rust/src/librustc_trans/trans/build.rs

828 lines
23 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#![allow(dead_code)] // FFI wrappers
#![allow(non_snake_case)]
use llvm;
use llvm::{CallConv, AtomicBinOp, AtomicOrdering, AsmDialect, AttrBuilder};
use llvm::{Opcode, IntPredicate, RealPredicate};
use llvm::{ValueRef, BasicBlockRef};
use trans::common::*;
use syntax::codemap::Span;
use trans::builder::Builder;
use trans::type_::Type;
use libc::{c_uint, c_char};
pub fn terminate(cx: Block, _: &str) {
debug!("terminate({})", cx.to_str());
cx.terminated.set(true);
}
pub fn check_not_terminated(cx: Block) {
if cx.terminated.get() {
panic!("already terminated!");
}
}
pub fn B<'blk, 'tcx>(cx: Block<'blk, 'tcx>) -> Builder<'blk, 'tcx> {
let b = cx.fcx.ccx.builder();
b.position_at_end(cx.llbb);
b
}
// The difference between a block being unreachable and being terminated is
// somewhat obscure, and has to do with error checking. When a block is
// terminated, we're saying that trying to add any further statements in the
// block is an error. On the other hand, if something is unreachable, that
// means that the block was terminated in some way that we don't want to check
// for (panic/break/return statements, call to diverging functions, etc), and
// further instructions to the block should simply be ignored.
pub fn RetVoid(cx: Block) {
if cx.unreachable.get() { return; }
check_not_terminated(cx);
terminate(cx, "RetVoid");
B(cx).ret_void();
}
pub fn Ret(cx: Block, v: ValueRef) {
if cx.unreachable.get() { return; }
check_not_terminated(cx);
terminate(cx, "Ret");
B(cx).ret(v);
}
pub fn AggregateRet(cx: Block, ret_vals: &[ValueRef]) {
if cx.unreachable.get() { return; }
check_not_terminated(cx);
terminate(cx, "AggregateRet");
B(cx).aggregate_ret(ret_vals);
}
pub fn Br(cx: Block, dest: BasicBlockRef) {
if cx.unreachable.get() { return; }
check_not_terminated(cx);
terminate(cx, "Br");
B(cx).br(dest);
}
pub fn CondBr(cx: Block,
if_: ValueRef,
then: BasicBlockRef,
else_: BasicBlockRef) {
if cx.unreachable.get() { return; }
check_not_terminated(cx);
terminate(cx, "CondBr");
B(cx).cond_br(if_, then, else_);
}
pub fn Switch(cx: Block, v: ValueRef, else_: BasicBlockRef, num_cases: uint)
-> ValueRef {
if cx.unreachable.get() { return _Undef(v); }
check_not_terminated(cx);
terminate(cx, "Switch");
B(cx).switch(v, else_, num_cases)
}
pub fn AddCase(s: ValueRef, on_val: ValueRef, dest: BasicBlockRef) {
unsafe {
if llvm::LLVMIsUndef(s) == llvm::True { return; }
llvm::LLVMAddCase(s, on_val, dest);
}
}
pub fn IndirectBr(cx: Block, addr: ValueRef, num_dests: uint) {
if cx.unreachable.get() { return; }
check_not_terminated(cx);
terminate(cx, "IndirectBr");
B(cx).indirect_br(addr, num_dests);
}
pub fn Invoke(cx: Block,
fn_: ValueRef,
args: &[ValueRef],
then: BasicBlockRef,
catch: BasicBlockRef,
attributes: Option<AttrBuilder>)
-> ValueRef {
if cx.unreachable.get() {
return C_null(Type::i8(cx.ccx()));
}
check_not_terminated(cx);
terminate(cx, "Invoke");
debug!("Invoke({} with arguments ({}))",
cx.val_to_string(fn_),
args.iter().map(|a| cx.val_to_string(*a)).collect::<Vec<String>>().connect(", "));
B(cx).invoke(fn_, args, then, catch, attributes)
}
pub fn Unreachable(cx: Block) {
if cx.unreachable.get() {
return
}
cx.unreachable.set(true);
if !cx.terminated.get() {
B(cx).unreachable();
}
}
pub fn _Undef(val: ValueRef) -> ValueRef {
unsafe {
return llvm::LLVMGetUndef(val_ty(val).to_ref());
}
}
/* Arithmetic */
pub fn Add(cx: Block, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(lhs); }
B(cx).add(lhs, rhs)
}
pub fn NSWAdd(cx: Block, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(lhs); }
B(cx).nswadd(lhs, rhs)
}
pub fn NUWAdd(cx: Block, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(lhs); }
B(cx).nuwadd(lhs, rhs)
}
pub fn FAdd(cx: Block, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(lhs); }
B(cx).fadd(lhs, rhs)
}
pub fn Sub(cx: Block, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(lhs); }
B(cx).sub(lhs, rhs)
}
pub fn NSWSub(cx: Block, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(lhs); }
B(cx).nswsub(lhs, rhs)
}
pub fn NUWSub(cx: Block, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(lhs); }
B(cx).nuwsub(lhs, rhs)
}
pub fn FSub(cx: Block, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(lhs); }
B(cx).fsub(lhs, rhs)
}
pub fn Mul(cx: Block, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(lhs); }
B(cx).mul(lhs, rhs)
}
pub fn NSWMul(cx: Block, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(lhs); }
B(cx).nswmul(lhs, rhs)
}
pub fn NUWMul(cx: Block, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(lhs); }
B(cx).nuwmul(lhs, rhs)
}
pub fn FMul(cx: Block, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(lhs); }
B(cx).fmul(lhs, rhs)
}
pub fn UDiv(cx: Block, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(lhs); }
B(cx).udiv(lhs, rhs)
}
pub fn SDiv(cx: Block, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(lhs); }
B(cx).sdiv(lhs, rhs)
}
pub fn ExactSDiv(cx: Block, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(lhs); }
B(cx).exactsdiv(lhs, rhs)
}
pub fn FDiv(cx: Block, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(lhs); }
B(cx).fdiv(lhs, rhs)
}
pub fn URem(cx: Block, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(lhs); }
B(cx).urem(lhs, rhs)
}
pub fn SRem(cx: Block, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(lhs); }
B(cx).srem(lhs, rhs)
}
pub fn FRem(cx: Block, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(lhs); }
B(cx).frem(lhs, rhs)
}
pub fn Shl(cx: Block, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(lhs); }
B(cx).shl(lhs, rhs)
}
pub fn LShr(cx: Block, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(lhs); }
B(cx).lshr(lhs, rhs)
}
pub fn AShr(cx: Block, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(lhs); }
B(cx).ashr(lhs, rhs)
}
pub fn And(cx: Block, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(lhs); }
B(cx).and(lhs, rhs)
}
pub fn Or(cx: Block, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(lhs); }
B(cx).or(lhs, rhs)
}
pub fn Xor(cx: Block, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(lhs); }
B(cx).xor(lhs, rhs)
}
pub fn BinOp(cx: Block, op: Opcode, lhs: ValueRef, rhs: ValueRef)
-> ValueRef {
if cx.unreachable.get() { return _Undef(lhs); }
B(cx).binop(op, lhs, rhs)
}
pub fn Neg(cx: Block, v: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(v); }
B(cx).neg(v)
}
pub fn NSWNeg(cx: Block, v: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(v); }
B(cx).nswneg(v)
}
pub fn NUWNeg(cx: Block, v: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(v); }
B(cx).nuwneg(v)
}
pub fn FNeg(cx: Block, v: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(v); }
B(cx).fneg(v)
}
pub fn Not(cx: Block, v: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(v); }
B(cx).not(v)
}
/* Memory */
pub fn Malloc(cx: Block, ty: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() {
return llvm::LLVMGetUndef(Type::i8p(cx.ccx()).to_ref());
}
B(cx).malloc(ty)
}
}
pub fn ArrayMalloc(cx: Block, ty: Type, val: ValueRef) -> ValueRef {
unsafe {
if cx.unreachable.get() {
return llvm::LLVMGetUndef(Type::i8p(cx.ccx()).to_ref());
}
B(cx).array_malloc(ty, val)
}
}
pub fn Alloca(cx: Block, ty: Type, name: &str) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(ty.ptr_to().to_ref()); }
AllocaFcx(cx.fcx, ty, name)
}
}
pub fn AllocaFcx(fcx: &FunctionContext, ty: Type, name: &str) -> ValueRef {
let b = fcx.ccx.builder();
b.position_before(fcx.alloca_insert_pt.get().unwrap());
b.alloca(ty, name)
}
pub fn ArrayAlloca(cx: Block, ty: Type, val: ValueRef) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(ty.ptr_to().to_ref()); }
let b = cx.fcx.ccx.builder();
b.position_before(cx.fcx.alloca_insert_pt.get().unwrap());
b.array_alloca(ty, val)
}
}
pub fn Free(cx: Block, pointer_val: ValueRef) {
if cx.unreachable.get() { return; }
B(cx).free(pointer_val)
}
pub fn Load(cx: Block, pointer_val: ValueRef) -> ValueRef {
unsafe {
let ccx = cx.fcx.ccx;
if cx.unreachable.get() {
let ty = val_ty(pointer_val);
let eltty = if ty.kind() == llvm::Array {
ty.element_type()
} else {
ccx.int_type()
};
return llvm::LLVMGetUndef(eltty.to_ref());
}
B(cx).load(pointer_val)
}
}
pub fn VolatileLoad(cx: Block, pointer_val: ValueRef) -> ValueRef {
unsafe {
if cx.unreachable.get() {
return llvm::LLVMGetUndef(Type::nil(cx.ccx()).to_ref());
}
B(cx).volatile_load(pointer_val)
}
}
pub fn AtomicLoad(cx: Block, pointer_val: ValueRef, order: AtomicOrdering) -> ValueRef {
unsafe {
let ccx = cx.fcx.ccx;
if cx.unreachable.get() {
return llvm::LLVMGetUndef(ccx.int_type().to_ref());
}
B(cx).atomic_load(pointer_val, order)
}
}
pub fn LoadRangeAssert(cx: Block, pointer_val: ValueRef, lo: u64,
hi: u64, signed: llvm::Bool) -> ValueRef {
if cx.unreachable.get() {
let ccx = cx.fcx.ccx;
let ty = val_ty(pointer_val);
let eltty = if ty.kind() == llvm::Array {
ty.element_type()
} else {
ccx.int_type()
};
unsafe {
llvm::LLVMGetUndef(eltty.to_ref())
}
} else {
B(cx).load_range_assert(pointer_val, lo, hi, signed)
}
}
pub fn Store(cx: Block, val: ValueRef, ptr: ValueRef) {
if cx.unreachable.get() { return; }
B(cx).store(val, ptr)
}
pub fn VolatileStore(cx: Block, val: ValueRef, ptr: ValueRef) {
if cx.unreachable.get() { return; }
B(cx).volatile_store(val, ptr)
}
pub fn AtomicStore(cx: Block, val: ValueRef, ptr: ValueRef, order: AtomicOrdering) {
if cx.unreachable.get() { return; }
B(cx).atomic_store(val, ptr, order)
}
pub fn GEP(cx: Block, pointer: ValueRef, indices: &[ValueRef]) -> ValueRef {
unsafe {
if cx.unreachable.get() {
return llvm::LLVMGetUndef(Type::nil(cx.ccx()).ptr_to().to_ref());
}
B(cx).gep(pointer, indices)
}
}
// Simple wrapper around GEP that takes an array of ints and wraps them
// in C_i32()
#[inline]
pub fn GEPi(cx: Block, base: ValueRef, ixs: &[uint]) -> ValueRef {
unsafe {
if cx.unreachable.get() {
return llvm::LLVMGetUndef(Type::nil(cx.ccx()).ptr_to().to_ref());
}
B(cx).gepi(base, ixs)
}
}
pub fn InBoundsGEP(cx: Block, pointer: ValueRef, indices: &[ValueRef]) -> ValueRef {
unsafe {
if cx.unreachable.get() {
return llvm::LLVMGetUndef(Type::nil(cx.ccx()).ptr_to().to_ref());
}
B(cx).inbounds_gep(pointer, indices)
}
}
pub fn StructGEP(cx: Block, pointer: ValueRef, idx: uint) -> ValueRef {
unsafe {
if cx.unreachable.get() {
return llvm::LLVMGetUndef(Type::nil(cx.ccx()).ptr_to().to_ref());
}
B(cx).struct_gep(pointer, idx)
}
}
pub fn GlobalString(cx: Block, _str: *const c_char) -> ValueRef {
unsafe {
if cx.unreachable.get() {
return llvm::LLVMGetUndef(Type::i8p(cx.ccx()).to_ref());
}
B(cx).global_string(_str)
}
}
pub fn GlobalStringPtr(cx: Block, _str: *const c_char) -> ValueRef {
unsafe {
if cx.unreachable.get() {
return llvm::LLVMGetUndef(Type::i8p(cx.ccx()).to_ref());
}
B(cx).global_string_ptr(_str)
}
}
/* Casts */
pub fn Trunc(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); }
B(cx).trunc(val, dest_ty)
}
}
pub fn ZExt(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); }
B(cx).zext(val, dest_ty)
}
}
pub fn SExt(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); }
B(cx).sext(val, dest_ty)
}
}
pub fn FPToUI(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); }
B(cx).fptoui(val, dest_ty)
}
}
pub fn FPToSI(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); }
B(cx).fptosi(val, dest_ty)
}
}
pub fn UIToFP(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); }
B(cx).uitofp(val, dest_ty)
}
}
pub fn SIToFP(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); }
B(cx).sitofp(val, dest_ty)
}
}
pub fn FPTrunc(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); }
B(cx).fptrunc(val, dest_ty)
}
}
pub fn FPExt(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); }
B(cx).fpext(val, dest_ty)
}
}
pub fn PtrToInt(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); }
B(cx).ptrtoint(val, dest_ty)
}
}
pub fn IntToPtr(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); }
B(cx).inttoptr(val, dest_ty)
}
}
pub fn BitCast(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); }
B(cx).bitcast(val, dest_ty)
}
}
pub fn ZExtOrBitCast(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); }
B(cx).zext_or_bitcast(val, dest_ty)
}
}
pub fn SExtOrBitCast(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); }
B(cx).sext_or_bitcast(val, dest_ty)
}
}
pub fn TruncOrBitCast(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); }
B(cx).trunc_or_bitcast(val, dest_ty)
}
}
pub fn Cast(cx: Block, op: Opcode, val: ValueRef, dest_ty: Type,
_: *const u8)
-> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); }
B(cx).cast(op, val, dest_ty)
}
}
pub fn PointerCast(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); }
B(cx).pointercast(val, dest_ty)
}
}
pub fn IntCast(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); }
B(cx).intcast(val, dest_ty)
}
}
pub fn FPCast(cx: Block, val: ValueRef, dest_ty: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(dest_ty.to_ref()); }
B(cx).fpcast(val, dest_ty)
}
}
/* Comparisons */
pub fn ICmp(cx: Block, op: IntPredicate, lhs: ValueRef, rhs: ValueRef)
-> ValueRef {
unsafe {
if cx.unreachable.get() {
return llvm::LLVMGetUndef(Type::i1(cx.ccx()).to_ref());
}
B(cx).icmp(op, lhs, rhs)
}
}
pub fn FCmp(cx: Block, op: RealPredicate, lhs: ValueRef, rhs: ValueRef)
-> ValueRef {
unsafe {
if cx.unreachable.get() {
return llvm::LLVMGetUndef(Type::i1(cx.ccx()).to_ref());
}
B(cx).fcmp(op, lhs, rhs)
}
}
/* Miscellaneous instructions */
pub fn EmptyPhi(cx: Block, ty: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(ty.to_ref()); }
B(cx).empty_phi(ty)
}
}
pub fn Phi(cx: Block, ty: Type, vals: &[ValueRef],
bbs: &[BasicBlockRef]) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(ty.to_ref()); }
B(cx).phi(ty, vals, bbs)
}
}
pub fn AddIncomingToPhi(phi: ValueRef, val: ValueRef, bb: BasicBlockRef) {
unsafe {
if llvm::LLVMIsUndef(phi) == llvm::True { return; }
llvm::LLVMAddIncoming(phi, &val, &bb, 1 as c_uint);
}
}
pub fn _UndefReturn(cx: Block, fn_: ValueRef) -> ValueRef {
unsafe {
let ccx = cx.fcx.ccx;
let ty = val_ty(fn_);
let retty = if ty.kind() == llvm::Function {
ty.return_type()
} else {
ccx.int_type()
};
B(cx).count_insn("ret_undef");
llvm::LLVMGetUndef(retty.to_ref())
}
}
pub fn add_span_comment(cx: Block, sp: Span, text: &str) {
B(cx).add_span_comment(sp, text)
}
pub fn add_comment(cx: Block, text: &str) {
B(cx).add_comment(text)
}
pub fn InlineAsmCall(cx: Block, asm: *const c_char, cons: *const c_char,
inputs: &[ValueRef], output: Type,
volatile: bool, alignstack: bool,
dia: AsmDialect) -> ValueRef {
B(cx).inline_asm_call(asm, cons, inputs, output, volatile, alignstack, dia)
}
pub fn Call(cx: Block, fn_: ValueRef, args: &[ValueRef],
attributes: Option<AttrBuilder>) -> ValueRef {
if cx.unreachable.get() { return _UndefReturn(cx, fn_); }
B(cx).call(fn_, args, attributes)
}
pub fn CallWithConv(cx: Block, fn_: ValueRef, args: &[ValueRef], conv: CallConv,
attributes: Option<AttrBuilder>) -> ValueRef {
if cx.unreachable.get() { return _UndefReturn(cx, fn_); }
B(cx).call_with_conv(fn_, args, conv, attributes)
}
pub fn AtomicFence(cx: Block, order: AtomicOrdering) {
if cx.unreachable.get() { return; }
B(cx).atomic_fence(order)
}
pub fn Select(cx: Block, if_: ValueRef, then: ValueRef, else_: ValueRef) -> ValueRef {
if cx.unreachable.get() { return _Undef(then); }
B(cx).select(if_, then, else_)
}
pub fn VAArg(cx: Block, list: ValueRef, ty: Type) -> ValueRef {
unsafe {
if cx.unreachable.get() { return llvm::LLVMGetUndef(ty.to_ref()); }
B(cx).va_arg(list, ty)
}
}
pub fn ExtractElement(cx: Block, vec_val: ValueRef, index: ValueRef) -> ValueRef {
unsafe {
if cx.unreachable.get() {
return llvm::LLVMGetUndef(Type::nil(cx.ccx()).to_ref());
}
B(cx).extract_element(vec_val, index)
}
}
pub fn InsertElement(cx: Block, vec_val: ValueRef, elt_val: ValueRef,
index: ValueRef) -> ValueRef {
unsafe {
if cx.unreachable.get() {
return llvm::LLVMGetUndef(Type::nil(cx.ccx()).to_ref());
}
B(cx).insert_element(vec_val, elt_val, index)
}
}
pub fn ShuffleVector(cx: Block, v1: ValueRef, v2: ValueRef,
mask: ValueRef) -> ValueRef {
unsafe {
if cx.unreachable.get() {
return llvm::LLVMGetUndef(Type::nil(cx.ccx()).to_ref());
}
B(cx).shuffle_vector(v1, v2, mask)
}
}
pub fn VectorSplat(cx: Block, num_elts: uint, elt_val: ValueRef) -> ValueRef {
unsafe {
if cx.unreachable.get() {
return llvm::LLVMGetUndef(Type::nil(cx.ccx()).to_ref());
}
B(cx).vector_splat(num_elts, elt_val)
}
}
pub fn ExtractValue(cx: Block, agg_val: ValueRef, index: uint) -> ValueRef {
unsafe {
if cx.unreachable.get() {
return llvm::LLVMGetUndef(Type::nil(cx.ccx()).to_ref());
}
B(cx).extract_value(agg_val, index)
}
}
pub fn InsertValue(cx: Block, agg_val: ValueRef, elt_val: ValueRef, index: uint) -> ValueRef {
unsafe {
if cx.unreachable.get() {
return llvm::LLVMGetUndef(Type::nil(cx.ccx()).to_ref());
}
B(cx).insert_value(agg_val, elt_val, index)
}
}
pub fn IsNull(cx: Block, val: ValueRef) -> ValueRef {
unsafe {
if cx.unreachable.get() {
return llvm::LLVMGetUndef(Type::i1(cx.ccx()).to_ref());
}
B(cx).is_null(val)
}
}
pub fn IsNotNull(cx: Block, val: ValueRef) -> ValueRef {
unsafe {
if cx.unreachable.get() {
return llvm::LLVMGetUndef(Type::i1(cx.ccx()).to_ref());
}
B(cx).is_not_null(val)
}
}
pub fn PtrDiff(cx: Block, lhs: ValueRef, rhs: ValueRef) -> ValueRef {
unsafe {
let ccx = cx.fcx.ccx;
if cx.unreachable.get() { return llvm::LLVMGetUndef(ccx.int_type().to_ref()); }
B(cx).ptrdiff(lhs, rhs)
}
}
pub fn Trap(cx: Block) {
if cx.unreachable.get() { return; }
B(cx).trap();
}
pub fn LandingPad(cx: Block, ty: Type, pers_fn: ValueRef,
num_clauses: uint) -> ValueRef {
check_not_terminated(cx);
assert!(!cx.unreachable.get());
B(cx).landing_pad(ty, pers_fn, num_clauses)
}
pub fn SetCleanup(cx: Block, landing_pad: ValueRef) {
B(cx).set_cleanup(landing_pad)
}
pub fn Resume(cx: Block, exn: ValueRef) -> ValueRef {
check_not_terminated(cx);
terminate(cx, "Resume");
B(cx).resume(exn)
}
// Atomic Operations
pub fn AtomicCmpXchg(cx: Block, dst: ValueRef,
cmp: ValueRef, src: ValueRef,
order: AtomicOrdering,
failure_order: AtomicOrdering) -> ValueRef {
B(cx).atomic_cmpxchg(dst, cmp, src, order, failure_order)
}
pub fn AtomicRMW(cx: Block, op: AtomicBinOp,
dst: ValueRef, src: ValueRef,
order: AtomicOrdering) -> ValueRef {
B(cx).atomic_rmw(op, dst, src, order)
}