(x);
|
||
}
|
||
xs
|
||
}
|
||
}
|
||
|
||
impl<A> Extendable<A> for ~[A] {
|
||
fn extend<T: Iterator<A>>(&mut self, iterator: &mut T) {
|
||
let (lower, _) = iterator.size_hint();
|
||
let len = self.len();
|
||
self.reserve(len + lower);
|
||
for x in *iterator {
|
||
self.push(x);
|
||
}
|
||
}
|
||
}
|
||
|
||
#[cfg(test)]
|
||
mod tests {
|
||
use mem;
|
||
use vec::*;
|
||
use cmp::*;
|
||
use prelude::*;
|
||
use rand::{Rng, task_rng};
|
||
|
||
fn square(n: uint) -> uint { n * n }
|
||
|
||
fn square_ref(n: &uint) -> uint { square(*n) }
|
||
|
||
fn is_odd(n: &uint) -> bool { *n % 2u == 1u }
|
||
|
||
#[test]
|
||
fn test_unsafe_ptrs() {
|
||
unsafe {
|
||
// Test on-stack copy-from-buf.
|
||
let a = ~[1, 2, 3];
|
||
let mut ptr = a.as_ptr();
|
||
let b = from_buf(ptr, 3u);
|
||
assert_eq!(b.len(), 3u);
|
||
assert_eq!(b[0], 1);
|
||
assert_eq!(b[1], 2);
|
||
assert_eq!(b[2], 3);
|
||
|
||
// Test on-heap copy-from-buf.
|
||
let c = ~[1, 2, 3, 4, 5];
|
||
ptr = c.as_ptr();
|
||
let d = from_buf(ptr, 5u);
|
||
assert_eq!(d.len(), 5u);
|
||
assert_eq!(d[0], 1);
|
||
assert_eq!(d[1], 2);
|
||
assert_eq!(d[2], 3);
|
||
assert_eq!(d[3], 4);
|
||
assert_eq!(d[4], 5);
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn test_from_fn() {
|
||
// Test on-stack from_fn.
|
||
let mut v = from_fn(3u, square);
|
||
assert_eq!(v.len(), 3u);
|
||
assert_eq!(v[0], 0u);
|
||
assert_eq!(v[1], 1u);
|
||
assert_eq!(v[2], 4u);
|
||
|
||
// Test on-heap from_fn.
|
||
v = from_fn(5u, square);
|
||
assert_eq!(v.len(), 5u);
|
||
assert_eq!(v[0], 0u);
|
||
assert_eq!(v[1], 1u);
|
||
assert_eq!(v[2], 4u);
|
||
assert_eq!(v[3], 9u);
|
||
assert_eq!(v[4], 16u);
|
||
}
|
||
|
||
#[test]
|
||
fn test_from_elem() {
|
||
// Test on-stack from_elem.
|
||
let mut v = from_elem(2u, 10u);
|
||
assert_eq!(v.len(), 2u);
|
||
assert_eq!(v[0], 10u);
|
||
assert_eq!(v[1], 10u);
|
||
|
||
// Test on-heap from_elem.
|
||
v = from_elem(6u, 20u);
|
||
assert_eq!(v[0], 20u);
|
||
assert_eq!(v[1], 20u);
|
||
assert_eq!(v[2], 20u);
|
||
assert_eq!(v[3], 20u);
|
||
assert_eq!(v[4], 20u);
|
||
assert_eq!(v[5], 20u);
|
||
}
|
||
|
||
#[test]
|
||
fn test_is_empty() {
|
||
let xs: [int, ..0] = [];
|
||
assert!(xs.is_empty());
|
||
assert!(![0].is_empty());
|
||
}
|
||
|
||
#[test]
|
||
fn test_len_divzero() {
|
||
type Z = [i8, ..0];
|
||
let v0 : &[Z] = &[];
|
||
let v1 : &[Z] = &[[]];
|
||
let v2 : &[Z] = &[[], []];
|
||
assert_eq!(mem::size_of::<Z>(), 0);
|
||
assert_eq!(v0.len(), 0);
|
||
assert_eq!(v1.len(), 1);
|
||
assert_eq!(v2.len(), 2);
|
||
}
|
||
|
||
#[test]
|
||
fn test_get_opt() {
|
||
let mut a = ~[11];
|
||
assert_eq!(a.get_opt(1), None);
|
||
a = ~[11, 12];
|
||
assert_eq!(a.get_opt(1).unwrap(), &12);
|
||
a = ~[11, 12, 13];
|
||
assert_eq!(a.get_opt(1).unwrap(), &12);
|
||
}
|
||
|
||
#[test]
|
||
fn test_head() {
|
||
let mut a = ~[11];
|
||
assert_eq!(a.head(), &11);
|
||
a = ~[11, 12];
|
||
assert_eq!(a.head(), &11);
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_head_empty() {
|
||
let a: ~[int] = ~[];
|
||
a.head();
|
||
}
|
||
|
||
#[test]
|
||
fn test_head_opt() {
|
||
let mut a = ~[];
|
||
assert_eq!(a.head_opt(), None);
|
||
a = ~[11];
|
||
assert_eq!(a.head_opt().unwrap(), &11);
|
||
a = ~[11, 12];
|
||
assert_eq!(a.head_opt().unwrap(), &11);
|
||
}
|
||
|
||
#[test]
|
||
fn test_tail() {
|
||
let mut a = ~[11];
|
||
assert_eq!(a.tail(), &[]);
|
||
a = ~[11, 12];
|
||
assert_eq!(a.tail(), &[12]);
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_tail_empty() {
|
||
let a: ~[int] = ~[];
|
||
a.tail();
|
||
}
|
||
|
||
#[test]
|
||
fn test_tailn() {
|
||
let mut a = ~[11, 12, 13];
|
||
assert_eq!(a.tailn(0), &[11, 12, 13]);
|
||
a = ~[11, 12, 13];
|
||
assert_eq!(a.tailn(2), &[13]);
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_tailn_empty() {
|
||
let a: ~[int] = ~[];
|
||
a.tailn(2);
|
||
}
|
||
|
||
#[test]
|
||
fn test_init() {
|
||
let mut a = ~[11];
|
||
assert_eq!(a.init(), &[]);
|
||
a = ~[11, 12];
|
||
assert_eq!(a.init(), &[11]);
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_init_empty() {
|
||
let a: ~[int] = ~[];
|
||
a.init();
|
||
}
|
||
|
||
#[test]
|
||
fn test_initn() {
|
||
let mut a = ~[11, 12, 13];
|
||
assert_eq!(a.initn(0), &[11, 12, 13]);
|
||
a = ~[11, 12, 13];
|
||
assert_eq!(a.initn(2), &[11]);
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_initn_empty() {
|
||
let a: ~[int] = ~[];
|
||
a.initn(2);
|
||
}
|
||
|
||
#[test]
|
||
fn test_last() {
|
||
let mut a = ~[11];
|
||
assert_eq!(a.last(), &11);
|
||
a = ~[11, 12];
|
||
assert_eq!(a.last(), &12);
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_last_empty() {
|
||
let a: ~[int] = ~[];
|
||
a.last();
|
||
}
|
||
|
||
#[test]
|
||
fn test_last_opt() {
|
||
let mut a = ~[];
|
||
assert_eq!(a.last_opt(), None);
|
||
a = ~[11];
|
||
assert_eq!(a.last_opt().unwrap(), &11);
|
||
a = ~[11, 12];
|
||
assert_eq!(a.last_opt().unwrap(), &12);
|
||
}
|
||
|
||
#[test]
|
||
fn test_slice() {
|
||
// Test fixed length vector.
|
||
let vec_fixed = [1, 2, 3, 4];
|
||
let v_a = vec_fixed.slice(1u, vec_fixed.len()).to_owned();
|
||
assert_eq!(v_a.len(), 3u);
|
||
assert_eq!(v_a[0], 2);
|
||
assert_eq!(v_a[1], 3);
|
||
assert_eq!(v_a[2], 4);
|
||
|
||
// Test on stack.
|
||
let vec_stack = &[1, 2, 3];
|
||
let v_b = vec_stack.slice(1u, 3u).to_owned();
|
||
assert_eq!(v_b.len(), 2u);
|
||
assert_eq!(v_b[0], 2);
|
||
assert_eq!(v_b[1], 3);
|
||
|
||
// Test on managed heap.
|
||
let vec_managed = @[1, 2, 3, 4, 5];
|
||
let v_c = vec_managed.slice(0u, 3u).to_owned();
|
||
assert_eq!(v_c.len(), 3u);
|
||
assert_eq!(v_c[0], 1);
|
||
assert_eq!(v_c[1], 2);
|
||
assert_eq!(v_c[2], 3);
|
||
|
||
// Test on exchange heap.
|
||
let vec_unique = ~[1, 2, 3, 4, 5, 6];
|
||
let v_d = vec_unique.slice(1u, 6u).to_owned();
|
||
assert_eq!(v_d.len(), 5u);
|
||
assert_eq!(v_d[0], 2);
|
||
assert_eq!(v_d[1], 3);
|
||
assert_eq!(v_d[2], 4);
|
||
assert_eq!(v_d[3], 5);
|
||
assert_eq!(v_d[4], 6);
|
||
}
|
||
|
||
#[test]
|
||
fn test_slice_from() {
|
||
let vec = &[1, 2, 3, 4];
|
||
assert_eq!(vec.slice_from(0), vec);
|
||
assert_eq!(vec.slice_from(2), &[3, 4]);
|
||
assert_eq!(vec.slice_from(4), &[]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_slice_to() {
|
||
let vec = &[1, 2, 3, 4];
|
||
assert_eq!(vec.slice_to(4), vec);
|
||
assert_eq!(vec.slice_to(2), &[1, 2]);
|
||
assert_eq!(vec.slice_to(0), &[]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_pop() {
|
||
// Test on-heap pop.
|
||
let mut v = ~[1, 2, 3, 4, 5];
|
||
let e = v.pop();
|
||
assert_eq!(v.len(), 4u);
|
||
assert_eq!(v[0], 1);
|
||
assert_eq!(v[1], 2);
|
||
assert_eq!(v[2], 3);
|
||
assert_eq!(v[3], 4);
|
||
assert_eq!(e, 5);
|
||
}
|
||
|
||
#[test]
|
||
fn test_pop_opt() {
|
||
let mut v = ~[5];
|
||
let e = v.pop_opt();
|
||
assert_eq!(v.len(), 0);
|
||
assert_eq!(e, Some(5));
|
||
let f = v.pop_opt();
|
||
assert_eq!(f, None);
|
||
let g = v.pop_opt();
|
||
assert_eq!(g, None);
|
||
}
|
||
|
||
#[test]
|
||
fn test_swap_remove() {
|
||
let mut v = ~[1, 2, 3, 4, 5];
|
||
let mut e = v.swap_remove(0);
|
||
assert_eq!(v.len(), 4);
|
||
assert_eq!(e, 1);
|
||
assert_eq!(v[0], 5);
|
||
e = v.swap_remove(3);
|
||
assert_eq!(v.len(), 3);
|
||
assert_eq!(e, 4);
|
||
assert_eq!(v[0], 5);
|
||
assert_eq!(v[1], 2);
|
||
assert_eq!(v[2], 3);
|
||
}
|
||
|
||
#[test]
|
||
fn test_swap_remove_noncopyable() {
|
||
// Tests that we don't accidentally run destructors twice.
|
||
let mut v = ~[::unstable::sync::Exclusive::new(()),
|
||
::unstable::sync::Exclusive::new(()),
|
||
::unstable::sync::Exclusive::new(())];
|
||
let mut _e = v.swap_remove(0);
|
||
assert_eq!(v.len(), 2);
|
||
_e = v.swap_remove(1);
|
||
assert_eq!(v.len(), 1);
|
||
_e = v.swap_remove(0);
|
||
assert_eq!(v.len(), 0);
|
||
}
|
||
|
||
#[test]
|
||
fn test_push() {
|
||
// Test on-stack push().
|
||
let mut v = ~[];
|
||
v.push(1);
|
||
assert_eq!(v.len(), 1u);
|
||
assert_eq!(v[0], 1);
|
||
|
||
// Test on-heap push().
|
||
v.push(2);
|
||
assert_eq!(v.len(), 2u);
|
||
assert_eq!(v[0], 1);
|
||
assert_eq!(v[1], 2);
|
||
}
|
||
|
||
#[test]
|
||
fn test_grow() {
|
||
// Test on-stack grow().
|
||
let mut v = ~[];
|
||
v.grow(2u, &1);
|
||
assert_eq!(v.len(), 2u);
|
||
assert_eq!(v[0], 1);
|
||
assert_eq!(v[1], 1);
|
||
|
||
// Test on-heap grow().
|
||
v.grow(3u, &2);
|
||
assert_eq!(v.len(), 5u);
|
||
assert_eq!(v[0], 1);
|
||
assert_eq!(v[1], 1);
|
||
assert_eq!(v[2], 2);
|
||
assert_eq!(v[3], 2);
|
||
assert_eq!(v[4], 2);
|
||
}
|
||
|
||
#[test]
|
||
fn test_grow_fn() {
|
||
let mut v = ~[];
|
||
v.grow_fn(3u, square);
|
||
assert_eq!(v.len(), 3u);
|
||
assert_eq!(v[0], 0u);
|
||
assert_eq!(v[1], 1u);
|
||
assert_eq!(v[2], 4u);
|
||
}
|
||
|
||
#[test]
|
||
fn test_grow_set() {
|
||
let mut v = ~[1, 2, 3];
|
||
v.grow_set(4u, &4, 5);
|
||
assert_eq!(v.len(), 5u);
|
||
assert_eq!(v[0], 1);
|
||
assert_eq!(v[1], 2);
|
||
assert_eq!(v[2], 3);
|
||
assert_eq!(v[3], 4);
|
||
assert_eq!(v[4], 5);
|
||
}
|
||
|
||
#[test]
|
||
fn test_truncate() {
|
||
let mut v = ~[~6,~5,~4];
|
||
v.truncate(1);
|
||
assert_eq!(v.len(), 1);
|
||
assert_eq!(*(v[0]), 6);
|
||
// If the unsafe block didn't drop things properly, we blow up here.
|
||
}
|
||
|
||
#[test]
|
||
fn test_clear() {
|
||
let mut v = ~[~6,~5,~4];
|
||
v.clear();
|
||
assert_eq!(v.len(), 0);
|
||
// If the unsafe block didn't drop things properly, we blow up here.
|
||
}
|
||
|
||
#[test]
|
||
fn test_dedup() {
|
||
fn case(a: ~[uint], b: ~[uint]) {
|
||
let mut v = a;
|
||
v.dedup();
|
||
assert_eq!(v, b);
|
||
}
|
||
case(~[], ~[]);
|
||
case(~[1], ~[1]);
|
||
case(~[1,1], ~[1]);
|
||
case(~[1,2,3], ~[1,2,3]);
|
||
case(~[1,1,2,3], ~[1,2,3]);
|
||
case(~[1,2,2,3], ~[1,2,3]);
|
||
case(~[1,2,3,3], ~[1,2,3]);
|
||
case(~[1,1,2,2,2,3,3], ~[1,2,3]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_dedup_unique() {
|
||
let mut v0 = ~[~1, ~1, ~2, ~3];
|
||
v0.dedup();
|
||
let mut v1 = ~[~1, ~2, ~2, ~3];
|
||
v1.dedup();
|
||
let mut v2 = ~[~1, ~2, ~3, ~3];
|
||
v2.dedup();
|
||
/*
|
||
* If the ~pointers were leaked or otherwise misused, valgrind and/or
|
||
* rustrt should raise errors.
|
||
*/
|
||
}
|
||
|
||
#[test]
|
||
fn test_dedup_shared() {
|
||
let mut v0 = ~[~1, ~1, ~2, ~3];
|
||
v0.dedup();
|
||
let mut v1 = ~[~1, ~2, ~2, ~3];
|
||
v1.dedup();
|
||
let mut v2 = ~[~1, ~2, ~3, ~3];
|
||
v2.dedup();
|
||
/*
|
||
* If the pointers were leaked or otherwise misused, valgrind and/or
|
||
* rustrt should raise errors.
|
||
*/
|
||
}
|
||
|
||
#[test]
|
||
fn test_map() {
|
||
// Test on-stack map.
|
||
let v = &[1u, 2u, 3u];
|
||
let mut w = v.map(square_ref);
|
||
assert_eq!(w.len(), 3u);
|
||
assert_eq!(w[0], 1u);
|
||
assert_eq!(w[1], 4u);
|
||
assert_eq!(w[2], 9u);
|
||
|
||
// Test on-heap map.
|
||
let v = ~[1u, 2u, 3u, 4u, 5u];
|
||
w = v.map(square_ref);
|
||
assert_eq!(w.len(), 5u);
|
||
assert_eq!(w[0], 1u);
|
||
assert_eq!(w[1], 4u);
|
||
assert_eq!(w[2], 9u);
|
||
assert_eq!(w[3], 16u);
|
||
assert_eq!(w[4], 25u);
|
||
}
|
||
|
||
#[test]
|
||
fn test_retain() {
|
||
let mut v = ~[1, 2, 3, 4, 5];
|
||
v.retain(is_odd);
|
||
assert_eq!(v, ~[1, 3, 5]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_zip_unzip() {
|
||
let z1 = ~[(1, 4), (2, 5), (3, 6)];
|
||
|
||
let (left, right) = unzip(z1.iter().map(|&x| x));
|
||
|
||
assert_eq!((1, 4), (left[0], right[0]));
|
||
assert_eq!((2, 5), (left[1], right[1]));
|
||
assert_eq!((3, 6), (left[2], right[2]));
|
||
}
|
||
|
||
#[test]
|
||
fn test_element_swaps() {
|
||
let mut v = [1, 2, 3];
|
||
for (i, (a, b)) in ElementSwaps::new(v.len()).enumerate() {
|
||
v.swap(a, b);
|
||
match i {
|
||
0 => assert_eq!(v, [1, 3, 2]),
|
||
1 => assert_eq!(v, [3, 1, 2]),
|
||
2 => assert_eq!(v, [3, 2, 1]),
|
||
3 => assert_eq!(v, [2, 3, 1]),
|
||
4 => assert_eq!(v, [2, 1, 3]),
|
||
5 => assert_eq!(v, [1, 2, 3]),
|
||
_ => fail!(),
|
||
}
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn test_permutations() {
|
||
use hashmap;
|
||
{
|
||
let v: [int, ..0] = [];
|
||
let mut it = v.permutations();
|
||
assert_eq!(it.next(), None);
|
||
}
|
||
{
|
||
let v = [~"Hello"];
|
||
let mut it = v.permutations();
|
||
assert_eq!(it.next(), None);
|
||
}
|
||
{
|
||
let v = [1, 2, 3];
|
||
let mut it = v.permutations();
|
||
assert_eq!(it.next(), Some(~[1,2,3]));
|
||
assert_eq!(it.next(), Some(~[1,3,2]));
|
||
assert_eq!(it.next(), Some(~[3,1,2]));
|
||
assert_eq!(it.next(), Some(~[3,2,1]));
|
||
assert_eq!(it.next(), Some(~[2,3,1]));
|
||
assert_eq!(it.next(), Some(~[2,1,3]));
|
||
assert_eq!(it.next(), None);
|
||
}
|
||
{
|
||
// check that we have N! unique permutations
|
||
let mut set = hashmap::HashSet::new();
|
||
let v = ['A', 'B', 'C', 'D', 'E', 'F'];
|
||
for perm in v.permutations() {
|
||
set.insert(perm);
|
||
}
|
||
assert_eq!(set.len(), 2 * 3 * 4 * 5 * 6);
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn test_position_elem() {
|
||
assert!([].position_elem(&1).is_none());
|
||
|
||
let v1 = ~[1, 2, 3, 3, 2, 5];
|
||
assert_eq!(v1.position_elem(&1), Some(0u));
|
||
assert_eq!(v1.position_elem(&2), Some(1u));
|
||
assert_eq!(v1.position_elem(&5), Some(5u));
|
||
assert!(v1.position_elem(&4).is_none());
|
||
}
|
||
|
||
#[test]
|
||
fn test_bsearch_elem() {
|
||
assert_eq!([1,2,3,4,5].bsearch_elem(&5), Some(4));
|
||
assert_eq!([1,2,3,4,5].bsearch_elem(&4), Some(3));
|
||
assert_eq!([1,2,3,4,5].bsearch_elem(&3), Some(2));
|
||
assert_eq!([1,2,3,4,5].bsearch_elem(&2), Some(1));
|
||
assert_eq!([1,2,3,4,5].bsearch_elem(&1), Some(0));
|
||
|
||
assert_eq!([2,4,6,8,10].bsearch_elem(&1), None);
|
||
assert_eq!([2,4,6,8,10].bsearch_elem(&5), None);
|
||
assert_eq!([2,4,6,8,10].bsearch_elem(&4), Some(1));
|
||
assert_eq!([2,4,6,8,10].bsearch_elem(&10), Some(4));
|
||
|
||
assert_eq!([2,4,6,8].bsearch_elem(&1), None);
|
||
assert_eq!([2,4,6,8].bsearch_elem(&5), None);
|
||
assert_eq!([2,4,6,8].bsearch_elem(&4), Some(1));
|
||
assert_eq!([2,4,6,8].bsearch_elem(&8), Some(3));
|
||
|
||
assert_eq!([2,4,6].bsearch_elem(&1), None);
|
||
assert_eq!([2,4,6].bsearch_elem(&5), None);
|
||
assert_eq!([2,4,6].bsearch_elem(&4), Some(1));
|
||
assert_eq!([2,4,6].bsearch_elem(&6), Some(2));
|
||
|
||
assert_eq!([2,4].bsearch_elem(&1), None);
|
||
assert_eq!([2,4].bsearch_elem(&5), None);
|
||
assert_eq!([2,4].bsearch_elem(&2), Some(0));
|
||
assert_eq!([2,4].bsearch_elem(&4), Some(1));
|
||
|
||
assert_eq!([2].bsearch_elem(&1), None);
|
||
assert_eq!([2].bsearch_elem(&5), None);
|
||
assert_eq!([2].bsearch_elem(&2), Some(0));
|
||
|
||
assert_eq!([].bsearch_elem(&1), None);
|
||
assert_eq!([].bsearch_elem(&5), None);
|
||
|
||
assert!([1,1,1,1,1].bsearch_elem(&1) != None);
|
||
assert!([1,1,1,1,2].bsearch_elem(&1) != None);
|
||
assert!([1,1,1,2,2].bsearch_elem(&1) != None);
|
||
assert!([1,1,2,2,2].bsearch_elem(&1) != None);
|
||
assert_eq!([1,2,2,2,2].bsearch_elem(&1), Some(0));
|
||
|
||
assert_eq!([1,2,3,4,5].bsearch_elem(&6), None);
|
||
assert_eq!([1,2,3,4,5].bsearch_elem(&0), None);
|
||
}
|
||
|
||
#[test]
|
||
fn test_reverse() {
|
||
let mut v: ~[int] = ~[10, 20];
|
||
assert_eq!(v[0], 10);
|
||
assert_eq!(v[1], 20);
|
||
v.reverse();
|
||
assert_eq!(v[0], 20);
|
||
assert_eq!(v[1], 10);
|
||
|
||
let mut v3: ~[int] = ~[];
|
||
v3.reverse();
|
||
assert!(v3.is_empty());
|
||
}
|
||
|
||
#[test]
|
||
fn test_sort() {
|
||
for len in range(4u, 25) {
|
||
for _ in range(0, 100) {
|
||
let mut v = task_rng().gen_vec::<uint>(len);
|
||
let mut v1 = v.clone();
|
||
|
||
v.sort();
|
||
assert!(v.windows(2).all(|w| w[0] <= w[1]));
|
||
|
||
v1.sort_by(|a, b| a.cmp(b));
|
||
assert!(v1.windows(2).all(|w| w[0] <= w[1]));
|
||
|
||
v1.sort_by(|a, b| b.cmp(a));
|
||
assert!(v1.windows(2).all(|w| w[0] >= w[1]));
|
||
}
|
||
}
|
||
|
||
// shouldn't fail/crash
|
||
let mut v: [uint, .. 0] = [];
|
||
v.sort();
|
||
|
||
let mut v = [0xDEADBEEF];
|
||
v.sort();
|
||
assert_eq!(v, [0xDEADBEEF]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_sort_stability() {
|
||
for len in range(4, 25) {
|
||
for _ in range(0 , 10) {
|
||
let mut counts = [0, .. 10];
|
||
|
||
// create a vector like [(6, 1), (5, 1), (6, 2), ...],
|
||
// where the first item of each tuple is random, but
|
||
// the second item represents which occurrence of that
|
||
// number this element is, i.e. the second elements
|
||
// will occur in sorted order.
|
||
let mut v = range(0, len).map(|_| {
|
||
let n = task_rng().gen::<uint>() % 10;
|
||
counts[n] += 1;
|
||
(n, counts[n])
|
||
}).to_owned_vec();
|
||
|
||
// only sort on the first element, so an unstable sort
|
||
// may mix up the counts.
|
||
v.sort_by(|&(a,_), &(b,_)| a.cmp(&b));
|
||
|
||
// this comparison includes the count (the second item
|
||
// of the tuple), so elements with equal first items
|
||
// will need to be ordered with increasing
|
||
// counts... i.e. exactly asserting that this sort is
|
||
// stable.
|
||
assert!(v.windows(2).all(|w| w[0] <= w[1]));
|
||
}
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn test_partition() {
|
||
assert_eq!((~[]).partition(|x: &int| *x < 3), (~[], ~[]));
|
||
assert_eq!((~[1, 2, 3]).partition(|x: &int| *x < 4), (~[1, 2, 3], ~[]));
|
||
assert_eq!((~[1, 2, 3]).partition(|x: &int| *x < 2), (~[1], ~[2, 3]));
|
||
assert_eq!((~[1, 2, 3]).partition(|x: &int| *x < 0), (~[], ~[1, 2, 3]));
|
||
}
|
||
|
||
#[test]
|
||
fn test_partitioned() {
|
||
assert_eq!(([]).partitioned(|x: &int| *x < 3), (~[], ~[]))
|
||
assert_eq!(([1, 2, 3]).partitioned(|x: &int| *x < 4), (~[1, 2, 3], ~[]));
|
||
assert_eq!(([1, 2, 3]).partitioned(|x: &int| *x < 2), (~[1], ~[2, 3]));
|
||
assert_eq!(([1, 2, 3]).partitioned(|x: &int| *x < 0), (~[], ~[1, 2, 3]));
|
||
}
|
||
|
||
#[test]
|
||
fn test_concat() {
|
||
let v: [~[int], ..0] = [];
|
||
assert_eq!(v.concat_vec(), ~[]);
|
||
assert_eq!([~[1], ~[2,3]].concat_vec(), ~[1, 2, 3]);
|
||
|
||
assert_eq!([&[1], &[2,3]].concat_vec(), ~[1, 2, 3]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_connect() {
|
||
let v: [~[int], ..0] = [];
|
||
assert_eq!(v.connect_vec(&0), ~[]);
|
||
assert_eq!([~[1], ~[2, 3]].connect_vec(&0), ~[1, 0, 2, 3]);
|
||
assert_eq!([~[1], ~[2], ~[3]].connect_vec(&0), ~[1, 0, 2, 0, 3]);
|
||
|
||
assert_eq!(v.connect_vec(&0), ~[]);
|
||
assert_eq!([&[1], &[2, 3]].connect_vec(&0), ~[1, 0, 2, 3]);
|
||
assert_eq!([&[1], &[2], &[3]].connect_vec(&0), ~[1, 0, 2, 0, 3]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_shift() {
|
||
let mut x = ~[1, 2, 3];
|
||
assert_eq!(x.shift(), 1);
|
||
assert_eq!(&x, &~[2, 3]);
|
||
assert_eq!(x.shift(), 2);
|
||
assert_eq!(x.shift(), 3);
|
||
assert_eq!(x.len(), 0);
|
||
}
|
||
|
||
#[test]
|
||
fn test_shift_opt() {
|
||
let mut x = ~[1, 2, 3];
|
||
assert_eq!(x.shift_opt(), Some(1));
|
||
assert_eq!(&x, &~[2, 3]);
|
||
assert_eq!(x.shift_opt(), Some(2));
|
||
assert_eq!(x.shift_opt(), Some(3));
|
||
assert_eq!(x.shift_opt(), None);
|
||
assert_eq!(x.len(), 0);
|
||
}
|
||
|
||
#[test]
|
||
fn test_unshift() {
|
||
let mut x = ~[1, 2, 3];
|
||
x.unshift(0);
|
||
assert_eq!(x, ~[0, 1, 2, 3]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_insert() {
|
||
let mut a = ~[1, 2, 4];
|
||
a.insert(2, 3);
|
||
assert_eq!(a, ~[1, 2, 3, 4]);
|
||
|
||
let mut a = ~[1, 2, 3];
|
||
a.insert(0, 0);
|
||
assert_eq!(a, ~[0, 1, 2, 3]);
|
||
|
||
let mut a = ~[1, 2, 3];
|
||
a.insert(3, 4);
|
||
assert_eq!(a, ~[1, 2, 3, 4]);
|
||
|
||
let mut a = ~[];
|
||
a.insert(0, 1);
|
||
assert_eq!(a, ~[1]);
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_insert_oob() {
|
||
let mut a = ~[1, 2, 3];
|
||
a.insert(4, 5);
|
||
}
|
||
|
||
#[test]
|
||
fn test_remove_opt() {
|
||
let mut a = ~[1,2,3,4];
|
||
|
||
assert_eq!(a.remove_opt(2), Some(3));
|
||
assert_eq!(a, ~[1,2,4]);
|
||
|
||
assert_eq!(a.remove_opt(2), Some(4));
|
||
assert_eq!(a, ~[1,2]);
|
||
|
||
assert_eq!(a.remove_opt(2), None);
|
||
assert_eq!(a, ~[1,2]);
|
||
|
||
assert_eq!(a.remove_opt(0), Some(1));
|
||
assert_eq!(a, ~[2]);
|
||
|
||
assert_eq!(a.remove_opt(0), Some(2));
|
||
assert_eq!(a, ~[]);
|
||
|
||
assert_eq!(a.remove_opt(0), None);
|
||
assert_eq!(a.remove_opt(10), None);
|
||
}
|
||
|
||
#[test]
|
||
fn test_remove() {
|
||
let mut a = ~[1, 2, 3, 4];
|
||
a.remove(2);
|
||
assert_eq!(a, ~[1, 2, 4]);
|
||
|
||
let mut a = ~[1, 2, 3];
|
||
a.remove(0);
|
||
assert_eq!(a, ~[2, 3]);
|
||
|
||
let mut a = ~[1];
|
||
a.remove(0);
|
||
assert_eq!(a, ~[]);
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_remove_oob() {
|
||
let mut a = ~[1, 2, 3];
|
||
a.remove(3);
|
||
}
|
||
|
||
#[test]
|
||
fn test_capacity() {
|
||
let mut v = ~[0u64];
|
||
v.reserve(10u);
|
||
assert_eq!(v.capacity(), 10u);
|
||
let mut v = ~[0u32];
|
||
v.reserve(10u);
|
||
assert_eq!(v.capacity(), 10u);
|
||
}
|
||
|
||
#[test]
|
||
fn test_slice_2() {
|
||
let v = ~[1, 2, 3, 4, 5];
|
||
let v = v.slice(1u, 3u);
|
||
assert_eq!(v.len(), 2u);
|
||
assert_eq!(v[0], 2);
|
||
assert_eq!(v[1], 3);
|
||
}
|
||
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_from_fn_fail() {
|
||
from_fn(100, |v| {
|
||
if v == 50 { fail!() }
|
||
~0
|
||
});
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_from_elem_fail() {
|
||
use cast;
|
||
use rc::Rc;
|
||
|
||
struct S {
|
||
f: int,
|
||
boxes: (~int, Rc<int>)
|
||
}
|
||
|
||
impl Clone for S {
|
||
fn clone(&self) -> S {
|
||
let s = unsafe { cast::transmute_mut(self) };
|
||
s.f += 1;
|
||
if s.f == 10 { fail!() }
|
||
S { f: s.f, boxes: s.boxes.clone() }
|
||
}
|
||
}
|
||
|
||
let s = S { f: 0, boxes: (~0, Rc::new(0)) };
|
||
let _ = from_elem(100, s);
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_build_fail() {
|
||
use rc::Rc;
|
||
build(None, |push| {
|
||
push((~0, Rc::new(0)));
|
||
push((~0, Rc::new(0)));
|
||
push((~0, Rc::new(0)));
|
||
push((~0, Rc::new(0)));
|
||
fail!();
|
||
});
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_grow_fn_fail() {
|
||
use rc::Rc;
|
||
let mut v = ~[];
|
||
v.grow_fn(100, |i| {
|
||
if i == 50 {
|
||
fail!()
|
||
}
|
||
(~0, Rc::new(0))
|
||
})
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_map_fail() {
|
||
use rc::Rc;
|
||
let v = [(~0, Rc::new(0)), (~0, Rc::new(0)), (~0, Rc::new(0)), (~0, Rc::new(0))];
|
||
let mut i = 0;
|
||
v.map(|_elt| {
|
||
if i == 2 {
|
||
fail!()
|
||
}
|
||
i += 1;
|
||
~[(~0, Rc::new(0))]
|
||
});
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_flat_map_fail() {
|
||
use rc::Rc;
|
||
let v = [(~0, Rc::new(0)), (~0, Rc::new(0)), (~0, Rc::new(0)), (~0, Rc::new(0))];
|
||
let mut i = 0;
|
||
flat_map(v, |_elt| {
|
||
if i == 2 {
|
||
fail!()
|
||
}
|
||
i += 1;
|
||
~[(~0, Rc::new(0))]
|
||
});
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_permute_fail() {
|
||
use rc::Rc;
|
||
let v = [(~0, Rc::new(0)), (~0, Rc::new(0)), (~0, Rc::new(0)), (~0, Rc::new(0))];
|
||
let mut i = 0;
|
||
for _ in v.permutations() {
|
||
if i == 2 {
|
||
fail!()
|
||
}
|
||
i += 1;
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_copy_memory_oob() {
|
||
unsafe {
|
||
let mut a = [1, 2, 3, 4];
|
||
let b = [1, 2, 3, 4, 5];
|
||
a.copy_memory(b);
|
||
}
|
||
}
|
||
|
||
#[test]
|
||
fn test_total_ord() {
|
||
[1, 2, 3, 4].cmp(& &[1, 2, 3]) == Greater;
|
||
[1, 2, 3].cmp(& &[1, 2, 3, 4]) == Less;
|
||
[1, 2, 3, 4].cmp(& &[1, 2, 3, 4]) == Equal;
|
||
[1, 2, 3, 4, 5, 5, 5, 5].cmp(& &[1, 2, 3, 4, 5, 6]) == Less;
|
||
[2, 2].cmp(& &[1, 2, 3, 4]) == Greater;
|
||
}
|
||
|
||
#[test]
|
||
fn test_iterator() {
|
||
use iter::*;
|
||
let xs = [1, 2, 5, 10, 11];
|
||
let mut it = xs.iter();
|
||
assert_eq!(it.size_hint(), (5, Some(5)));
|
||
assert_eq!(it.next().unwrap(), &1);
|
||
assert_eq!(it.size_hint(), (4, Some(4)));
|
||
assert_eq!(it.next().unwrap(), &2);
|
||
assert_eq!(it.size_hint(), (3, Some(3)));
|
||
assert_eq!(it.next().unwrap(), &5);
|
||
assert_eq!(it.size_hint(), (2, Some(2)));
|
||
assert_eq!(it.next().unwrap(), &10);
|
||
assert_eq!(it.size_hint(), (1, Some(1)));
|
||
assert_eq!(it.next().unwrap(), &11);
|
||
assert_eq!(it.size_hint(), (0, Some(0)));
|
||
assert!(it.next().is_none());
|
||
}
|
||
|
||
#[test]
|
||
fn test_random_access_iterator() {
|
||
use iter::*;
|
||
let xs = [1, 2, 5, 10, 11];
|
||
let mut it = xs.iter();
|
||
|
||
assert_eq!(it.indexable(), 5);
|
||
assert_eq!(it.idx(0).unwrap(), &1);
|
||
assert_eq!(it.idx(2).unwrap(), &5);
|
||
assert_eq!(it.idx(4).unwrap(), &11);
|
||
assert!(it.idx(5).is_none());
|
||
|
||
assert_eq!(it.next().unwrap(), &1);
|
||
assert_eq!(it.indexable(), 4);
|
||
assert_eq!(it.idx(0).unwrap(), &2);
|
||
assert_eq!(it.idx(3).unwrap(), &11);
|
||
assert!(it.idx(4).is_none());
|
||
|
||
assert_eq!(it.next().unwrap(), &2);
|
||
assert_eq!(it.indexable(), 3);
|
||
assert_eq!(it.idx(1).unwrap(), &10);
|
||
assert!(it.idx(3).is_none());
|
||
|
||
assert_eq!(it.next().unwrap(), &5);
|
||
assert_eq!(it.indexable(), 2);
|
||
assert_eq!(it.idx(1).unwrap(), &11);
|
||
|
||
assert_eq!(it.next().unwrap(), &10);
|
||
assert_eq!(it.indexable(), 1);
|
||
assert_eq!(it.idx(0).unwrap(), &11);
|
||
assert!(it.idx(1).is_none());
|
||
|
||
assert_eq!(it.next().unwrap(), &11);
|
||
assert_eq!(it.indexable(), 0);
|
||
assert!(it.idx(0).is_none());
|
||
|
||
assert!(it.next().is_none());
|
||
}
|
||
|
||
#[test]
|
||
fn test_iter_size_hints() {
|
||
use iter::*;
|
||
let mut xs = [1, 2, 5, 10, 11];
|
||
assert_eq!(xs.iter().size_hint(), (5, Some(5)));
|
||
assert_eq!(xs.rev_iter().size_hint(), (5, Some(5)));
|
||
assert_eq!(xs.mut_iter().size_hint(), (5, Some(5)));
|
||
assert_eq!(xs.mut_rev_iter().size_hint(), (5, Some(5)));
|
||
}
|
||
|
||
#[test]
|
||
fn test_iter_clone() {
|
||
let xs = [1, 2, 5];
|
||
let mut it = xs.iter();
|
||
it.next();
|
||
let mut jt = it.clone();
|
||
assert_eq!(it.next(), jt.next());
|
||
assert_eq!(it.next(), jt.next());
|
||
assert_eq!(it.next(), jt.next());
|
||
}
|
||
|
||
#[test]
|
||
fn test_mut_iterator() {
|
||
use iter::*;
|
||
let mut xs = [1, 2, 3, 4, 5];
|
||
for x in xs.mut_iter() {
|
||
*x += 1;
|
||
}
|
||
assert_eq!(xs, [2, 3, 4, 5, 6])
|
||
}
|
||
|
||
#[test]
|
||
fn test_rev_iterator() {
|
||
use iter::*;
|
||
|
||
let xs = [1, 2, 5, 10, 11];
|
||
let ys = [11, 10, 5, 2, 1];
|
||
let mut i = 0;
|
||
for &x in xs.rev_iter() {
|
||
assert_eq!(x, ys[i]);
|
||
i += 1;
|
||
}
|
||
assert_eq!(i, 5);
|
||
}
|
||
|
||
#[test]
|
||
fn test_mut_rev_iterator() {
|
||
use iter::*;
|
||
let mut xs = [1u, 2, 3, 4, 5];
|
||
for (i,x) in xs.mut_rev_iter().enumerate() {
|
||
*x += i;
|
||
}
|
||
assert_eq!(xs, [5, 5, 5, 5, 5])
|
||
}
|
||
|
||
#[test]
|
||
fn test_move_iterator() {
|
||
use iter::*;
|
||
let xs = ~[1u,2,3,4,5];
|
||
assert_eq!(xs.move_iter().fold(0, |a: uint, b: uint| 10*a + b), 12345);
|
||
}
|
||
|
||
#[test]
|
||
fn test_move_rev_iterator() {
|
||
use iter::*;
|
||
let xs = ~[1u,2,3,4,5];
|
||
assert_eq!(xs.move_rev_iter().fold(0, |a: uint, b: uint| 10*a + b), 54321);
|
||
}
|
||
|
||
#[test]
|
||
fn test_splitator() {
|
||
let xs = &[1i,2,3,4,5];
|
||
|
||
assert_eq!(xs.split(|x| *x % 2 == 0).collect::<~[&[int]]>(),
|
||
~[&[1], &[3], &[5]]);
|
||
assert_eq!(xs.split(|x| *x == 1).collect::<~[&[int]]>(),
|
||
~[&[], &[2,3,4,5]]);
|
||
assert_eq!(xs.split(|x| *x == 5).collect::<~[&[int]]>(),
|
||
~[&[1,2,3,4], &[]]);
|
||
assert_eq!(xs.split(|x| *x == 10).collect::<~[&[int]]>(),
|
||
~[&[1,2,3,4,5]]);
|
||
assert_eq!(xs.split(|_| true).collect::<~[&[int]]>(),
|
||
~[&[], &[], &[], &[], &[], &[]]);
|
||
|
||
let xs: &[int] = &[];
|
||
assert_eq!(xs.split(|x| *x == 5).collect::<~[&[int]]>(), ~[&[]]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_splitnator() {
|
||
let xs = &[1i,2,3,4,5];
|
||
|
||
assert_eq!(xs.splitn(0, |x| *x % 2 == 0).collect::<~[&[int]]>(),
|
||
~[&[1,2,3,4,5]]);
|
||
assert_eq!(xs.splitn(1, |x| *x % 2 == 0).collect::<~[&[int]]>(),
|
||
~[&[1], &[3,4,5]]);
|
||
assert_eq!(xs.splitn(3, |_| true).collect::<~[&[int]]>(),
|
||
~[&[], &[], &[], &[4,5]]);
|
||
|
||
let xs: &[int] = &[];
|
||
assert_eq!(xs.splitn(1, |x| *x == 5).collect::<~[&[int]]>(), ~[&[]]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_rsplitator() {
|
||
let xs = &[1i,2,3,4,5];
|
||
|
||
assert_eq!(xs.rsplit(|x| *x % 2 == 0).collect::<~[&[int]]>(),
|
||
~[&[5], &[3], &[1]]);
|
||
assert_eq!(xs.rsplit(|x| *x == 1).collect::<~[&[int]]>(),
|
||
~[&[2,3,4,5], &[]]);
|
||
assert_eq!(xs.rsplit(|x| *x == 5).collect::<~[&[int]]>(),
|
||
~[&[], &[1,2,3,4]]);
|
||
assert_eq!(xs.rsplit(|x| *x == 10).collect::<~[&[int]]>(),
|
||
~[&[1,2,3,4,5]]);
|
||
|
||
let xs: &[int] = &[];
|
||
assert_eq!(xs.rsplit(|x| *x == 5).collect::<~[&[int]]>(), ~[&[]]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_rsplitnator() {
|
||
let xs = &[1,2,3,4,5];
|
||
|
||
assert_eq!(xs.rsplitn(0, |x| *x % 2 == 0).collect::<~[&[int]]>(),
|
||
~[&[1,2,3,4,5]]);
|
||
assert_eq!(xs.rsplitn(1, |x| *x % 2 == 0).collect::<~[&[int]]>(),
|
||
~[&[5], &[1,2,3]]);
|
||
assert_eq!(xs.rsplitn(3, |_| true).collect::<~[&[int]]>(),
|
||
~[&[], &[], &[], &[1,2]]);
|
||
|
||
let xs: &[int] = &[];
|
||
assert_eq!(xs.rsplitn(1, |x| *x == 5).collect::<~[&[int]]>(), ~[&[]]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_windowsator() {
|
||
let v = &[1i,2,3,4];
|
||
|
||
assert_eq!(v.windows(2).collect::<~[&[int]]>(), ~[&[1,2], &[2,3], &[3,4]]);
|
||
assert_eq!(v.windows(3).collect::<~[&[int]]>(), ~[&[1i,2,3], &[2,3,4]]);
|
||
assert!(v.windows(6).next().is_none());
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_windowsator_0() {
|
||
let v = &[1i,2,3,4];
|
||
let _it = v.windows(0);
|
||
}
|
||
|
||
#[test]
|
||
fn test_chunksator() {
|
||
let v = &[1i,2,3,4,5];
|
||
|
||
assert_eq!(v.chunks(2).collect::<~[&[int]]>(), ~[&[1i,2], &[3,4], &[5]]);
|
||
assert_eq!(v.chunks(3).collect::<~[&[int]]>(), ~[&[1i,2,3], &[4,5]]);
|
||
assert_eq!(v.chunks(6).collect::<~[&[int]]>(), ~[&[1i,2,3,4,5]]);
|
||
|
||
assert_eq!(v.chunks(2).invert().collect::<~[&[int]]>(), ~[&[5i], &[3,4], &[1,2]]);
|
||
let it = v.chunks(2);
|
||
assert_eq!(it.indexable(), 3);
|
||
assert_eq!(it.idx(0).unwrap(), &[1,2]);
|
||
assert_eq!(it.idx(1).unwrap(), &[3,4]);
|
||
assert_eq!(it.idx(2).unwrap(), &[5]);
|
||
assert_eq!(it.idx(3), None);
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_chunksator_0() {
|
||
let v = &[1i,2,3,4];
|
||
let _it = v.chunks(0);
|
||
}
|
||
|
||
#[test]
|
||
fn test_move_from() {
|
||
let mut a = [1,2,3,4,5];
|
||
let b = ~[6,7,8];
|
||
assert_eq!(a.move_from(b, 0, 3), 3);
|
||
assert_eq!(a, [6,7,8,4,5]);
|
||
let mut a = [7,2,8,1];
|
||
let b = ~[3,1,4,1,5,9];
|
||
assert_eq!(a.move_from(b, 0, 6), 4);
|
||
assert_eq!(a, [3,1,4,1]);
|
||
let mut a = [1,2,3,4];
|
||
let b = ~[5,6,7,8,9,0];
|
||
assert_eq!(a.move_from(b, 2, 3), 1);
|
||
assert_eq!(a, [7,2,3,4]);
|
||
let mut a = [1,2,3,4,5];
|
||
let b = ~[5,6,7,8,9,0];
|
||
assert_eq!(a.mut_slice(2,4).move_from(b,1,6), 2);
|
||
assert_eq!(a, [1,2,6,7,5]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_copy_from() {
|
||
let mut a = [1,2,3,4,5];
|
||
let b = [6,7,8];
|
||
assert_eq!(a.copy_from(b), 3);
|
||
assert_eq!(a, [6,7,8,4,5]);
|
||
let mut c = [7,2,8,1];
|
||
let d = [3,1,4,1,5,9];
|
||
assert_eq!(c.copy_from(d), 4);
|
||
assert_eq!(c, [3,1,4,1]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_reverse_part() {
|
||
let mut values = [1,2,3,4,5];
|
||
values.mut_slice(1, 4).reverse();
|
||
assert_eq!(values, [1,4,3,2,5]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_vec_default() {
|
||
use default::Default;
|
||
macro_rules! t (
|
||
($ty:ty) => {{
|
||
let v: $ty = Default::default();
|
||
assert!(v.is_empty());
|
||
}}
|
||
);
|
||
|
||
t!(&[int]);
|
||
t!(@[int]);
|
||
t!(~[int]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_bytes_set_memory() {
|
||
use vec::bytes::MutableByteVector;
|
||
let mut values = [1u8,2,3,4,5];
|
||
values.mut_slice(0,5).set_memory(0xAB);
|
||
assert_eq!(values, [0xAB, 0xAB, 0xAB, 0xAB, 0xAB]);
|
||
values.mut_slice(2,4).set_memory(0xFF);
|
||
assert_eq!(values, [0xAB, 0xAB, 0xFF, 0xFF, 0xAB]);
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_overflow_does_not_cause_segfault() {
|
||
let mut v = ~[];
|
||
v.reserve(-1);
|
||
v.push(1);
|
||
v.push(2);
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_overflow_does_not_cause_segfault_managed() {
|
||
use rc::Rc;
|
||
let mut v = ~[Rc::new(1)];
|
||
v.reserve(-1);
|
||
v.push(Rc::new(2));
|
||
}
|
||
|
||
#[test]
|
||
fn test_mut_split_at() {
|
||
let mut values = [1u8,2,3,4,5];
|
||
{
|
||
let (left, right) = values.mut_split_at(2);
|
||
assert_eq!(left.slice(0, left.len()), [1, 2]);
|
||
for p in left.mut_iter() {
|
||
*p += 1;
|
||
}
|
||
|
||
assert_eq!(right.slice(0, right.len()), [3, 4, 5]);
|
||
for p in right.mut_iter() {
|
||
*p += 2;
|
||
}
|
||
}
|
||
|
||
assert_eq!(values, [2, 3, 5, 6, 7]);
|
||
}
|
||
|
||
#[deriving(Clone, Eq)]
|
||
struct Foo;
|
||
|
||
#[test]
|
||
fn test_iter_zero_sized() {
|
||
let mut v = ~[Foo, Foo, Foo];
|
||
assert_eq!(v.len(), 3);
|
||
let mut cnt = 0;
|
||
|
||
for f in v.iter() {
|
||
assert!(*f == Foo);
|
||
cnt += 1;
|
||
}
|
||
assert_eq!(cnt, 3);
|
||
|
||
for f in v.slice(1, 3).iter() {
|
||
assert!(*f == Foo);
|
||
cnt += 1;
|
||
}
|
||
assert_eq!(cnt, 5);
|
||
|
||
for f in v.mut_iter() {
|
||
assert!(*f == Foo);
|
||
cnt += 1;
|
||
}
|
||
assert_eq!(cnt, 8);
|
||
|
||
for f in v.move_iter() {
|
||
assert!(f == Foo);
|
||
cnt += 1;
|
||
}
|
||
assert_eq!(cnt, 11);
|
||
|
||
let xs = ~[Foo, Foo, Foo];
|
||
assert_eq!(format!("{:?}", xs.slice(0, 2).to_owned()),
|
||
~"~[vec::tests::Foo, vec::tests::Foo]");
|
||
|
||
let xs: [Foo, ..3] = [Foo, Foo, Foo];
|
||
assert_eq!(format!("{:?}", xs.slice(0, 2).to_owned()),
|
||
~"~[vec::tests::Foo, vec::tests::Foo]");
|
||
cnt = 0;
|
||
for f in xs.iter() {
|
||
assert!(*f == Foo);
|
||
cnt += 1;
|
||
}
|
||
assert!(cnt == 3);
|
||
}
|
||
|
||
#[test]
|
||
fn test_shrink_to_fit() {
|
||
let mut xs = ~[0, 1, 2, 3];
|
||
for i in range(4, 100) {
|
||
xs.push(i)
|
||
}
|
||
assert_eq!(xs.capacity(), 128);
|
||
xs.shrink_to_fit();
|
||
assert_eq!(xs.capacity(), 100);
|
||
assert_eq!(xs, range(0, 100).to_owned_vec());
|
||
}
|
||
|
||
#[test]
|
||
fn test_starts_with() {
|
||
assert!(bytes!("foobar").starts_with(bytes!("foo")));
|
||
assert!(!bytes!("foobar").starts_with(bytes!("oob")));
|
||
assert!(!bytes!("foobar").starts_with(bytes!("bar")));
|
||
assert!(!bytes!("foo").starts_with(bytes!("foobar")));
|
||
assert!(!bytes!("bar").starts_with(bytes!("foobar")));
|
||
assert!(bytes!("foobar").starts_with(bytes!("foobar")));
|
||
let empty: &[u8] = [];
|
||
assert!(empty.starts_with(empty));
|
||
assert!(!empty.starts_with(bytes!("foo")));
|
||
assert!(bytes!("foobar").starts_with(empty));
|
||
}
|
||
|
||
#[test]
|
||
fn test_ends_with() {
|
||
assert!(bytes!("foobar").ends_with(bytes!("bar")));
|
||
assert!(!bytes!("foobar").ends_with(bytes!("oba")));
|
||
assert!(!bytes!("foobar").ends_with(bytes!("foo")));
|
||
assert!(!bytes!("foo").ends_with(bytes!("foobar")));
|
||
assert!(!bytes!("bar").ends_with(bytes!("foobar")));
|
||
assert!(bytes!("foobar").ends_with(bytes!("foobar")));
|
||
let empty: &[u8] = [];
|
||
assert!(empty.ends_with(empty));
|
||
assert!(!empty.ends_with(bytes!("foo")));
|
||
assert!(bytes!("foobar").ends_with(empty));
|
||
}
|
||
|
||
#[test]
|
||
fn test_shift_ref() {
|
||
let mut x: &[int] = [1, 2, 3, 4, 5];
|
||
let h = x.shift_ref();
|
||
assert_eq!(*h, 1);
|
||
assert_eq!(x.len(), 4);
|
||
assert_eq!(x[0], 2);
|
||
assert_eq!(x[3], 5);
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_shift_ref_empty() {
|
||
let mut x: &[int] = [];
|
||
x.shift_ref();
|
||
}
|
||
|
||
#[test]
|
||
fn test_pop_ref() {
|
||
let mut x: &[int] = [1, 2, 3, 4, 5];
|
||
let h = x.pop_ref();
|
||
assert_eq!(*h, 5);
|
||
assert_eq!(x.len(), 4);
|
||
assert_eq!(x[0], 1);
|
||
assert_eq!(x[3], 4);
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_pop_ref_empty() {
|
||
let mut x: &[int] = [];
|
||
x.pop_ref();
|
||
}
|
||
|
||
#[test]
|
||
fn test_mut_splitator() {
|
||
let mut xs = [0,1,0,2,3,0,0,4,5,0];
|
||
assert_eq!(xs.mut_split(|x| *x == 0).len(), 6);
|
||
for slice in xs.mut_split(|x| *x == 0) {
|
||
slice.reverse();
|
||
}
|
||
assert_eq!(xs, [0,1,0,3,2,0,0,5,4,0]);
|
||
|
||
let mut xs = [0,1,0,2,3,0,0,4,5,0,6,7];
|
||
for slice in xs.mut_split(|x| *x == 0).take(5) {
|
||
slice.reverse();
|
||
}
|
||
assert_eq!(xs, [0,1,0,3,2,0,0,5,4,0,6,7]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_mut_splitator_invert() {
|
||
let mut xs = [1,2,0,3,4,0,0,5,6,0];
|
||
for slice in xs.mut_split(|x| *x == 0).invert().take(4) {
|
||
slice.reverse();
|
||
}
|
||
assert_eq!(xs, [1,2,0,4,3,0,0,6,5,0]);
|
||
}
|
||
|
||
#[test]
|
||
fn test_mut_chunks() {
|
||
let mut v = [0u8, 1, 2, 3, 4, 5, 6];
|
||
for (i, chunk) in v.mut_chunks(3).enumerate() {
|
||
for x in chunk.mut_iter() {
|
||
*x = i as u8;
|
||
}
|
||
}
|
||
let result = [0u8, 0, 0, 1, 1, 1, 2];
|
||
assert_eq!(v, result);
|
||
}
|
||
|
||
#[test]
|
||
fn test_mut_chunks_invert() {
|
||
let mut v = [0u8, 1, 2, 3, 4, 5, 6];
|
||
for (i, chunk) in v.mut_chunks(3).invert().enumerate() {
|
||
for x in chunk.mut_iter() {
|
||
*x = i as u8;
|
||
}
|
||
}
|
||
let result = [2u8, 2, 2, 1, 1, 1, 0];
|
||
assert_eq!(v, result);
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_mut_chunks_0() {
|
||
let mut v = [1, 2, 3, 4];
|
||
let _it = v.mut_chunks(0);
|
||
}
|
||
|
||
#[test]
|
||
fn test_mut_shift_ref() {
|
||
let mut x: &mut [int] = [1, 2, 3, 4, 5];
|
||
let h = x.mut_shift_ref();
|
||
assert_eq!(*h, 1);
|
||
assert_eq!(x.len(), 4);
|
||
assert_eq!(x[0], 2);
|
||
assert_eq!(x[3], 5);
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_mut_shift_ref_empty() {
|
||
let mut x: &mut [int] = [];
|
||
x.mut_shift_ref();
|
||
}
|
||
|
||
#[test]
|
||
fn test_mut_pop_ref() {
|
||
let mut x: &mut [int] = [1, 2, 3, 4, 5];
|
||
let h = x.mut_pop_ref();
|
||
assert_eq!(*h, 5);
|
||
assert_eq!(x.len(), 4);
|
||
assert_eq!(x[0], 1);
|
||
assert_eq!(x[3], 4);
|
||
}
|
||
|
||
#[test]
|
||
#[should_fail]
|
||
fn test_mut_pop_ref_empty() {
|
||
let mut x: &mut [int] = [];
|
||
x.mut_pop_ref();
|
||
}
|
||
}
|
||
|
||
#[cfg(test)]
|
||
mod bench {
|
||
use extra::test::BenchHarness;
|
||
use iter::range;
|
||
use vec;
|
||
use vec::{VectorVector, MutableTotalOrdVector};
|
||
use option::*;
|
||
use ptr;
|
||
use rand::{weak_rng, Rng};
|
||
use mem;
|
||
|
||
#[bench]
|
||
fn iterator(bh: &mut BenchHarness) {
|
||
// peculiar numbers to stop LLVM from optimising the summation
|
||
// out.
|
||
let v = vec::from_fn(100, |i| i ^ (i << 1) ^ (i >> 1));
|
||
|
||
bh.iter(|| {
|
||
let mut sum = 0;
|
||
for x in v.iter() {
|
||
sum += *x;
|
||
}
|
||
// sum == 11806, to stop dead code elimination.
|
||
if sum == 0 {fail!()}
|
||
})
|
||
}
|
||
|
||
#[bench]
|
||
fn mut_iterator(bh: &mut BenchHarness) {
|
||
let mut v = vec::from_elem(100, 0);
|
||
|
||
bh.iter(|| {
|
||
let mut i = 0;
|
||
for x in v.mut_iter() {
|
||
*x = i;
|
||
i += 1;
|
||
}
|
||
})
|
||
}
|
||
|
||
#[bench]
|
||
fn add(bh: &mut BenchHarness) {
|
||
let xs: &[int] = [5, ..10];
|
||
let ys: &[int] = [5, ..10];
|
||
bh.iter(|| {
|
||
xs + ys;
|
||
});
|
||
}
|
||
|
||
#[bench]
|
||
fn concat(bh: &mut BenchHarness) {
|
||
let xss: &[~[uint]] = vec::from_fn(100, |i| range(0, i).collect());
|
||
bh.iter(|| {
|
||
let _ = xss.concat_vec();
|
||
});
|
||
}
|
||
|
||
#[bench]
|
||
fn connect(bh: &mut BenchHarness) {
|
||
let xss: &[~[uint]] = vec::from_fn(100, |i| range(0, i).collect());
|
||
bh.iter(|| {
|
||
let _ = xss.connect_vec(&0);
|
||
});
|
||
}
|
||
|
||
#[bench]
|
||
fn push(bh: &mut BenchHarness) {
|
||
let mut vec: ~[uint] = ~[0u];
|
||
bh.iter(|| {
|
||
vec.push(0);
|
||
})
|
||
}
|
||
|
||
#[bench]
|
||
fn starts_with_same_vector(bh: &mut BenchHarness) {
|
||
let vec: ~[uint] = vec::from_fn(100, |i| i);
|
||
bh.iter(|| {
|
||
vec.starts_with(vec);
|
||
})
|
||
}
|
||
|
||
#[bench]
|
||
fn starts_with_single_element(bh: &mut BenchHarness) {
|
||
let vec: ~[uint] = ~[0u];
|
||
bh.iter(|| {
|
||
vec.starts_with(vec);
|
||
})
|
||
}
|
||
|
||
#[bench]
|
||
fn starts_with_diff_one_element_at_end(bh: &mut BenchHarness) {
|
||
let vec: ~[uint] = vec::from_fn(100, |i| i);
|
||
let mut match_vec: ~[uint] = vec::from_fn(99, |i| i);
|
||
match_vec.push(0);
|
||
bh.iter(|| {
|
||
vec.starts_with(match_vec);
|
||
})
|
||
}
|
||
|
||
#[bench]
|
||
fn ends_with_same_vector(bh: &mut BenchHarness) {
|
||
let vec: ~[uint] = vec::from_fn(100, |i| i);
|
||
bh.iter(|| {
|
||
vec.ends_with(vec);
|
||
})
|
||
}
|
||
|
||
#[bench]
|
||
fn ends_with_single_element(bh: &mut BenchHarness) {
|
||
let vec: ~[uint] = ~[0u];
|
||
bh.iter(|| {
|
||
vec.ends_with(vec);
|
||
})
|
||
}
|
||
|
||
#[bench]
|
||
fn ends_with_diff_one_element_at_beginning(bh: &mut BenchHarness) {
|
||
let vec: ~[uint] = vec::from_fn(100, |i| i);
|
||
let mut match_vec: ~[uint] = vec::from_fn(100, |i| i);
|
||
match_vec[0] = 200;
|
||
bh.iter(|| {
|
||
vec.starts_with(match_vec);
|
||
})
|
||
}
|
||
|
||
#[bench]
|
||
fn contains_last_element(bh: &mut BenchHarness) {
|
||
let vec: ~[uint] = vec::from_fn(100, |i| i);
|
||
bh.iter(|| {
|
||
vec.contains(&99u);
|
||
})
|
||
}
|
||
|
||
#[bench]
|
||
fn zero_1kb_from_elem(bh: &mut BenchHarness) {
|
||
bh.iter(|| {
|
||
let _v: ~[u8] = vec::from_elem(1024, 0u8);
|
||
});
|
||
}
|
||
|
||
#[bench]
|
||
fn zero_1kb_set_memory(bh: &mut BenchHarness) {
|
||
bh.iter(|| {
|
||
let mut v: ~[u8] = vec::with_capacity(1024);
|
||
unsafe {
|
||
let vp = v.as_mut_ptr();
|
||
ptr::set_memory(vp, 0, 1024);
|
||
v.set_len(1024);
|
||
}
|
||
});
|
||
}
|
||
|
||
#[bench]
|
||
fn zero_1kb_fixed_repeat(bh: &mut BenchHarness) {
|
||
bh.iter(|| {
|
||
let _v: ~[u8] = ~[0u8, ..1024];
|
||
});
|
||
}
|
||
|
||
#[bench]
|
||
fn zero_1kb_loop_set(bh: &mut BenchHarness) {
|
||
// Slower because the { len, cap, [0 x T] }* repr allows a pointer to the length
|
||
// field to be aliased (in theory) and prevents LLVM from optimizing loads away.
|
||
bh.iter(|| {
|
||
let mut v: ~[u8] = vec::with_capacity(1024);
|
||
unsafe {
|
||
v.set_len(1024);
|
||
}
|
||
for i in range(0, 1024) {
|
||
v[i] = 0;
|
||
}
|
||
});
|
||
}
|
||
|
||
#[bench]
|
||
fn zero_1kb_mut_iter(bh: &mut BenchHarness) {
|
||
bh.iter(|| {
|
||
let mut v: ~[u8] = vec::with_capacity(1024);
|
||
unsafe {
|
||
v.set_len(1024);
|
||
}
|
||
for x in v.mut_iter() {
|
||
*x = 0;
|
||
}
|
||
});
|
||
}
|
||
|
||
#[bench]
|
||
fn random_inserts(bh: &mut BenchHarness) {
|
||
let mut rng = weak_rng();
|
||
bh.iter(|| {
|
||
let mut v = vec::from_elem(30, (0u, 0u));
|
||
for _ in range(0, 100) {
|
||
let l = v.len();
|
||
v.insert(rng.gen::<uint>() % (l + 1),
|
||
(1, 1));
|
||
}
|
||
})
|
||
}
|
||
#[bench]
|
||
fn random_removes(bh: &mut BenchHarness) {
|
||
let mut rng = weak_rng();
|
||
bh.iter(|| {
|
||
let mut v = vec::from_elem(130, (0u, 0u));
|
||
for _ in range(0, 100) {
|
||
let l = v.len();
|
||
v.remove(rng.gen::<uint>() % l);
|
||
}
|
||
})
|
||
}
|
||
|
||
#[bench]
|
||
fn sort_random_small(bh: &mut BenchHarness) {
|
||
let mut rng = weak_rng();
|
||
bh.iter(|| {
|
||
let mut v: ~[u64] = rng.gen_vec(5);
|
||
v.sort();
|
||
});
|
||
bh.bytes = 5 * mem::size_of::<u64>() as u64;
|
||
}
|
||
|
||
#[bench]
|
||
fn sort_random_medium(bh: &mut BenchHarness) {
|
||
let mut rng = weak_rng();
|
||
bh.iter(|| {
|
||
let mut v: ~[u64] = rng.gen_vec(100);
|
||
v.sort();
|
||
});
|
||
bh.bytes = 100 * mem::size_of::<u64>() as u64;
|
||
}
|
||
|
||
#[bench]
|
||
fn sort_random_large(bh: &mut BenchHarness) {
|
||
let mut rng = weak_rng();
|
||
bh.iter(|| {
|
||
let mut v: ~[u64] = rng.gen_vec(10000);
|
||
v.sort();
|
||
});
|
||
bh.bytes = 10000 * mem::size_of::<u64>() as u64;
|
||
}
|
||
|
||
#[bench]
|
||
fn sort_sorted(bh: &mut BenchHarness) {
|
||
let mut v = vec::from_fn(10000, |i| i);
|
||
bh.iter(|| {
|
||
v.sort();
|
||
});
|
||
bh.bytes = (v.len() * mem::size_of_val(&v[0])) as u64;
|
||
}
|
||
}
|