rust/crates/ide-assists/src/handlers/generate_function.rs
2023-01-02 14:52:32 +00:00

1853 lines
38 KiB
Rust

use hir::{Adt, HasSource, HirDisplay, Module, Semantics, TypeInfo};
use ide_db::{
base_db::FileId,
defs::{Definition, NameRefClass},
famous_defs::FamousDefs,
FxHashMap, FxHashSet, RootDatabase, SnippetCap,
};
use stdx::to_lower_snake_case;
use syntax::{
ast::{
self,
edit::{AstNodeEdit, IndentLevel},
make, AstNode, CallExpr, HasArgList, HasModuleItem,
},
SyntaxKind, SyntaxNode, TextRange, TextSize,
};
use crate::{
utils::convert_reference_type,
utils::{find_struct_impl, render_snippet, Cursor},
AssistContext, AssistId, AssistKind, Assists,
};
// Assist: generate_function
//
// Adds a stub function with a signature matching the function under the cursor.
//
// ```
// struct Baz;
// fn baz() -> Baz { Baz }
// fn foo() {
// bar$0("", baz());
// }
//
// ```
// ->
// ```
// struct Baz;
// fn baz() -> Baz { Baz }
// fn foo() {
// bar("", baz());
// }
//
// fn bar(arg: &str, baz: Baz) ${0:-> _} {
// todo!()
// }
//
// ```
pub(crate) fn generate_function(acc: &mut Assists, ctx: &AssistContext<'_>) -> Option<()> {
gen_fn(acc, ctx).or_else(|| gen_method(acc, ctx))
}
fn gen_fn(acc: &mut Assists, ctx: &AssistContext<'_>) -> Option<()> {
let path_expr: ast::PathExpr = ctx.find_node_at_offset()?;
let call = path_expr.syntax().parent().and_then(ast::CallExpr::cast)?;
let path = path_expr.path()?;
let name_ref = path.segment()?.name_ref()?;
if ctx.sema.resolve_path(&path).is_some() {
// The function call already resolves, no need to add a function
return None;
}
let fn_name = &*name_ref.text();
let TargetInfo { target_module, adt_name, target, file, insert_offset } =
fn_target_info(ctx, path, &call, fn_name)?;
let function_builder = FunctionBuilder::from_call(ctx, &call, fn_name, target_module, target)?;
let text_range = call.syntax().text_range();
let label = format!("Generate {} function", function_builder.fn_name);
add_func_to_accumulator(
acc,
ctx,
text_range,
function_builder,
insert_offset,
file,
adt_name,
label,
)
}
struct TargetInfo {
target_module: Option<Module>,
adt_name: Option<hir::Name>,
target: GeneratedFunctionTarget,
file: FileId,
insert_offset: TextSize,
}
impl TargetInfo {
fn new(
target_module: Option<Module>,
adt_name: Option<hir::Name>,
target: GeneratedFunctionTarget,
file: FileId,
insert_offset: TextSize,
) -> Self {
Self { target_module, adt_name, target, file, insert_offset }
}
}
fn fn_target_info(
ctx: &AssistContext<'_>,
path: ast::Path,
call: &CallExpr,
fn_name: &str,
) -> Option<TargetInfo> {
match path.qualifier() {
Some(qualifier) => match ctx.sema.resolve_path(&qualifier) {
Some(hir::PathResolution::Def(hir::ModuleDef::Module(module))) => {
get_fn_target_info(ctx, &Some(module), call.clone())
}
Some(hir::PathResolution::Def(hir::ModuleDef::Adt(adt))) => {
if let hir::Adt::Enum(_) = adt {
// Don't suggest generating function if the name starts with an uppercase letter
if fn_name.starts_with(char::is_uppercase) {
return None;
}
}
assoc_fn_target_info(ctx, call, adt, fn_name)
}
Some(hir::PathResolution::SelfType(impl_)) => {
let adt = impl_.self_ty(ctx.db()).as_adt()?;
assoc_fn_target_info(ctx, call, adt, fn_name)
}
_ => None,
},
_ => get_fn_target_info(ctx, &None, call.clone()),
}
}
fn gen_method(acc: &mut Assists, ctx: &AssistContext<'_>) -> Option<()> {
let call: ast::MethodCallExpr = ctx.find_node_at_offset()?;
if ctx.sema.resolve_method_call(&call).is_some() {
return None;
}
let fn_name = call.name_ref()?;
let adt = ctx.sema.type_of_expr(&call.receiver()?)?.original().strip_references().as_adt()?;
let current_module = ctx.sema.scope(call.syntax())?.module();
let target_module = adt.module(ctx.sema.db);
if current_module.krate() != target_module.krate() {
return None;
}
let (impl_, file) = get_adt_source(ctx, &adt, fn_name.text().as_str())?;
let (target, insert_offset) = get_method_target(ctx, &impl_, &adt)?;
let function_builder =
FunctionBuilder::from_method_call(ctx, &call, &fn_name, target_module, target)?;
let text_range = call.syntax().text_range();
let adt_name = if impl_.is_none() { Some(adt.name(ctx.sema.db)) } else { None };
let label = format!("Generate {} method", function_builder.fn_name);
add_func_to_accumulator(
acc,
ctx,
text_range,
function_builder,
insert_offset,
file,
adt_name,
label,
)
}
fn add_func_to_accumulator(
acc: &mut Assists,
ctx: &AssistContext<'_>,
text_range: TextRange,
function_builder: FunctionBuilder,
insert_offset: TextSize,
file: FileId,
adt_name: Option<hir::Name>,
label: String,
) -> Option<()> {
acc.add(AssistId("generate_function", AssistKind::Generate), label, text_range, |builder| {
let indent = IndentLevel::from_node(function_builder.target.syntax());
let function_template = function_builder.render(adt_name.is_some());
let mut func = function_template.to_string(ctx.config.snippet_cap);
if let Some(name) = adt_name {
func = format!("\n{indent}impl {name} {{\n{func}\n{indent}}}");
}
builder.edit_file(file);
match ctx.config.snippet_cap {
Some(cap) => builder.insert_snippet(cap, insert_offset, func),
None => builder.insert(insert_offset, func),
}
})
}
fn get_adt_source(
ctx: &AssistContext<'_>,
adt: &hir::Adt,
fn_name: &str,
) -> Option<(Option<ast::Impl>, FileId)> {
let range = adt.source(ctx.sema.db)?.syntax().original_file_range(ctx.sema.db);
let file = ctx.sema.parse(range.file_id);
let adt_source =
ctx.sema.find_node_at_offset_with_macros(file.syntax(), range.range.start())?;
find_struct_impl(ctx, &adt_source, &[fn_name.to_string()]).map(|impl_| (impl_, range.file_id))
}
struct FunctionTemplate {
leading_ws: String,
fn_def: ast::Fn,
ret_type: Option<ast::RetType>,
should_focus_return_type: bool,
trailing_ws: String,
tail_expr: ast::Expr,
}
impl FunctionTemplate {
fn to_string(&self, cap: Option<SnippetCap>) -> String {
let Self { leading_ws, fn_def, ret_type, should_focus_return_type, trailing_ws, tail_expr } =
self;
let f = match cap {
Some(cap) => {
let cursor = if *should_focus_return_type {
// Focus the return type if there is one
match ret_type {
Some(ret_type) => ret_type.syntax(),
None => tail_expr.syntax(),
}
} else {
tail_expr.syntax()
};
render_snippet(cap, fn_def.syntax(), Cursor::Replace(cursor))
}
None => fn_def.to_string(),
};
format!("{leading_ws}{f}{trailing_ws}")
}
}
struct FunctionBuilder {
target: GeneratedFunctionTarget,
fn_name: ast::Name,
type_params: Option<ast::GenericParamList>,
params: ast::ParamList,
ret_type: Option<ast::RetType>,
should_focus_return_type: bool,
needs_pub: bool,
is_async: bool,
}
impl FunctionBuilder {
/// Prepares a generated function that matches `call`.
/// The function is generated in `target_module` or next to `call`
fn from_call(
ctx: &AssistContext<'_>,
call: &ast::CallExpr,
fn_name: &str,
target_module: Option<hir::Module>,
target: GeneratedFunctionTarget,
) -> Option<Self> {
let needs_pub = target_module.is_some();
let target_module =
target_module.or_else(|| ctx.sema.scope(target.syntax()).map(|it| it.module()))?;
let fn_name = make::name(fn_name);
let (type_params, params) =
fn_args(ctx, target_module, ast::CallableExpr::Call(call.clone()))?;
let await_expr = call.syntax().parent().and_then(ast::AwaitExpr::cast);
let is_async = await_expr.is_some();
let (ret_type, should_focus_return_type) =
make_return_type(ctx, &ast::Expr::CallExpr(call.clone()), target_module);
Some(Self {
target,
fn_name,
type_params,
params,
ret_type,
should_focus_return_type,
needs_pub,
is_async,
})
}
fn from_method_call(
ctx: &AssistContext<'_>,
call: &ast::MethodCallExpr,
name: &ast::NameRef,
target_module: Module,
target: GeneratedFunctionTarget,
) -> Option<Self> {
let needs_pub =
!module_is_descendant(&ctx.sema.scope(call.syntax())?.module(), &target_module, ctx);
let fn_name = make::name(&name.text());
let (type_params, params) =
fn_args(ctx, target_module, ast::CallableExpr::MethodCall(call.clone()))?;
let await_expr = call.syntax().parent().and_then(ast::AwaitExpr::cast);
let is_async = await_expr.is_some();
let (ret_type, should_focus_return_type) =
make_return_type(ctx, &ast::Expr::MethodCallExpr(call.clone()), target_module);
Some(Self {
target,
fn_name,
type_params,
params,
ret_type,
should_focus_return_type,
needs_pub,
is_async,
})
}
fn render(self, is_method: bool) -> FunctionTemplate {
let placeholder_expr = make::ext::expr_todo();
let fn_body = make::block_expr(vec![], Some(placeholder_expr));
let visibility = if self.needs_pub { Some(make::visibility_pub_crate()) } else { None };
let mut fn_def = make::fn_(
visibility,
self.fn_name,
self.type_params,
self.params,
fn_body,
self.ret_type,
self.is_async,
);
let leading_ws;
let trailing_ws;
match self.target {
GeneratedFunctionTarget::BehindItem(it) => {
let mut indent = IndentLevel::from_node(&it);
if is_method {
indent = indent + 1;
leading_ws = format!("{indent}");
} else {
leading_ws = format!("\n\n{indent}");
}
fn_def = fn_def.indent(indent);
trailing_ws = String::new();
}
GeneratedFunctionTarget::InEmptyItemList(it) => {
let indent = IndentLevel::from_node(&it);
let leading_indent = indent + 1;
leading_ws = format!("\n{leading_indent}");
fn_def = fn_def.indent(leading_indent);
trailing_ws = format!("\n{indent}");
}
};
FunctionTemplate {
leading_ws,
ret_type: fn_def.ret_type(),
// PANIC: we guarantee we always create a function body with a tail expr
tail_expr: fn_def.body().unwrap().tail_expr().unwrap(),
should_focus_return_type: self.should_focus_return_type,
fn_def,
trailing_ws,
}
}
}
/// Makes an optional return type along with whether the return type should be focused by the cursor.
/// If we cannot infer what the return type should be, we create a placeholder type.
///
/// The rule for whether we focus a return type or not (and thus focus the function body),
/// is rather simple:
/// * If we could *not* infer what the return type should be, focus it (so the user can fill-in
/// the correct return type).
/// * If we could infer the return type, don't focus it (and thus focus the function body) so the
/// user can change the `todo!` function body.
fn make_return_type(
ctx: &AssistContext<'_>,
call: &ast::Expr,
target_module: Module,
) -> (Option<ast::RetType>, bool) {
let (ret_ty, should_focus_return_type) = {
match ctx.sema.type_of_expr(call).map(TypeInfo::original) {
Some(ty) if ty.is_unknown() => (Some(make::ty_placeholder()), true),
None => (Some(make::ty_placeholder()), true),
Some(ty) if ty.is_unit() => (None, false),
Some(ty) => {
let rendered = ty.display_source_code(ctx.db(), target_module.into());
match rendered {
Ok(rendered) => (Some(make::ty(&rendered)), false),
Err(_) => (Some(make::ty_placeholder()), true),
}
}
}
};
let ret_type = ret_ty.map(make::ret_type);
(ret_type, should_focus_return_type)
}
fn get_fn_target_info(
ctx: &AssistContext<'_>,
target_module: &Option<Module>,
call: CallExpr,
) -> Option<TargetInfo> {
let (target, file, insert_offset) = get_fn_target(ctx, target_module, call)?;
Some(TargetInfo::new(*target_module, None, target, file, insert_offset))
}
fn get_fn_target(
ctx: &AssistContext<'_>,
target_module: &Option<Module>,
call: CallExpr,
) -> Option<(GeneratedFunctionTarget, FileId, TextSize)> {
let mut file = ctx.file_id();
let target = match target_module {
Some(target_module) => {
let module_source = target_module.definition_source(ctx.db());
let (in_file, target) = next_space_for_fn_in_module(ctx.sema.db, &module_source)?;
file = in_file;
target
}
None => next_space_for_fn_after_call_site(ast::CallableExpr::Call(call))?,
};
Some((target.clone(), file, get_insert_offset(&target)))
}
fn get_method_target(
ctx: &AssistContext<'_>,
impl_: &Option<ast::Impl>,
adt: &Adt,
) -> Option<(GeneratedFunctionTarget, TextSize)> {
let target = match impl_ {
Some(impl_) => next_space_for_fn_in_impl(impl_)?,
None => {
GeneratedFunctionTarget::BehindItem(adt.source(ctx.sema.db)?.syntax().value.clone())
}
};
Some((target.clone(), get_insert_offset(&target)))
}
fn assoc_fn_target_info(
ctx: &AssistContext<'_>,
call: &CallExpr,
adt: hir::Adt,
fn_name: &str,
) -> Option<TargetInfo> {
let current_module = ctx.sema.scope(call.syntax())?.module();
let module = adt.module(ctx.sema.db);
let target_module = if current_module == module { None } else { Some(module) };
if current_module.krate() != module.krate() {
return None;
}
let (impl_, file) = get_adt_source(ctx, &adt, fn_name)?;
let (target, insert_offset) = get_method_target(ctx, &impl_, &adt)?;
let adt_name = if impl_.is_none() { Some(adt.name(ctx.sema.db)) } else { None };
Some(TargetInfo::new(target_module, adt_name, target, file, insert_offset))
}
fn get_insert_offset(target: &GeneratedFunctionTarget) -> TextSize {
match &target {
GeneratedFunctionTarget::BehindItem(it) => it.text_range().end(),
GeneratedFunctionTarget::InEmptyItemList(it) => it.text_range().start() + TextSize::of('{'),
}
}
#[derive(Clone)]
enum GeneratedFunctionTarget {
BehindItem(SyntaxNode),
InEmptyItemList(SyntaxNode),
}
impl GeneratedFunctionTarget {
fn syntax(&self) -> &SyntaxNode {
match self {
GeneratedFunctionTarget::BehindItem(it) => it,
GeneratedFunctionTarget::InEmptyItemList(it) => it,
}
}
}
/// Computes the type variables and arguments required for the generated function
fn fn_args(
ctx: &AssistContext<'_>,
target_module: hir::Module,
call: ast::CallableExpr,
) -> Option<(Option<ast::GenericParamList>, ast::ParamList)> {
let mut arg_names = Vec::new();
let mut arg_types = Vec::new();
for arg in call.arg_list()?.args() {
arg_names.push(fn_arg_name(&ctx.sema, &arg));
arg_types.push(fn_arg_type(ctx, target_module, &arg));
}
deduplicate_arg_names(&mut arg_names);
let params = arg_names.into_iter().zip(arg_types).map(|(name, ty)| {
make::param(make::ext::simple_ident_pat(make::name(&name)).into(), make::ty(&ty))
});
Some((
None,
make::param_list(
match call {
ast::CallableExpr::Call(_) => None,
ast::CallableExpr::MethodCall(_) => Some(make::self_param()),
},
params,
),
))
}
/// Makes duplicate argument names unique by appending incrementing numbers.
///
/// ```
/// let mut names: Vec<String> =
/// vec!["foo".into(), "foo".into(), "bar".into(), "baz".into(), "bar".into()];
/// deduplicate_arg_names(&mut names);
/// let expected: Vec<String> =
/// vec!["foo_1".into(), "foo_2".into(), "bar_1".into(), "baz".into(), "bar_2".into()];
/// assert_eq!(names, expected);
/// ```
fn deduplicate_arg_names(arg_names: &mut [String]) {
let mut arg_name_counts = FxHashMap::default();
for name in arg_names.iter() {
*arg_name_counts.entry(name).or_insert(0) += 1;
}
let duplicate_arg_names: FxHashSet<String> = arg_name_counts
.into_iter()
.filter(|(_, count)| *count >= 2)
.map(|(name, _)| name.clone())
.collect();
let mut counter_per_name = FxHashMap::default();
for arg_name in arg_names.iter_mut() {
if duplicate_arg_names.contains(arg_name) {
let counter = counter_per_name.entry(arg_name.clone()).or_insert(1);
arg_name.push('_');
arg_name.push_str(&counter.to_string());
*counter += 1;
}
}
}
fn fn_arg_name(sema: &Semantics<'_, RootDatabase>, arg_expr: &ast::Expr) -> String {
let name = (|| match arg_expr {
ast::Expr::CastExpr(cast_expr) => Some(fn_arg_name(sema, &cast_expr.expr()?)),
expr => {
let name_ref = expr
.syntax()
.descendants()
.filter_map(ast::NameRef::cast)
.filter(|name| name.ident_token().is_some())
.last()?;
if let Some(NameRefClass::Definition(Definition::Const(_) | Definition::Static(_))) =
NameRefClass::classify(sema, &name_ref)
{
return Some(name_ref.to_string().to_lowercase());
};
Some(to_lower_snake_case(&name_ref.to_string()))
}
})();
match name {
Some(mut name) if name.starts_with(|c: char| c.is_ascii_digit()) => {
name.insert_str(0, "arg");
name
}
Some(name) => name,
None => "arg".to_string(),
}
}
fn fn_arg_type(ctx: &AssistContext<'_>, target_module: hir::Module, fn_arg: &ast::Expr) -> String {
fn maybe_displayed_type(
ctx: &AssistContext<'_>,
target_module: hir::Module,
fn_arg: &ast::Expr,
) -> Option<String> {
let ty = ctx.sema.type_of_expr(fn_arg)?.adjusted();
if ty.is_unknown() {
return None;
}
if ty.is_reference() || ty.is_mutable_reference() {
let famous_defs = &FamousDefs(&ctx.sema, ctx.sema.scope(fn_arg.syntax())?.krate());
convert_reference_type(ty.strip_references(), ctx.db(), famous_defs)
.map(|conversion| conversion.convert_type(ctx.db()))
.or_else(|| ty.display_source_code(ctx.db(), target_module.into()).ok())
} else {
ty.display_source_code(ctx.db(), target_module.into()).ok()
}
}
maybe_displayed_type(ctx, target_module, fn_arg).unwrap_or_else(|| String::from("_"))
}
/// Returns the position inside the current mod or file
/// directly after the current block
/// We want to write the generated function directly after
/// fns, impls or macro calls, but inside mods
fn next_space_for_fn_after_call_site(expr: ast::CallableExpr) -> Option<GeneratedFunctionTarget> {
let mut ancestors = expr.syntax().ancestors().peekable();
let mut last_ancestor: Option<SyntaxNode> = None;
while let Some(next_ancestor) = ancestors.next() {
match next_ancestor.kind() {
SyntaxKind::SOURCE_FILE => {
break;
}
SyntaxKind::ITEM_LIST => {
if ancestors.peek().map(|a| a.kind()) == Some(SyntaxKind::MODULE) {
break;
}
}
_ => {}
}
last_ancestor = Some(next_ancestor);
}
last_ancestor.map(GeneratedFunctionTarget::BehindItem)
}
fn next_space_for_fn_in_module(
db: &dyn hir::db::AstDatabase,
module_source: &hir::InFile<hir::ModuleSource>,
) -> Option<(FileId, GeneratedFunctionTarget)> {
let file = module_source.file_id.original_file(db);
let assist_item = match &module_source.value {
hir::ModuleSource::SourceFile(it) => match it.items().last() {
Some(last_item) => GeneratedFunctionTarget::BehindItem(last_item.syntax().clone()),
None => GeneratedFunctionTarget::BehindItem(it.syntax().clone()),
},
hir::ModuleSource::Module(it) => match it.item_list().and_then(|it| it.items().last()) {
Some(last_item) => GeneratedFunctionTarget::BehindItem(last_item.syntax().clone()),
None => GeneratedFunctionTarget::InEmptyItemList(it.item_list()?.syntax().clone()),
},
hir::ModuleSource::BlockExpr(it) => {
if let Some(last_item) =
it.statements().take_while(|stmt| matches!(stmt, ast::Stmt::Item(_))).last()
{
GeneratedFunctionTarget::BehindItem(last_item.syntax().clone())
} else {
GeneratedFunctionTarget::InEmptyItemList(it.syntax().clone())
}
}
};
Some((file, assist_item))
}
fn next_space_for_fn_in_impl(impl_: &ast::Impl) -> Option<GeneratedFunctionTarget> {
if let Some(last_item) = impl_.assoc_item_list().and_then(|it| it.assoc_items().last()) {
Some(GeneratedFunctionTarget::BehindItem(last_item.syntax().clone()))
} else {
Some(GeneratedFunctionTarget::InEmptyItemList(impl_.assoc_item_list()?.syntax().clone()))
}
}
fn module_is_descendant(module: &hir::Module, ans: &hir::Module, ctx: &AssistContext<'_>) -> bool {
if module == ans {
return true;
}
for c in ans.children(ctx.sema.db) {
if module_is_descendant(module, &c, ctx) {
return true;
}
}
false
}
#[cfg(test)]
mod tests {
use crate::tests::{check_assist, check_assist_not_applicable};
use super::*;
#[test]
fn add_function_with_no_args() {
check_assist(
generate_function,
r"
fn foo() {
bar$0();
}
",
r"
fn foo() {
bar();
}
fn bar() ${0:-> _} {
todo!()
}
",
)
}
#[test]
fn add_function_from_method() {
// This ensures that the function is correctly generated
// in the next outer mod or file
check_assist(
generate_function,
r"
impl Foo {
fn foo() {
bar$0();
}
}
",
r"
impl Foo {
fn foo() {
bar();
}
}
fn bar() ${0:-> _} {
todo!()
}
",
)
}
#[test]
fn add_function_directly_after_current_block() {
// The new fn should not be created at the end of the file or module
check_assist(
generate_function,
r"
fn foo1() {
bar$0();
}
fn foo2() {}
",
r"
fn foo1() {
bar();
}
fn bar() ${0:-> _} {
todo!()
}
fn foo2() {}
",
)
}
#[test]
fn add_function_with_no_args_in_same_module() {
check_assist(
generate_function,
r"
mod baz {
fn foo() {
bar$0();
}
}
",
r"
mod baz {
fn foo() {
bar();
}
fn bar() ${0:-> _} {
todo!()
}
}
",
)
}
#[test]
fn add_function_with_upper_camel_case_arg() {
check_assist(
generate_function,
r"
struct BazBaz;
fn foo() {
bar$0(BazBaz);
}
",
r"
struct BazBaz;
fn foo() {
bar(BazBaz);
}
fn bar(baz_baz: BazBaz) ${0:-> _} {
todo!()
}
",
);
}
#[test]
fn add_function_with_upper_camel_case_arg_as_cast() {
check_assist(
generate_function,
r"
struct BazBaz;
fn foo() {
bar$0(&BazBaz as *const BazBaz);
}
",
r"
struct BazBaz;
fn foo() {
bar(&BazBaz as *const BazBaz);
}
fn bar(baz_baz: *const BazBaz) ${0:-> _} {
todo!()
}
",
);
}
#[test]
fn add_function_with_function_call_arg() {
check_assist(
generate_function,
r"
struct Baz;
fn baz() -> Baz { todo!() }
fn foo() {
bar$0(baz());
}
",
r"
struct Baz;
fn baz() -> Baz { todo!() }
fn foo() {
bar(baz());
}
fn bar(baz: Baz) ${0:-> _} {
todo!()
}
",
);
}
#[test]
fn add_function_with_method_call_arg() {
check_assist(
generate_function,
r"
struct Baz;
impl Baz {
fn foo(&self) -> Baz {
ba$0r(self.baz())
}
fn baz(&self) -> Baz {
Baz
}
}
",
r"
struct Baz;
impl Baz {
fn foo(&self) -> Baz {
bar(self.baz())
}
fn baz(&self) -> Baz {
Baz
}
}
fn bar(baz: Baz) -> Baz {
${0:todo!()}
}
",
)
}
#[test]
fn add_function_with_string_literal_arg() {
check_assist(
generate_function,
r#"
fn foo() {
$0bar("bar")
}
"#,
r#"
fn foo() {
bar("bar")
}
fn bar(arg: &str) {
${0:todo!()}
}
"#,
)
}
#[test]
fn add_function_with_char_literal_arg() {
check_assist(
generate_function,
r#"
fn foo() {
$0bar('x')
}
"#,
r#"
fn foo() {
bar('x')
}
fn bar(arg: char) {
${0:todo!()}
}
"#,
)
}
#[test]
fn add_function_with_int_literal_arg() {
check_assist(
generate_function,
r"
fn foo() {
$0bar(42)
}
",
r"
fn foo() {
bar(42)
}
fn bar(arg: i32) {
${0:todo!()}
}
",
)
}
#[test]
fn add_function_with_cast_int_literal_arg() {
check_assist(
generate_function,
r"
fn foo() {
$0bar(42 as u8)
}
",
r"
fn foo() {
bar(42 as u8)
}
fn bar(arg: u8) {
${0:todo!()}
}
",
)
}
#[test]
fn name_of_cast_variable_is_used() {
// Ensures that the name of the cast type isn't used
// in the generated function signature.
check_assist(
generate_function,
r"
fn foo() {
let x = 42;
bar$0(x as u8)
}
",
r"
fn foo() {
let x = 42;
bar(x as u8)
}
fn bar(x: u8) {
${0:todo!()}
}
",
)
}
#[test]
fn add_function_with_variable_arg() {
check_assist(
generate_function,
r"
fn foo() {
let worble = ();
$0bar(worble)
}
",
r"
fn foo() {
let worble = ();
bar(worble)
}
fn bar(worble: ()) {
${0:todo!()}
}
",
)
}
#[test]
fn add_function_with_impl_trait_arg() {
check_assist(
generate_function,
r#"
//- minicore: sized
trait Foo {}
fn foo() -> impl Foo {
todo!()
}
fn baz() {
$0bar(foo())
}
"#,
r#"
trait Foo {}
fn foo() -> impl Foo {
todo!()
}
fn baz() {
bar(foo())
}
fn bar(foo: impl Foo) {
${0:todo!()}
}
"#,
)
}
#[test]
fn borrowed_arg() {
check_assist(
generate_function,
r"
struct Baz;
fn baz() -> Baz { todo!() }
fn foo() {
bar$0(&baz())
}
",
r"
struct Baz;
fn baz() -> Baz { todo!() }
fn foo() {
bar(&baz())
}
fn bar(baz: &Baz) {
${0:todo!()}
}
",
)
}
#[test]
fn add_function_with_qualified_path_arg() {
check_assist(
generate_function,
r"
mod Baz {
pub struct Bof;
pub fn baz() -> Bof { Bof }
}
fn foo() {
$0bar(Baz::baz())
}
",
r"
mod Baz {
pub struct Bof;
pub fn baz() -> Bof { Bof }
}
fn foo() {
bar(Baz::baz())
}
fn bar(baz: Baz::Bof) {
${0:todo!()}
}
",
)
}
#[test]
fn add_function_with_generic_arg() {
// FIXME: This is wrong, generated `bar` should include generic parameter.
check_assist(
generate_function,
r"
fn foo<T>(t: T) {
$0bar(t)
}
",
r"
fn foo<T>(t: T) {
bar(t)
}
fn bar(t: T) {
${0:todo!()}
}
",
)
}
#[test]
fn add_function_with_fn_arg() {
// FIXME: The argument in `bar` is wrong.
check_assist(
generate_function,
r"
struct Baz;
impl Baz {
fn new() -> Self { Baz }
}
fn foo() {
$0bar(Baz::new);
}
",
r"
struct Baz;
impl Baz {
fn new() -> Self { Baz }
}
fn foo() {
bar(Baz::new);
}
fn bar(new: fn) ${0:-> _} {
todo!()
}
",
)
}
#[test]
fn add_function_with_closure_arg() {
// FIXME: The argument in `bar` is wrong.
check_assist(
generate_function,
r"
fn foo() {
let closure = |x: i64| x - 1;
$0bar(closure)
}
",
r"
fn foo() {
let closure = |x: i64| x - 1;
bar(closure)
}
fn bar(closure: _) {
${0:todo!()}
}
",
)
}
#[test]
fn unresolveable_types_default_to_placeholder() {
check_assist(
generate_function,
r"
fn foo() {
$0bar(baz)
}
",
r"
fn foo() {
bar(baz)
}
fn bar(baz: _) {
${0:todo!()}
}
",
)
}
#[test]
fn arg_names_dont_overlap() {
check_assist(
generate_function,
r"
struct Baz;
fn baz() -> Baz { Baz }
fn foo() {
$0bar(baz(), baz())
}
",
r"
struct Baz;
fn baz() -> Baz { Baz }
fn foo() {
bar(baz(), baz())
}
fn bar(baz_1: Baz, baz_2: Baz) {
${0:todo!()}
}
",
)
}
#[test]
fn arg_name_counters_start_at_1_per_name() {
check_assist(
generate_function,
r#"
struct Baz;
fn baz() -> Baz { Baz }
fn foo() {
$0bar(baz(), baz(), "foo", "bar")
}
"#,
r#"
struct Baz;
fn baz() -> Baz { Baz }
fn foo() {
bar(baz(), baz(), "foo", "bar")
}
fn bar(baz_1: Baz, baz_2: Baz, arg_1: &str, arg_2: &str) {
${0:todo!()}
}
"#,
)
}
#[test]
fn add_function_in_module() {
check_assist(
generate_function,
r"
mod bar {}
fn foo() {
bar::my_fn$0()
}
",
r"
mod bar {
pub(crate) fn my_fn() {
${0:todo!()}
}
}
fn foo() {
bar::my_fn()
}
",
)
}
#[test]
fn qualified_path_uses_correct_scope() {
check_assist(
generate_function,
r#"
mod foo {
pub struct Foo;
}
fn bar() {
use foo::Foo;
let foo = Foo;
baz$0(foo)
}
"#,
r#"
mod foo {
pub struct Foo;
}
fn bar() {
use foo::Foo;
let foo = Foo;
baz(foo)
}
fn baz(foo: foo::Foo) {
${0:todo!()}
}
"#,
)
}
#[test]
fn add_function_in_module_containing_other_items() {
check_assist(
generate_function,
r"
mod bar {
fn something_else() {}
}
fn foo() {
bar::my_fn$0()
}
",
r"
mod bar {
fn something_else() {}
pub(crate) fn my_fn() {
${0:todo!()}
}
}
fn foo() {
bar::my_fn()
}
",
)
}
#[test]
fn add_function_in_nested_module() {
check_assist(
generate_function,
r"
mod bar {
pub mod baz {}
}
fn foo() {
bar::baz::my_fn$0()
}
",
r"
mod bar {
pub mod baz {
pub(crate) fn my_fn() {
${0:todo!()}
}
}
}
fn foo() {
bar::baz::my_fn()
}
",
)
}
#[test]
fn add_function_in_another_file() {
check_assist(
generate_function,
r"
//- /main.rs
mod foo;
fn main() {
foo::bar$0()
}
//- /foo.rs
",
r"
pub(crate) fn bar() {
${0:todo!()}
}",
)
}
#[test]
fn add_function_with_return_type() {
check_assist(
generate_function,
r"
fn main() {
let x: u32 = foo$0();
}
",
r"
fn main() {
let x: u32 = foo();
}
fn foo() -> u32 {
${0:todo!()}
}
",
)
}
#[test]
fn add_function_not_applicable_if_function_already_exists() {
check_assist_not_applicable(
generate_function,
r"
fn foo() {
bar$0();
}
fn bar() {}
",
)
}
#[test]
fn add_function_not_applicable_if_unresolved_variable_in_call_is_selected() {
check_assist_not_applicable(
// bar is resolved, but baz isn't.
// The assist is only active if the cursor is on an unresolved path,
// but the assist should only be offered if the path is a function call.
generate_function,
r#"
fn foo() {
bar(b$0az);
}
fn bar(baz: ()) {}
"#,
)
}
#[test]
fn create_method_with_no_args() {
check_assist(
generate_function,
r#"
struct Foo;
impl Foo {
fn foo(&self) {
self.bar()$0;
}
}
"#,
r#"
struct Foo;
impl Foo {
fn foo(&self) {
self.bar();
}
fn bar(&self) ${0:-> _} {
todo!()
}
}
"#,
)
}
#[test]
fn create_function_with_async() {
check_assist(
generate_function,
r"
fn foo() {
$0bar(42).await();
}
",
r"
fn foo() {
bar(42).await();
}
async fn bar(arg: i32) ${0:-> _} {
todo!()
}
",
)
}
#[test]
fn create_method() {
check_assist(
generate_function,
r"
struct S;
fn foo() {S.bar$0();}
",
r"
struct S;
impl S {
fn bar(&self) ${0:-> _} {
todo!()
}
}
fn foo() {S.bar();}
",
)
}
#[test]
fn create_method_within_an_impl() {
check_assist(
generate_function,
r"
struct S;
fn foo() {S.bar$0();}
impl S {}
",
r"
struct S;
fn foo() {S.bar();}
impl S {
fn bar(&self) ${0:-> _} {
todo!()
}
}
",
)
}
#[test]
fn create_method_from_different_module() {
check_assist(
generate_function,
r"
mod s {
pub struct S;
}
fn foo() {s::S.bar$0();}
",
r"
mod s {
pub struct S;
impl S {
pub(crate) fn bar(&self) ${0:-> _} {
todo!()
}
}
}
fn foo() {s::S.bar();}
",
)
}
#[test]
fn create_method_from_descendant_module() {
check_assist(
generate_function,
r"
struct S;
mod s {
fn foo() {
super::S.bar$0();
}
}
",
r"
struct S;
impl S {
fn bar(&self) ${0:-> _} {
todo!()
}
}
mod s {
fn foo() {
super::S.bar();
}
}
",
)
}
#[test]
fn create_method_with_cursor_anywhere_on_call_expresion() {
check_assist(
generate_function,
r"
struct S;
fn foo() {$0S.bar();}
",
r"
struct S;
impl S {
fn bar(&self) ${0:-> _} {
todo!()
}
}
fn foo() {S.bar();}
",
)
}
#[test]
fn create_static_method() {
check_assist(
generate_function,
r"
struct S;
fn foo() {S::bar$0();}
",
r"
struct S;
impl S {
fn bar() ${0:-> _} {
todo!()
}
}
fn foo() {S::bar();}
",
)
}
#[test]
fn create_static_method_within_an_impl() {
check_assist(
generate_function,
r"
struct S;
fn foo() {S::bar$0();}
impl S {}
",
r"
struct S;
fn foo() {S::bar();}
impl S {
fn bar() ${0:-> _} {
todo!()
}
}
",
)
}
#[test]
fn create_static_method_from_different_module() {
check_assist(
generate_function,
r"
mod s {
pub struct S;
}
fn foo() {s::S::bar$0();}
",
r"
mod s {
pub struct S;
impl S {
pub(crate) fn bar() ${0:-> _} {
todo!()
}
}
}
fn foo() {s::S::bar();}
",
)
}
#[test]
fn create_static_method_with_cursor_anywhere_on_call_expresion() {
check_assist(
generate_function,
r"
struct S;
fn foo() {$0S::bar();}
",
r"
struct S;
impl S {
fn bar() ${0:-> _} {
todo!()
}
}
fn foo() {S::bar();}
",
)
}
#[test]
fn create_static_method_within_an_impl_with_self_syntax() {
check_assist(
generate_function,
r"
struct S;
impl S {
fn foo(&self) {
Self::bar$0();
}
}
",
r"
struct S;
impl S {
fn foo(&self) {
Self::bar();
}
fn bar() ${0:-> _} {
todo!()
}
}
",
)
}
#[test]
fn no_panic_on_invalid_global_path() {
check_assist(
generate_function,
r"
fn main() {
::foo$0();
}
",
r"
fn main() {
::foo();
}
fn foo() ${0:-> _} {
todo!()
}
",
)
}
#[test]
fn handle_tuple_indexing() {
check_assist(
generate_function,
r"
fn main() {
let a = ((),);
foo$0(a.0);
}
",
r"
fn main() {
let a = ((),);
foo(a.0);
}
fn foo(a: ()) ${0:-> _} {
todo!()
}
",
)
}
#[test]
fn add_function_with_const_arg() {
check_assist(
generate_function,
r"
const VALUE: usize = 0;
fn main() {
foo$0(VALUE);
}
",
r"
const VALUE: usize = 0;
fn main() {
foo(VALUE);
}
fn foo(value: usize) ${0:-> _} {
todo!()
}
",
)
}
#[test]
fn add_function_with_static_arg() {
check_assist(
generate_function,
r"
static VALUE: usize = 0;
fn main() {
foo$0(VALUE);
}
",
r"
static VALUE: usize = 0;
fn main() {
foo(VALUE);
}
fn foo(value: usize) ${0:-> _} {
todo!()
}
",
)
}
#[test]
fn add_function_with_static_mut_arg() {
check_assist(
generate_function,
r"
static mut VALUE: usize = 0;
fn main() {
foo$0(VALUE);
}
",
r"
static mut VALUE: usize = 0;
fn main() {
foo(VALUE);
}
fn foo(value: usize) ${0:-> _} {
todo!()
}
",
)
}
#[test]
fn not_applicable_for_enum_variant() {
check_assist_not_applicable(
generate_function,
r"
enum Foo {}
fn main() {
Foo::Bar$0(true)
}
",
);
}
#[test]
fn applicable_for_enum_method() {
check_assist(
generate_function,
r"
enum Foo {}
fn main() {
Foo::new$0();
}
",
r"
enum Foo {}
impl Foo {
fn new() ${0:-> _} {
todo!()
}
}
fn main() {
Foo::new();
}
",
)
}
}