5501 lines
181 KiB
Rust
5501 lines
181 KiB
Rust
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
#![allow(non_camel_case_types)]
|
|
|
|
use back::svh::Svh;
|
|
use driver::session::Session;
|
|
use lint;
|
|
use metadata::csearch;
|
|
use middle::const_eval;
|
|
use middle::def;
|
|
use middle::dependency_format;
|
|
use middle::freevars::CaptureModeMap;
|
|
use middle::freevars;
|
|
use middle::lang_items::{FnTraitLangItem, FnMutTraitLangItem};
|
|
use middle::lang_items::{FnOnceTraitLangItem, OpaqueStructLangItem};
|
|
use middle::lang_items::{TyDescStructLangItem, TyVisitorTraitLangItem};
|
|
use middle::mem_categorization as mc;
|
|
use middle::resolve;
|
|
use middle::resolve_lifetime;
|
|
use middle::stability;
|
|
use middle::subst::{Subst, Substs, VecPerParamSpace};
|
|
use middle::subst;
|
|
use middle::ty;
|
|
use middle::typeck;
|
|
use middle::ty_fold;
|
|
use middle::ty_fold::{TypeFoldable,TypeFolder};
|
|
use middle;
|
|
use util::ppaux::{note_and_explain_region, bound_region_ptr_to_string};
|
|
use util::ppaux::{trait_store_to_string, ty_to_string};
|
|
use util::ppaux::{Repr, UserString};
|
|
use util::common::{indenter};
|
|
use util::nodemap::{NodeMap, NodeSet, DefIdMap, DefIdSet, FnvHashMap};
|
|
|
|
use std::cell::{Cell, RefCell};
|
|
use std::cmp;
|
|
use std::fmt::Show;
|
|
use std::fmt;
|
|
use std::hash::{Hash, sip, Writer};
|
|
use std::gc::Gc;
|
|
use std::iter::AdditiveIterator;
|
|
use std::mem;
|
|
use std::ops;
|
|
use std::rc::Rc;
|
|
use std::collections::{HashMap, HashSet};
|
|
use syntax::abi;
|
|
use syntax::ast::{CrateNum, DefId, FnStyle, Ident, ItemTrait, LOCAL_CRATE};
|
|
use syntax::ast::{MutImmutable, MutMutable, Name, NamedField, NodeId};
|
|
use syntax::ast::{Onceness, StmtExpr, StmtSemi, StructField, UnnamedField};
|
|
use syntax::ast::{Visibility};
|
|
use syntax::ast_util::{PostExpansionMethod, is_local, lit_is_str};
|
|
use syntax::ast_util;
|
|
use syntax::attr;
|
|
use syntax::attr::AttrMetaMethods;
|
|
use syntax::codemap::Span;
|
|
use syntax::parse::token;
|
|
use syntax::parse::token::InternedString;
|
|
use syntax::{ast, ast_map};
|
|
use syntax::util::small_vector::SmallVector;
|
|
use std::collections::enum_set::{EnumSet, CLike};
|
|
|
|
pub type Disr = u64;
|
|
|
|
pub static INITIAL_DISCRIMINANT_VALUE: Disr = 0;
|
|
|
|
// Data types
|
|
|
|
#[deriving(PartialEq, Eq, Hash)]
|
|
pub struct field {
|
|
pub ident: ast::Ident,
|
|
pub mt: mt
|
|
}
|
|
|
|
#[deriving(Clone)]
|
|
pub enum ImplOrTraitItemContainer {
|
|
TraitContainer(ast::DefId),
|
|
ImplContainer(ast::DefId),
|
|
}
|
|
|
|
impl ImplOrTraitItemContainer {
|
|
pub fn id(&self) -> ast::DefId {
|
|
match *self {
|
|
TraitContainer(id) => id,
|
|
ImplContainer(id) => id,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[deriving(Clone)]
|
|
pub enum ImplOrTraitItem {
|
|
MethodTraitItem(Rc<Method>),
|
|
}
|
|
|
|
impl ImplOrTraitItem {
|
|
fn id(&self) -> ImplOrTraitItemId {
|
|
match *self {
|
|
MethodTraitItem(ref method) => MethodTraitItemId(method.def_id),
|
|
}
|
|
}
|
|
|
|
pub fn def_id(&self) -> ast::DefId {
|
|
match *self {
|
|
MethodTraitItem(ref method) => method.def_id,
|
|
}
|
|
}
|
|
|
|
pub fn ident(&self) -> ast::Ident {
|
|
match *self {
|
|
MethodTraitItem(ref method) => method.ident,
|
|
}
|
|
}
|
|
|
|
pub fn container(&self) -> ImplOrTraitItemContainer {
|
|
match *self {
|
|
MethodTraitItem(ref method) => method.container,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[deriving(Clone)]
|
|
pub enum ImplOrTraitItemId {
|
|
MethodTraitItemId(ast::DefId),
|
|
}
|
|
|
|
impl ImplOrTraitItemId {
|
|
pub fn def_id(&self) -> ast::DefId {
|
|
match *self {
|
|
MethodTraitItemId(def_id) => def_id,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[deriving(Clone)]
|
|
pub struct Method {
|
|
pub ident: ast::Ident,
|
|
pub generics: ty::Generics,
|
|
pub fty: BareFnTy,
|
|
pub explicit_self: ExplicitSelfCategory,
|
|
pub vis: ast::Visibility,
|
|
pub def_id: ast::DefId,
|
|
pub container: ImplOrTraitItemContainer,
|
|
|
|
// If this method is provided, we need to know where it came from
|
|
pub provided_source: Option<ast::DefId>
|
|
}
|
|
|
|
impl Method {
|
|
pub fn new(ident: ast::Ident,
|
|
generics: ty::Generics,
|
|
fty: BareFnTy,
|
|
explicit_self: ExplicitSelfCategory,
|
|
vis: ast::Visibility,
|
|
def_id: ast::DefId,
|
|
container: ImplOrTraitItemContainer,
|
|
provided_source: Option<ast::DefId>)
|
|
-> Method {
|
|
Method {
|
|
ident: ident,
|
|
generics: generics,
|
|
fty: fty,
|
|
explicit_self: explicit_self,
|
|
vis: vis,
|
|
def_id: def_id,
|
|
container: container,
|
|
provided_source: provided_source
|
|
}
|
|
}
|
|
|
|
pub fn container_id(&self) -> ast::DefId {
|
|
match self.container {
|
|
TraitContainer(id) => id,
|
|
ImplContainer(id) => id,
|
|
}
|
|
}
|
|
}
|
|
|
|
#[deriving(Clone, PartialEq, Eq, Hash, Show)]
|
|
pub struct mt {
|
|
pub ty: t,
|
|
pub mutbl: ast::Mutability,
|
|
}
|
|
|
|
#[deriving(Clone, PartialEq, Eq, Hash, Encodable, Decodable, Show)]
|
|
pub enum TraitStore {
|
|
/// Box<Trait>
|
|
UniqTraitStore,
|
|
/// &Trait and &mut Trait
|
|
RegionTraitStore(Region, ast::Mutability),
|
|
}
|
|
|
|
#[deriving(Clone, Show)]
|
|
pub struct field_ty {
|
|
pub name: Name,
|
|
pub id: DefId,
|
|
pub vis: ast::Visibility,
|
|
pub origin: ast::DefId, // The DefId of the struct in which the field is declared.
|
|
}
|
|
|
|
// Contains information needed to resolve types and (in the future) look up
|
|
// the types of AST nodes.
|
|
#[deriving(PartialEq, Eq, Hash)]
|
|
pub struct creader_cache_key {
|
|
pub cnum: CrateNum,
|
|
pub pos: uint,
|
|
pub len: uint
|
|
}
|
|
|
|
pub type creader_cache = RefCell<HashMap<creader_cache_key, t>>;
|
|
|
|
pub struct intern_key {
|
|
sty: *const sty,
|
|
}
|
|
|
|
// NB: Do not replace this with #[deriving(PartialEq)]. The automatically-derived
|
|
// implementation will not recurse through sty and you will get stack
|
|
// exhaustion.
|
|
impl cmp::PartialEq for intern_key {
|
|
fn eq(&self, other: &intern_key) -> bool {
|
|
unsafe {
|
|
*self.sty == *other.sty
|
|
}
|
|
}
|
|
fn ne(&self, other: &intern_key) -> bool {
|
|
!self.eq(other)
|
|
}
|
|
}
|
|
|
|
impl Eq for intern_key {}
|
|
|
|
impl<W:Writer> Hash<W> for intern_key {
|
|
fn hash(&self, s: &mut W) {
|
|
unsafe { (*self.sty).hash(s) }
|
|
}
|
|
}
|
|
|
|
pub enum ast_ty_to_ty_cache_entry {
|
|
atttce_unresolved, /* not resolved yet */
|
|
atttce_resolved(t) /* resolved to a type, irrespective of region */
|
|
}
|
|
|
|
#[deriving(Clone, PartialEq, Decodable, Encodable)]
|
|
pub struct ItemVariances {
|
|
pub types: VecPerParamSpace<Variance>,
|
|
pub regions: VecPerParamSpace<Variance>,
|
|
}
|
|
|
|
#[deriving(Clone, PartialEq, Decodable, Encodable, Show)]
|
|
pub enum Variance {
|
|
Covariant, // T<A> <: T<B> iff A <: B -- e.g., function return type
|
|
Invariant, // T<A> <: T<B> iff B == A -- e.g., type of mutable cell
|
|
Contravariant, // T<A> <: T<B> iff B <: A -- e.g., function param type
|
|
Bivariant, // T<A> <: T<B> -- e.g., unused type parameter
|
|
}
|
|
|
|
#[deriving(Clone)]
|
|
pub enum AutoAdjustment {
|
|
AutoAddEnv(ty::TraitStore),
|
|
AutoDerefRef(AutoDerefRef)
|
|
}
|
|
|
|
#[deriving(Clone, PartialEq)]
|
|
pub enum UnsizeKind {
|
|
// [T, ..n] -> [T], the uint field is n.
|
|
UnsizeLength(uint),
|
|
// An unsize coercion applied to the tail field of a struct.
|
|
// The uint is the index of the type parameter which is unsized.
|
|
UnsizeStruct(Box<UnsizeKind>, uint),
|
|
UnsizeVtable(ty::ExistentialBounds,
|
|
ast::DefId, /* Trait ID */
|
|
subst::Substs /* Trait substitutions */)
|
|
}
|
|
|
|
#[deriving(Clone)]
|
|
pub struct AutoDerefRef {
|
|
pub autoderefs: uint,
|
|
pub autoref: Option<AutoRef>
|
|
}
|
|
|
|
#[deriving(Clone, PartialEq)]
|
|
pub enum AutoRef {
|
|
/// Convert from T to &T
|
|
/// The third field allows us to wrap other AutoRef adjustments.
|
|
AutoPtr(Region, ast::Mutability, Option<Box<AutoRef>>),
|
|
|
|
/// Convert [T, ..n] to [T] (or similar, depending on the kind)
|
|
AutoUnsize(UnsizeKind),
|
|
|
|
/// Convert Box<[T, ..n]> to Box<[T]> or something similar in a Box.
|
|
/// With DST and Box a library type, this should be replaced by UnsizeStruct.
|
|
AutoUnsizeUniq(UnsizeKind),
|
|
|
|
/// Convert from T to *T
|
|
/// Value to thin pointer
|
|
/// The second field allows us to wrap other AutoRef adjustments.
|
|
AutoUnsafe(ast::Mutability, Option<Box<AutoRef>>),
|
|
}
|
|
|
|
// Ugly little helper function. The first bool in the returned tuple is true if
|
|
// there is an 'unsize to trait object' adjustment at the bottom of the
|
|
// adjustment. If that is surrounded by an AutoPtr, then we also return the
|
|
// region of the AutoPtr (in the third argument). The second bool is true if the
|
|
// adjustment is unique.
|
|
fn autoref_object_region(autoref: &AutoRef) -> (bool, bool, Option<Region>) {
|
|
fn unsize_kind_is_object(k: &UnsizeKind) -> bool {
|
|
match k {
|
|
&UnsizeVtable(..) => true,
|
|
&UnsizeStruct(box ref k, _) => unsize_kind_is_object(k),
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
match autoref {
|
|
&AutoUnsize(ref k) => (unsize_kind_is_object(k), false, None),
|
|
&AutoUnsizeUniq(ref k) => (unsize_kind_is_object(k), true, None),
|
|
&AutoPtr(adj_r, _, Some(box ref autoref)) => {
|
|
let (b, u, r) = autoref_object_region(autoref);
|
|
if r.is_some() || u {
|
|
(b, u, r)
|
|
} else {
|
|
(b, u, Some(adj_r))
|
|
}
|
|
}
|
|
&AutoUnsafe(_, Some(box ref autoref)) => autoref_object_region(autoref),
|
|
_ => (false, false, None)
|
|
}
|
|
}
|
|
|
|
// If the adjustment introduces a borrowed reference to a trait object, then
|
|
// returns the region of the borrowed reference.
|
|
pub fn adjusted_object_region(adj: &AutoAdjustment) -> Option<Region> {
|
|
match adj {
|
|
&AutoDerefRef(AutoDerefRef{autoref: Some(ref autoref), ..}) => {
|
|
let (b, _, r) = autoref_object_region(autoref);
|
|
if b {
|
|
r
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
_ => None
|
|
}
|
|
}
|
|
|
|
// Returns true if there is a trait cast at the bottom of the adjustment.
|
|
pub fn adjust_is_object(adj: &AutoAdjustment) -> bool {
|
|
match adj {
|
|
&AutoDerefRef(AutoDerefRef{autoref: Some(ref autoref), ..}) => {
|
|
let (b, _, _) = autoref_object_region(autoref);
|
|
b
|
|
}
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
// If possible, returns the type expected from the given adjustment. This is not
|
|
// possible if the adjustment depends on the type of the adjusted expression.
|
|
pub fn type_of_adjust(cx: &ctxt, adj: &AutoAdjustment) -> Option<t> {
|
|
fn type_of_autoref(cx: &ctxt, autoref: &AutoRef) -> Option<t> {
|
|
match autoref {
|
|
&AutoUnsize(ref k) => match k {
|
|
&UnsizeVtable(bounds, def_id, ref substs) => {
|
|
Some(mk_trait(cx, def_id, substs.clone(), bounds))
|
|
}
|
|
_ => None
|
|
},
|
|
&AutoUnsizeUniq(ref k) => match k {
|
|
&UnsizeVtable(bounds, def_id, ref substs) => {
|
|
Some(mk_uniq(cx, mk_trait(cx, def_id, substs.clone(), bounds)))
|
|
}
|
|
_ => None
|
|
},
|
|
&AutoPtr(r, m, Some(box ref autoref)) => {
|
|
match type_of_autoref(cx, autoref) {
|
|
Some(t) => Some(mk_rptr(cx, r, mt {mutbl: m, ty: t})),
|
|
None => None
|
|
}
|
|
}
|
|
&AutoUnsafe(m, Some(box ref autoref)) => {
|
|
match type_of_autoref(cx, autoref) {
|
|
Some(t) => Some(mk_ptr(cx, mt {mutbl: m, ty: t})),
|
|
None => None
|
|
}
|
|
}
|
|
_ => None
|
|
}
|
|
}
|
|
|
|
match adj {
|
|
&AutoDerefRef(AutoDerefRef{autoref: Some(ref autoref), ..}) => {
|
|
type_of_autoref(cx, autoref)
|
|
}
|
|
_ => None
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/// A restriction that certain types must be the same size. The use of
|
|
/// `transmute` gives rise to these restrictions.
|
|
pub struct TransmuteRestriction {
|
|
/// The span from whence the restriction comes.
|
|
pub span: Span,
|
|
/// The type being transmuted from.
|
|
pub from: t,
|
|
/// The type being transmuted to.
|
|
pub to: t,
|
|
/// NodeIf of the transmute intrinsic.
|
|
pub id: ast::NodeId,
|
|
}
|
|
|
|
/// The data structure to keep track of all the information that typechecker
|
|
/// generates so that so that it can be reused and doesn't have to be redone
|
|
/// later on.
|
|
pub struct ctxt {
|
|
/// Specifically use a speedy hash algorithm for this hash map, it's used
|
|
/// quite often.
|
|
pub interner: RefCell<FnvHashMap<intern_key, Box<t_box_>>>,
|
|
pub next_id: Cell<uint>,
|
|
pub sess: Session,
|
|
pub def_map: resolve::DefMap,
|
|
|
|
pub named_region_map: resolve_lifetime::NamedRegionMap,
|
|
|
|
pub region_maps: middle::region::RegionMaps,
|
|
|
|
/// Stores the types for various nodes in the AST. Note that this table
|
|
/// is not guaranteed to be populated until after typeck. See
|
|
/// typeck::check::fn_ctxt for details.
|
|
pub node_types: node_type_table,
|
|
|
|
/// Stores the type parameters which were substituted to obtain the type
|
|
/// of this node. This only applies to nodes that refer to entities
|
|
/// parameterized by type parameters, such as generic fns, types, or
|
|
/// other items.
|
|
pub item_substs: RefCell<NodeMap<ItemSubsts>>,
|
|
|
|
/// Maps from a trait item to the trait item "descriptor"
|
|
pub impl_or_trait_items: RefCell<DefIdMap<ImplOrTraitItem>>,
|
|
|
|
/// Maps from a trait def-id to a list of the def-ids of its trait items
|
|
pub trait_item_def_ids: RefCell<DefIdMap<Rc<Vec<ImplOrTraitItemId>>>>,
|
|
|
|
/// A cache for the trait_items() routine
|
|
pub trait_items_cache: RefCell<DefIdMap<Rc<Vec<ImplOrTraitItem>>>>,
|
|
|
|
pub impl_trait_cache: RefCell<DefIdMap<Option<Rc<ty::TraitRef>>>>,
|
|
|
|
pub trait_refs: RefCell<NodeMap<Rc<TraitRef>>>,
|
|
pub trait_defs: RefCell<DefIdMap<Rc<TraitDef>>>,
|
|
|
|
pub map: ast_map::Map,
|
|
pub intrinsic_defs: RefCell<DefIdMap<t>>,
|
|
pub freevars: RefCell<freevars::freevar_map>,
|
|
pub tcache: type_cache,
|
|
pub rcache: creader_cache,
|
|
pub short_names_cache: RefCell<HashMap<t, String>>,
|
|
pub needs_unwind_cleanup_cache: RefCell<HashMap<t, bool>>,
|
|
pub tc_cache: RefCell<HashMap<uint, TypeContents>>,
|
|
pub ast_ty_to_ty_cache: RefCell<NodeMap<ast_ty_to_ty_cache_entry>>,
|
|
pub enum_var_cache: RefCell<DefIdMap<Rc<Vec<Rc<VariantInfo>>>>>,
|
|
pub ty_param_defs: RefCell<NodeMap<TypeParameterDef>>,
|
|
pub adjustments: RefCell<NodeMap<AutoAdjustment>>,
|
|
pub normalized_cache: RefCell<HashMap<t, t>>,
|
|
pub lang_items: middle::lang_items::LanguageItems,
|
|
/// A mapping of fake provided method def_ids to the default implementation
|
|
pub provided_method_sources: RefCell<DefIdMap<ast::DefId>>,
|
|
pub superstructs: RefCell<DefIdMap<Option<ast::DefId>>>,
|
|
pub struct_fields: RefCell<DefIdMap<Rc<Vec<field_ty>>>>,
|
|
|
|
/// Maps from def-id of a type or region parameter to its
|
|
/// (inferred) variance.
|
|
pub item_variance_map: RefCell<DefIdMap<Rc<ItemVariances>>>,
|
|
|
|
/// True if the variance has been computed yet; false otherwise.
|
|
pub variance_computed: Cell<bool>,
|
|
|
|
/// A mapping from the def ID of an enum or struct type to the def ID
|
|
/// of the method that implements its destructor. If the type is not
|
|
/// present in this map, it does not have a destructor. This map is
|
|
/// populated during the coherence phase of typechecking.
|
|
pub destructor_for_type: RefCell<DefIdMap<ast::DefId>>,
|
|
|
|
/// A method will be in this list if and only if it is a destructor.
|
|
pub destructors: RefCell<DefIdSet>,
|
|
|
|
/// Maps a trait onto a list of impls of that trait.
|
|
pub trait_impls: RefCell<DefIdMap<Rc<RefCell<Vec<ast::DefId>>>>>,
|
|
|
|
/// Maps a DefId of a type to a list of its inherent impls.
|
|
/// Contains implementations of methods that are inherent to a type.
|
|
/// Methods in these implementations don't need to be exported.
|
|
pub inherent_impls: RefCell<DefIdMap<Rc<RefCell<Vec<ast::DefId>>>>>,
|
|
|
|
/// Maps a DefId of an impl to a list of its items.
|
|
/// Note that this contains all of the impls that we know about,
|
|
/// including ones in other crates. It's not clear that this is the best
|
|
/// way to do it.
|
|
pub impl_items: RefCell<DefIdMap<Vec<ImplOrTraitItemId>>>,
|
|
|
|
/// Set of used unsafe nodes (functions or blocks). Unsafe nodes not
|
|
/// present in this set can be warned about.
|
|
pub used_unsafe: RefCell<NodeSet>,
|
|
|
|
/// Set of nodes which mark locals as mutable which end up getting used at
|
|
/// some point. Local variable definitions not in this set can be warned
|
|
/// about.
|
|
pub used_mut_nodes: RefCell<NodeSet>,
|
|
|
|
/// vtable resolution information for impl declarations
|
|
pub impl_vtables: typeck::impl_vtable_map,
|
|
|
|
/// The set of external nominal types whose implementations have been read.
|
|
/// This is used for lazy resolution of methods.
|
|
pub populated_external_types: RefCell<DefIdSet>,
|
|
|
|
/// The set of external traits whose implementations have been read. This
|
|
/// is used for lazy resolution of traits.
|
|
pub populated_external_traits: RefCell<DefIdSet>,
|
|
|
|
/// Borrows
|
|
pub upvar_borrow_map: RefCell<UpvarBorrowMap>,
|
|
|
|
/// These two caches are used by const_eval when decoding external statics
|
|
/// and variants that are found.
|
|
pub extern_const_statics: RefCell<DefIdMap<Option<Gc<ast::Expr>>>>,
|
|
pub extern_const_variants: RefCell<DefIdMap<Option<Gc<ast::Expr>>>>,
|
|
|
|
pub method_map: typeck::MethodMap,
|
|
pub vtable_map: typeck::vtable_map,
|
|
|
|
pub dependency_formats: RefCell<dependency_format::Dependencies>,
|
|
|
|
/// Records the type of each unboxed closure. The def ID is the ID of the
|
|
/// expression defining the unboxed closure.
|
|
pub unboxed_closures: RefCell<DefIdMap<UnboxedClosure>>,
|
|
|
|
pub node_lint_levels: RefCell<HashMap<(ast::NodeId, lint::LintId),
|
|
lint::LevelSource>>,
|
|
|
|
/// The types that must be asserted to be the same size for `transmute`
|
|
/// to be valid. We gather up these restrictions in the intrinsicck pass
|
|
/// and check them in trans.
|
|
pub transmute_restrictions: RefCell<Vec<TransmuteRestriction>>,
|
|
|
|
/// Maps any item's def-id to its stability index.
|
|
pub stability: RefCell<stability::Index>,
|
|
|
|
/// Maps closures to their capture clauses.
|
|
pub capture_modes: RefCell<CaptureModeMap>,
|
|
}
|
|
|
|
pub enum tbox_flag {
|
|
has_params = 1,
|
|
has_self = 2,
|
|
needs_infer = 4,
|
|
has_regions = 8,
|
|
has_ty_err = 16,
|
|
has_ty_bot = 32,
|
|
|
|
// a meta-pub flag: subst may be required if the type has parameters, a self
|
|
// type, or references bound regions
|
|
needs_subst = 1 | 2 | 8
|
|
}
|
|
|
|
pub type t_box = &'static t_box_;
|
|
|
|
#[deriving(Show)]
|
|
pub struct t_box_ {
|
|
pub sty: sty,
|
|
pub id: uint,
|
|
pub flags: uint,
|
|
}
|
|
|
|
// To reduce refcounting cost, we're representing types as unsafe pointers
|
|
// throughout the compiler. These are simply casted t_box values. Use ty::get
|
|
// to cast them back to a box. (Without the cast, compiler performance suffers
|
|
// ~15%.) This does mean that a t value relies on the ctxt to keep its box
|
|
// alive, and using ty::get is unsafe when the ctxt is no longer alive.
|
|
enum t_opaque {}
|
|
|
|
#[allow(raw_pointer_deriving)]
|
|
#[deriving(Clone, PartialEq, Eq, Hash)]
|
|
pub struct t { inner: *const t_opaque }
|
|
|
|
impl fmt::Show for t {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(f, "{}", get(*self))
|
|
}
|
|
}
|
|
|
|
pub fn get(t: t) -> t_box {
|
|
unsafe {
|
|
let t2: t_box = mem::transmute(t);
|
|
t2
|
|
}
|
|
}
|
|
|
|
pub fn tbox_has_flag(tb: t_box, flag: tbox_flag) -> bool {
|
|
(tb.flags & (flag as uint)) != 0u
|
|
}
|
|
pub fn type_has_params(t: t) -> bool {
|
|
tbox_has_flag(get(t), has_params)
|
|
}
|
|
pub fn type_has_self(t: t) -> bool { tbox_has_flag(get(t), has_self) }
|
|
pub fn type_needs_infer(t: t) -> bool {
|
|
tbox_has_flag(get(t), needs_infer)
|
|
}
|
|
pub fn type_id(t: t) -> uint { get(t).id }
|
|
|
|
#[deriving(Clone, PartialEq, Eq, Hash, Show)]
|
|
pub struct BareFnTy {
|
|
pub fn_style: ast::FnStyle,
|
|
pub abi: abi::Abi,
|
|
pub sig: FnSig,
|
|
}
|
|
|
|
#[deriving(Clone, PartialEq, Eq, Hash, Show)]
|
|
pub struct ClosureTy {
|
|
pub fn_style: ast::FnStyle,
|
|
pub onceness: ast::Onceness,
|
|
pub store: TraitStore,
|
|
pub bounds: ExistentialBounds,
|
|
pub sig: FnSig,
|
|
pub abi: abi::Abi,
|
|
}
|
|
|
|
/**
|
|
* Signature of a function type, which I have arbitrarily
|
|
* decided to use to refer to the input/output types.
|
|
*
|
|
* - `binder_id` is the node id where this fn type appeared;
|
|
* it is used to identify all the bound regions appearing
|
|
* in the input/output types that are bound by this fn type
|
|
* (vs some enclosing or enclosed fn type)
|
|
* - `inputs` is the list of arguments and their modes.
|
|
* - `output` is the return type.
|
|
* - `variadic` indicates whether this is a varidic function. (only true for foreign fns)
|
|
*/
|
|
#[deriving(Clone, PartialEq, Eq, Hash)]
|
|
pub struct FnSig {
|
|
pub binder_id: ast::NodeId,
|
|
pub inputs: Vec<t>,
|
|
pub output: t,
|
|
pub variadic: bool
|
|
}
|
|
|
|
#[deriving(Clone, PartialEq, Eq, Hash, Show)]
|
|
pub struct ParamTy {
|
|
pub space: subst::ParamSpace,
|
|
pub idx: uint,
|
|
pub def_id: DefId
|
|
}
|
|
|
|
/// Representation of regions:
|
|
#[deriving(Clone, PartialEq, Eq, Hash, Encodable, Decodable, Show)]
|
|
pub enum Region {
|
|
// Region bound in a type or fn declaration which will be
|
|
// substituted 'early' -- that is, at the same time when type
|
|
// parameters are substituted.
|
|
ReEarlyBound(/* param id */ ast::NodeId,
|
|
subst::ParamSpace,
|
|
/*index*/ uint,
|
|
ast::Name),
|
|
|
|
// Region bound in a function scope, which will be substituted when the
|
|
// function is called. The first argument must be the `binder_id` of
|
|
// some enclosing function signature.
|
|
ReLateBound(/* binder_id */ ast::NodeId, BoundRegion),
|
|
|
|
/// When checking a function body, the types of all arguments and so forth
|
|
/// that refer to bound region parameters are modified to refer to free
|
|
/// region parameters.
|
|
ReFree(FreeRegion),
|
|
|
|
/// A concrete region naming some expression within the current function.
|
|
ReScope(NodeId),
|
|
|
|
/// Static data that has an "infinite" lifetime. Top in the region lattice.
|
|
ReStatic,
|
|
|
|
/// A region variable. Should not exist after typeck.
|
|
ReInfer(InferRegion),
|
|
|
|
/// Empty lifetime is for data that is never accessed.
|
|
/// Bottom in the region lattice. We treat ReEmpty somewhat
|
|
/// specially; at least right now, we do not generate instances of
|
|
/// it during the GLB computations, but rather
|
|
/// generate an error instead. This is to improve error messages.
|
|
/// The only way to get an instance of ReEmpty is to have a region
|
|
/// variable with no constraints.
|
|
ReEmpty,
|
|
}
|
|
|
|
/**
|
|
* Upvars do not get their own node-id. Instead, we use the pair of
|
|
* the original var id (that is, the root variable that is referenced
|
|
* by the upvar) and the id of the closure expression.
|
|
*/
|
|
#[deriving(Clone, PartialEq, Eq, Hash)]
|
|
pub struct UpvarId {
|
|
pub var_id: ast::NodeId,
|
|
pub closure_expr_id: ast::NodeId,
|
|
}
|
|
|
|
#[deriving(Clone, PartialEq, Eq, Hash, Show, Encodable, Decodable)]
|
|
pub enum BorrowKind {
|
|
/// Data must be immutable and is aliasable.
|
|
ImmBorrow,
|
|
|
|
/// Data must be immutable but not aliasable. This kind of borrow
|
|
/// cannot currently be expressed by the user and is used only in
|
|
/// implicit closure bindings. It is needed when you the closure
|
|
/// is borrowing or mutating a mutable referent, e.g.:
|
|
///
|
|
/// let x: &mut int = ...;
|
|
/// let y = || *x += 5;
|
|
///
|
|
/// If we were to try to translate this closure into a more explicit
|
|
/// form, we'd encounter an error with the code as written:
|
|
///
|
|
/// struct Env { x: & &mut int }
|
|
/// let x: &mut int = ...;
|
|
/// let y = (&mut Env { &x }, fn_ptr); // Closure is pair of env and fn
|
|
/// fn fn_ptr(env: &mut Env) { **env.x += 5; }
|
|
///
|
|
/// This is then illegal because you cannot mutate a `&mut` found
|
|
/// in an aliasable location. To solve, you'd have to translate with
|
|
/// an `&mut` borrow:
|
|
///
|
|
/// struct Env { x: & &mut int }
|
|
/// let x: &mut int = ...;
|
|
/// let y = (&mut Env { &mut x }, fn_ptr); // changed from &x to &mut x
|
|
/// fn fn_ptr(env: &mut Env) { **env.x += 5; }
|
|
///
|
|
/// Now the assignment to `**env.x` is legal, but creating a
|
|
/// mutable pointer to `x` is not because `x` is not mutable. We
|
|
/// could fix this by declaring `x` as `let mut x`. This is ok in
|
|
/// user code, if awkward, but extra weird for closures, since the
|
|
/// borrow is hidden.
|
|
///
|
|
/// So we introduce a "unique imm" borrow -- the referent is
|
|
/// immutable, but not aliasable. This solves the problem. For
|
|
/// simplicity, we don't give users the way to express this
|
|
/// borrow, it's just used when translating closures.
|
|
UniqueImmBorrow,
|
|
|
|
/// Data is mutable and not aliasable.
|
|
MutBorrow
|
|
}
|
|
|
|
/**
|
|
* Information describing the borrowing of an upvar. This is computed
|
|
* during `typeck`, specifically by `regionck`. The general idea is
|
|
* that the compiler analyses treat closures like:
|
|
*
|
|
* let closure: &'e fn() = || {
|
|
* x = 1; // upvar x is assigned to
|
|
* use(y); // upvar y is read
|
|
* foo(&z); // upvar z is borrowed immutably
|
|
* };
|
|
*
|
|
* as if they were "desugared" to something loosely like:
|
|
*
|
|
* struct Vars<'x,'y,'z> { x: &'x mut int,
|
|
* y: &'y const int,
|
|
* z: &'z int }
|
|
* let closure: &'e fn() = {
|
|
* fn f(env: &Vars) {
|
|
* *env.x = 1;
|
|
* use(*env.y);
|
|
* foo(env.z);
|
|
* }
|
|
* let env: &'e mut Vars<'x,'y,'z> = &mut Vars { x: &'x mut x,
|
|
* y: &'y const y,
|
|
* z: &'z z };
|
|
* (env, f)
|
|
* };
|
|
*
|
|
* This is basically what happens at runtime. The closure is basically
|
|
* an existentially quantified version of the `(env, f)` pair.
|
|
*
|
|
* This data structure indicates the region and mutability of a single
|
|
* one of the `x...z` borrows.
|
|
*
|
|
* It may not be obvious why each borrowed variable gets its own
|
|
* lifetime (in the desugared version of the example, these are indicated
|
|
* by the lifetime parameters `'x`, `'y`, and `'z` in the `Vars` definition).
|
|
* Each such lifetime must encompass the lifetime `'e` of the closure itself,
|
|
* but need not be identical to it. The reason that this makes sense:
|
|
*
|
|
* - Callers are only permitted to invoke the closure, and hence to
|
|
* use the pointers, within the lifetime `'e`, so clearly `'e` must
|
|
* be a sublifetime of `'x...'z`.
|
|
* - The closure creator knows which upvars were borrowed by the closure
|
|
* and thus `x...z` will be reserved for `'x...'z` respectively.
|
|
* - Through mutation, the borrowed upvars can actually escape
|
|
* the closure, so sometimes it is necessary for them to be larger
|
|
* than the closure lifetime itself.
|
|
*/
|
|
#[deriving(PartialEq, Clone, Encodable, Decodable)]
|
|
pub struct UpvarBorrow {
|
|
pub kind: BorrowKind,
|
|
pub region: ty::Region,
|
|
}
|
|
|
|
pub type UpvarBorrowMap = HashMap<UpvarId, UpvarBorrow>;
|
|
|
|
impl Region {
|
|
pub fn is_bound(&self) -> bool {
|
|
match self {
|
|
&ty::ReEarlyBound(..) => true,
|
|
&ty::ReLateBound(..) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
}
|
|
|
|
#[deriving(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, Encodable, Decodable, Show)]
|
|
pub struct FreeRegion {
|
|
pub scope_id: NodeId,
|
|
pub bound_region: BoundRegion
|
|
}
|
|
|
|
#[deriving(Clone, PartialEq, PartialOrd, Eq, Ord, Hash, Encodable, Decodable, Show)]
|
|
pub enum BoundRegion {
|
|
/// An anonymous region parameter for a given fn (&T)
|
|
BrAnon(uint),
|
|
|
|
/// Named region parameters for functions (a in &'a T)
|
|
///
|
|
/// The def-id is needed to distinguish free regions in
|
|
/// the event of shadowing.
|
|
BrNamed(ast::DefId, ast::Name),
|
|
|
|
/// Fresh bound identifiers created during GLB computations.
|
|
BrFresh(uint),
|
|
}
|
|
|
|
mod primitives {
|
|
use super::t_box_;
|
|
|
|
use syntax::ast;
|
|
|
|
macro_rules! def_prim_ty(
|
|
($name:ident, $sty:expr, $id:expr) => (
|
|
pub static $name: t_box_ = t_box_ {
|
|
sty: $sty,
|
|
id: $id,
|
|
flags: 0,
|
|
};
|
|
)
|
|
)
|
|
|
|
def_prim_ty!(TY_NIL, super::ty_nil, 0)
|
|
def_prim_ty!(TY_BOOL, super::ty_bool, 1)
|
|
def_prim_ty!(TY_CHAR, super::ty_char, 2)
|
|
def_prim_ty!(TY_INT, super::ty_int(ast::TyI), 3)
|
|
def_prim_ty!(TY_I8, super::ty_int(ast::TyI8), 4)
|
|
def_prim_ty!(TY_I16, super::ty_int(ast::TyI16), 5)
|
|
def_prim_ty!(TY_I32, super::ty_int(ast::TyI32), 6)
|
|
def_prim_ty!(TY_I64, super::ty_int(ast::TyI64), 7)
|
|
def_prim_ty!(TY_UINT, super::ty_uint(ast::TyU), 8)
|
|
def_prim_ty!(TY_U8, super::ty_uint(ast::TyU8), 9)
|
|
def_prim_ty!(TY_U16, super::ty_uint(ast::TyU16), 10)
|
|
def_prim_ty!(TY_U32, super::ty_uint(ast::TyU32), 11)
|
|
def_prim_ty!(TY_U64, super::ty_uint(ast::TyU64), 12)
|
|
def_prim_ty!(TY_F32, super::ty_float(ast::TyF32), 14)
|
|
def_prim_ty!(TY_F64, super::ty_float(ast::TyF64), 15)
|
|
|
|
pub static TY_BOT: t_box_ = t_box_ {
|
|
sty: super::ty_bot,
|
|
id: 16,
|
|
flags: super::has_ty_bot as uint,
|
|
};
|
|
|
|
pub static TY_ERR: t_box_ = t_box_ {
|
|
sty: super::ty_err,
|
|
id: 17,
|
|
flags: super::has_ty_err as uint,
|
|
};
|
|
|
|
pub static LAST_PRIMITIVE_ID: uint = 18;
|
|
}
|
|
|
|
// NB: If you change this, you'll probably want to change the corresponding
|
|
// AST structure in libsyntax/ast.rs as well.
|
|
#[deriving(Clone, PartialEq, Eq, Hash, Show)]
|
|
pub enum sty {
|
|
ty_nil,
|
|
ty_bot,
|
|
ty_bool,
|
|
ty_char,
|
|
ty_int(ast::IntTy),
|
|
ty_uint(ast::UintTy),
|
|
ty_float(ast::FloatTy),
|
|
/// Substs here, possibly against intuition, *may* contain `ty_param`s.
|
|
/// That is, even after substitution it is possible that there are type
|
|
/// variables. This happens when the `ty_enum` corresponds to an enum
|
|
/// definition and not a concrete use of it. To get the correct `ty_enum`
|
|
/// from the tcx, use the `NodeId` from the `ast::Ty` and look it up in
|
|
/// the `ast_ty_to_ty_cache`. This is probably true for `ty_struct` as
|
|
/// well.`
|
|
ty_enum(DefId, Substs),
|
|
ty_box(t),
|
|
ty_uniq(t),
|
|
ty_str,
|
|
ty_vec(t, Option<uint>), // Second field is length.
|
|
ty_ptr(mt),
|
|
ty_rptr(Region, mt),
|
|
ty_bare_fn(BareFnTy),
|
|
ty_closure(Box<ClosureTy>),
|
|
ty_trait(Box<TyTrait>),
|
|
ty_struct(DefId, Substs),
|
|
ty_unboxed_closure(DefId, Region),
|
|
ty_tup(Vec<t>),
|
|
|
|
ty_param(ParamTy), // type parameter
|
|
ty_open(t), // A deref'ed fat pointer, i.e., a dynamically sized value
|
|
// and its size. Only ever used in trans. It is not necessary
|
|
// earlier since we don't need to distinguish a DST with its
|
|
// size (e.g., in a deref) vs a DST with the size elsewhere (
|
|
// e.g., in a field).
|
|
|
|
ty_infer(InferTy), // something used only during inference/typeck
|
|
ty_err, // Also only used during inference/typeck, to represent
|
|
// the type of an erroneous expression (helps cut down
|
|
// on non-useful type error messages)
|
|
}
|
|
|
|
#[deriving(Clone, PartialEq, Eq, Hash, Show)]
|
|
pub struct TyTrait {
|
|
pub def_id: DefId,
|
|
pub substs: Substs,
|
|
pub bounds: ExistentialBounds
|
|
}
|
|
|
|
#[deriving(PartialEq, Eq, Hash, Show)]
|
|
pub struct TraitRef {
|
|
pub def_id: DefId,
|
|
pub substs: Substs,
|
|
}
|
|
|
|
#[deriving(Clone, PartialEq)]
|
|
pub enum IntVarValue {
|
|
IntType(ast::IntTy),
|
|
UintType(ast::UintTy),
|
|
}
|
|
|
|
#[deriving(Clone, Show)]
|
|
pub enum terr_vstore_kind {
|
|
terr_vec,
|
|
terr_str,
|
|
terr_fn,
|
|
terr_trait
|
|
}
|
|
|
|
#[deriving(Clone, Show)]
|
|
pub struct expected_found<T> {
|
|
pub expected: T,
|
|
pub found: T
|
|
}
|
|
|
|
// Data structures used in type unification
|
|
#[deriving(Clone, Show)]
|
|
pub enum type_err {
|
|
terr_mismatch,
|
|
terr_fn_style_mismatch(expected_found<FnStyle>),
|
|
terr_onceness_mismatch(expected_found<Onceness>),
|
|
terr_abi_mismatch(expected_found<abi::Abi>),
|
|
terr_mutability,
|
|
terr_sigil_mismatch(expected_found<TraitStore>),
|
|
terr_box_mutability,
|
|
terr_ptr_mutability,
|
|
terr_ref_mutability,
|
|
terr_vec_mutability,
|
|
terr_tuple_size(expected_found<uint>),
|
|
terr_ty_param_size(expected_found<uint>),
|
|
terr_record_size(expected_found<uint>),
|
|
terr_record_mutability,
|
|
terr_record_fields(expected_found<Ident>),
|
|
terr_arg_count,
|
|
terr_regions_does_not_outlive(Region, Region),
|
|
terr_regions_not_same(Region, Region),
|
|
terr_regions_no_overlap(Region, Region),
|
|
terr_regions_insufficiently_polymorphic(BoundRegion, Region),
|
|
terr_regions_overly_polymorphic(BoundRegion, Region),
|
|
terr_trait_stores_differ(terr_vstore_kind, expected_found<TraitStore>),
|
|
terr_sorts(expected_found<t>),
|
|
terr_integer_as_char,
|
|
terr_int_mismatch(expected_found<IntVarValue>),
|
|
terr_float_mismatch(expected_found<ast::FloatTy>),
|
|
terr_traits(expected_found<ast::DefId>),
|
|
terr_builtin_bounds(expected_found<BuiltinBounds>),
|
|
terr_variadic_mismatch(expected_found<bool>)
|
|
}
|
|
|
|
/// Bounds suitable for a named type parameter like `A` in `fn foo<A>`
|
|
/// as well as the existential type parameter in an object type.
|
|
#[deriving(PartialEq, Eq, Hash, Clone, Show)]
|
|
pub struct ParamBounds {
|
|
pub opt_region_bound: Option<ty::Region>,
|
|
pub builtin_bounds: BuiltinBounds,
|
|
pub trait_bounds: Vec<Rc<TraitRef>>
|
|
}
|
|
|
|
/// Bounds suitable for an existentially quantified type parameter
|
|
/// such as those that appear in object types or closure types. The
|
|
/// major difference between this case and `ParamBounds` is that
|
|
/// general purpose trait bounds are omitted.
|
|
#[deriving(PartialEq, Eq, Hash, Clone, Show)]
|
|
pub struct ExistentialBounds {
|
|
pub region_bound: ty::Region,
|
|
pub builtin_bounds: BuiltinBounds
|
|
}
|
|
|
|
pub type BuiltinBounds = EnumSet<BuiltinBound>;
|
|
|
|
#[deriving(Clone, Encodable, PartialEq, Eq, Decodable, Hash, Show)]
|
|
#[repr(uint)]
|
|
pub enum BuiltinBound {
|
|
BoundSend,
|
|
BoundSized,
|
|
BoundCopy,
|
|
BoundSync,
|
|
}
|
|
|
|
pub fn empty_builtin_bounds() -> BuiltinBounds {
|
|
EnumSet::empty()
|
|
}
|
|
|
|
pub fn all_builtin_bounds() -> BuiltinBounds {
|
|
let mut set = EnumSet::empty();
|
|
set.add(BoundSend);
|
|
set.add(BoundSized);
|
|
set.add(BoundSync);
|
|
set
|
|
}
|
|
|
|
pub fn region_existential_bound(r: ty::Region) -> ExistentialBounds {
|
|
/*!
|
|
* An existential bound that does not implement any traits.
|
|
*/
|
|
|
|
ty::ExistentialBounds { region_bound: r,
|
|
builtin_bounds: empty_builtin_bounds() }
|
|
}
|
|
|
|
impl CLike for BuiltinBound {
|
|
fn to_uint(&self) -> uint {
|
|
*self as uint
|
|
}
|
|
fn from_uint(v: uint) -> BuiltinBound {
|
|
unsafe { mem::transmute(v) }
|
|
}
|
|
}
|
|
|
|
#[deriving(Clone, PartialEq, Eq, Hash)]
|
|
pub struct TyVid {
|
|
pub index: uint
|
|
}
|
|
|
|
#[deriving(Clone, PartialEq, Eq, Hash)]
|
|
pub struct IntVid {
|
|
pub index: uint
|
|
}
|
|
|
|
#[deriving(Clone, PartialEq, Eq, Hash)]
|
|
pub struct FloatVid {
|
|
pub index: uint
|
|
}
|
|
|
|
#[deriving(Clone, PartialEq, Eq, Encodable, Decodable, Hash)]
|
|
pub struct RegionVid {
|
|
pub index: uint
|
|
}
|
|
|
|
#[deriving(Clone, PartialEq, Eq, Hash)]
|
|
pub enum InferTy {
|
|
TyVar(TyVid),
|
|
IntVar(IntVid),
|
|
FloatVar(FloatVid)
|
|
}
|
|
|
|
#[deriving(Clone, Encodable, Decodable, Eq, Hash, Show)]
|
|
pub enum InferRegion {
|
|
ReVar(RegionVid),
|
|
ReSkolemized(uint, BoundRegion)
|
|
}
|
|
|
|
impl cmp::PartialEq for InferRegion {
|
|
fn eq(&self, other: &InferRegion) -> bool {
|
|
match ((*self), *other) {
|
|
(ReVar(rva), ReVar(rvb)) => {
|
|
rva == rvb
|
|
}
|
|
(ReSkolemized(rva, _), ReSkolemized(rvb, _)) => {
|
|
rva == rvb
|
|
}
|
|
_ => false
|
|
}
|
|
}
|
|
fn ne(&self, other: &InferRegion) -> bool {
|
|
!((*self) == (*other))
|
|
}
|
|
}
|
|
|
|
impl fmt::Show for TyVid {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result{
|
|
write!(f, "<generic #{}>", self.index)
|
|
}
|
|
}
|
|
|
|
impl fmt::Show for IntVid {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(f, "<generic integer #{}>", self.index)
|
|
}
|
|
}
|
|
|
|
impl fmt::Show for FloatVid {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(f, "<generic float #{}>", self.index)
|
|
}
|
|
}
|
|
|
|
impl fmt::Show for RegionVid {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(f, "'<generic lifetime #{}>", self.index)
|
|
}
|
|
}
|
|
|
|
impl fmt::Show for FnSig {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
// grr, without tcx not much we can do.
|
|
write!(f, "(...)")
|
|
}
|
|
}
|
|
|
|
impl fmt::Show for InferTy {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
match *self {
|
|
TyVar(ref v) => v.fmt(f),
|
|
IntVar(ref v) => v.fmt(f),
|
|
FloatVar(ref v) => v.fmt(f),
|
|
}
|
|
}
|
|
}
|
|
|
|
impl fmt::Show for IntVarValue {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
match *self {
|
|
IntType(ref v) => v.fmt(f),
|
|
UintType(ref v) => v.fmt(f),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[deriving(Clone, Show)]
|
|
pub struct TypeParameterDef {
|
|
pub ident: ast::Ident,
|
|
pub def_id: ast::DefId,
|
|
pub space: subst::ParamSpace,
|
|
pub index: uint,
|
|
pub bounds: ParamBounds,
|
|
pub default: Option<ty::t>,
|
|
}
|
|
|
|
#[deriving(Encodable, Decodable, Clone, Show)]
|
|
pub struct RegionParameterDef {
|
|
pub name: ast::Name,
|
|
pub def_id: ast::DefId,
|
|
pub space: subst::ParamSpace,
|
|
pub index: uint,
|
|
pub bounds: Vec<ty::Region>,
|
|
}
|
|
|
|
/// Information about the type/lifetime parameters associated with an
|
|
/// item or method. Analogous to ast::Generics.
|
|
#[deriving(Clone, Show)]
|
|
pub struct Generics {
|
|
pub types: VecPerParamSpace<TypeParameterDef>,
|
|
pub regions: VecPerParamSpace<RegionParameterDef>,
|
|
}
|
|
|
|
impl Generics {
|
|
pub fn empty() -> Generics {
|
|
Generics { types: VecPerParamSpace::empty(),
|
|
regions: VecPerParamSpace::empty() }
|
|
}
|
|
|
|
pub fn has_type_params(&self, space: subst::ParamSpace) -> bool {
|
|
!self.types.is_empty_in(space)
|
|
}
|
|
|
|
pub fn has_region_params(&self, space: subst::ParamSpace) -> bool {
|
|
!self.regions.is_empty_in(space)
|
|
}
|
|
}
|
|
|
|
/// When type checking, we use the `ParameterEnvironment` to track
|
|
/// details about the type/lifetime parameters that are in scope.
|
|
/// It primarily stores the bounds information.
|
|
///
|
|
/// Note: This information might seem to be redundant with the data in
|
|
/// `tcx.ty_param_defs`, but it is not. That table contains the
|
|
/// parameter definitions from an "outside" perspective, but this
|
|
/// struct will contain the bounds for a parameter as seen from inside
|
|
/// the function body. Currently the only real distinction is that
|
|
/// bound lifetime parameters are replaced with free ones, but in the
|
|
/// future I hope to refine the representation of types so as to make
|
|
/// more distinctions clearer.
|
|
pub struct ParameterEnvironment {
|
|
/// A substitution that can be applied to move from
|
|
/// the "outer" view of a type or method to the "inner" view.
|
|
/// In general, this means converting from bound parameters to
|
|
/// free parameters. Since we currently represent bound/free type
|
|
/// parameters in the same way, this only has an affect on regions.
|
|
pub free_substs: Substs,
|
|
|
|
/// Bounds on the various type parameters
|
|
pub bounds: VecPerParamSpace<ParamBounds>,
|
|
|
|
/// Each type parameter has an implicit region bound that
|
|
/// indicates it must outlive at least the function body (the user
|
|
/// may specify stronger requirements). This field indicates the
|
|
/// region of the callee.
|
|
pub implicit_region_bound: ty::Region,
|
|
}
|
|
|
|
impl ParameterEnvironment {
|
|
pub fn for_item(cx: &ctxt, id: NodeId) -> ParameterEnvironment {
|
|
match cx.map.find(id) {
|
|
Some(ast_map::NodeImplItem(ref impl_item)) => {
|
|
match **impl_item {
|
|
ast::MethodImplItem(ref method) => {
|
|
let method_def_id = ast_util::local_def(id);
|
|
match ty::impl_or_trait_item(cx, method_def_id) {
|
|
MethodTraitItem(ref method_ty) => {
|
|
let method_generics = &method_ty.generics;
|
|
construct_parameter_environment(
|
|
cx,
|
|
method_generics,
|
|
method.pe_body().id)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Some(ast_map::NodeTraitItem(trait_method)) => {
|
|
match *trait_method {
|
|
ast::RequiredMethod(ref required) => {
|
|
cx.sess.span_bug(required.span,
|
|
"ParameterEnvironment::from_item():
|
|
can't create a parameter \
|
|
environment for required trait \
|
|
methods")
|
|
}
|
|
ast::ProvidedMethod(ref method) => {
|
|
let method_def_id = ast_util::local_def(id);
|
|
match ty::impl_or_trait_item(cx, method_def_id) {
|
|
MethodTraitItem(ref method_ty) => {
|
|
let method_generics = &method_ty.generics;
|
|
construct_parameter_environment(
|
|
cx,
|
|
method_generics,
|
|
method.pe_body().id)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
Some(ast_map::NodeItem(item)) => {
|
|
match item.node {
|
|
ast::ItemFn(_, _, _, _, ref body) => {
|
|
// We assume this is a function.
|
|
let fn_def_id = ast_util::local_def(id);
|
|
let fn_pty = ty::lookup_item_type(cx, fn_def_id);
|
|
|
|
construct_parameter_environment(cx,
|
|
&fn_pty.generics,
|
|
body.id)
|
|
}
|
|
ast::ItemEnum(..) |
|
|
ast::ItemStruct(..) |
|
|
ast::ItemImpl(..) |
|
|
ast::ItemStatic(..) => {
|
|
let def_id = ast_util::local_def(id);
|
|
let pty = ty::lookup_item_type(cx, def_id);
|
|
construct_parameter_environment(cx, &pty.generics, id)
|
|
}
|
|
_ => {
|
|
cx.sess.span_bug(item.span,
|
|
"ParameterEnvironment::from_item():
|
|
can't create a parameter \
|
|
environment for this kind of item")
|
|
}
|
|
}
|
|
}
|
|
_ => {
|
|
cx.sess.bug(format!("ParameterEnvironment::from_item(): \
|
|
`{}` is not an item",
|
|
cx.map.node_to_string(id)).as_slice())
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// A polytype.
|
|
///
|
|
/// - `generics`: the set of type parameters and their bounds
|
|
/// - `ty`: the base types, which may reference the parameters defined
|
|
/// in `generics`
|
|
#[deriving(Clone, Show)]
|
|
pub struct Polytype {
|
|
pub generics: Generics,
|
|
pub ty: t
|
|
}
|
|
|
|
/// As `Polytype` but for a trait ref.
|
|
pub struct TraitDef {
|
|
pub generics: Generics,
|
|
pub bounds: ParamBounds,
|
|
pub trait_ref: Rc<ty::TraitRef>,
|
|
}
|
|
|
|
/// Records the substitutions used to translate the polytype for an
|
|
/// item into the monotype of an item reference.
|
|
#[deriving(Clone)]
|
|
pub struct ItemSubsts {
|
|
pub substs: Substs,
|
|
}
|
|
|
|
pub type type_cache = RefCell<DefIdMap<Polytype>>;
|
|
|
|
pub type node_type_table = RefCell<HashMap<uint,t>>;
|
|
|
|
/// Records information about each unboxed closure.
|
|
pub struct UnboxedClosure {
|
|
/// The type of the unboxed closure.
|
|
pub closure_type: ClosureTy,
|
|
/// The kind of unboxed closure this is.
|
|
pub kind: UnboxedClosureKind,
|
|
}
|
|
|
|
#[deriving(PartialEq, Eq)]
|
|
pub enum UnboxedClosureKind {
|
|
FnUnboxedClosureKind,
|
|
FnMutUnboxedClosureKind,
|
|
FnOnceUnboxedClosureKind,
|
|
}
|
|
|
|
impl UnboxedClosureKind {
|
|
pub fn trait_did(&self, cx: &ctxt) -> ast::DefId {
|
|
let result = match *self {
|
|
FnUnboxedClosureKind => cx.lang_items.require(FnTraitLangItem),
|
|
FnMutUnboxedClosureKind => {
|
|
cx.lang_items.require(FnMutTraitLangItem)
|
|
}
|
|
FnOnceUnboxedClosureKind => {
|
|
cx.lang_items.require(FnOnceTraitLangItem)
|
|
}
|
|
};
|
|
match result {
|
|
Ok(trait_did) => trait_did,
|
|
Err(err) => cx.sess.fatal(err.as_slice()),
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn mk_ctxt(s: Session,
|
|
dm: resolve::DefMap,
|
|
named_region_map: resolve_lifetime::NamedRegionMap,
|
|
map: ast_map::Map,
|
|
freevars: freevars::freevar_map,
|
|
capture_modes: freevars::CaptureModeMap,
|
|
region_maps: middle::region::RegionMaps,
|
|
lang_items: middle::lang_items::LanguageItems,
|
|
stability: stability::Index)
|
|
-> ctxt {
|
|
ctxt {
|
|
named_region_map: named_region_map,
|
|
item_variance_map: RefCell::new(DefIdMap::new()),
|
|
variance_computed: Cell::new(false),
|
|
interner: RefCell::new(FnvHashMap::new()),
|
|
next_id: Cell::new(primitives::LAST_PRIMITIVE_ID),
|
|
sess: s,
|
|
def_map: dm,
|
|
region_maps: region_maps,
|
|
node_types: RefCell::new(HashMap::new()),
|
|
item_substs: RefCell::new(NodeMap::new()),
|
|
trait_refs: RefCell::new(NodeMap::new()),
|
|
trait_defs: RefCell::new(DefIdMap::new()),
|
|
map: map,
|
|
intrinsic_defs: RefCell::new(DefIdMap::new()),
|
|
freevars: RefCell::new(freevars),
|
|
tcache: RefCell::new(DefIdMap::new()),
|
|
rcache: RefCell::new(HashMap::new()),
|
|
short_names_cache: RefCell::new(HashMap::new()),
|
|
needs_unwind_cleanup_cache: RefCell::new(HashMap::new()),
|
|
tc_cache: RefCell::new(HashMap::new()),
|
|
ast_ty_to_ty_cache: RefCell::new(NodeMap::new()),
|
|
enum_var_cache: RefCell::new(DefIdMap::new()),
|
|
impl_or_trait_items: RefCell::new(DefIdMap::new()),
|
|
trait_item_def_ids: RefCell::new(DefIdMap::new()),
|
|
trait_items_cache: RefCell::new(DefIdMap::new()),
|
|
impl_trait_cache: RefCell::new(DefIdMap::new()),
|
|
ty_param_defs: RefCell::new(NodeMap::new()),
|
|
adjustments: RefCell::new(NodeMap::new()),
|
|
normalized_cache: RefCell::new(HashMap::new()),
|
|
lang_items: lang_items,
|
|
provided_method_sources: RefCell::new(DefIdMap::new()),
|
|
superstructs: RefCell::new(DefIdMap::new()),
|
|
struct_fields: RefCell::new(DefIdMap::new()),
|
|
destructor_for_type: RefCell::new(DefIdMap::new()),
|
|
destructors: RefCell::new(DefIdSet::new()),
|
|
trait_impls: RefCell::new(DefIdMap::new()),
|
|
inherent_impls: RefCell::new(DefIdMap::new()),
|
|
impl_items: RefCell::new(DefIdMap::new()),
|
|
used_unsafe: RefCell::new(NodeSet::new()),
|
|
used_mut_nodes: RefCell::new(NodeSet::new()),
|
|
impl_vtables: RefCell::new(DefIdMap::new()),
|
|
populated_external_types: RefCell::new(DefIdSet::new()),
|
|
populated_external_traits: RefCell::new(DefIdSet::new()),
|
|
upvar_borrow_map: RefCell::new(HashMap::new()),
|
|
extern_const_statics: RefCell::new(DefIdMap::new()),
|
|
extern_const_variants: RefCell::new(DefIdMap::new()),
|
|
method_map: RefCell::new(FnvHashMap::new()),
|
|
vtable_map: RefCell::new(FnvHashMap::new()),
|
|
dependency_formats: RefCell::new(HashMap::new()),
|
|
unboxed_closures: RefCell::new(DefIdMap::new()),
|
|
node_lint_levels: RefCell::new(HashMap::new()),
|
|
transmute_restrictions: RefCell::new(Vec::new()),
|
|
stability: RefCell::new(stability),
|
|
capture_modes: RefCell::new(capture_modes),
|
|
}
|
|
}
|
|
|
|
// Type constructors
|
|
|
|
// Interns a type/name combination, stores the resulting box in cx.interner,
|
|
// and returns the box as cast to an unsafe ptr (see comments for t above).
|
|
pub fn mk_t(cx: &ctxt, st: sty) -> t {
|
|
// Check for primitive types.
|
|
match st {
|
|
ty_nil => return mk_nil(),
|
|
ty_err => return mk_err(),
|
|
ty_bool => return mk_bool(),
|
|
ty_int(i) => return mk_mach_int(i),
|
|
ty_uint(u) => return mk_mach_uint(u),
|
|
ty_float(f) => return mk_mach_float(f),
|
|
ty_char => return mk_char(),
|
|
ty_bot => return mk_bot(),
|
|
_ => {}
|
|
};
|
|
|
|
let key = intern_key { sty: &st };
|
|
|
|
match cx.interner.borrow().find(&key) {
|
|
Some(t) => unsafe { return mem::transmute(&t.sty); },
|
|
_ => ()
|
|
}
|
|
|
|
let mut flags = 0u;
|
|
fn rflags(r: Region) -> uint {
|
|
(has_regions as uint) | {
|
|
match r {
|
|
ty::ReInfer(_) => needs_infer as uint,
|
|
_ => 0u
|
|
}
|
|
}
|
|
}
|
|
fn sflags(substs: &Substs) -> uint {
|
|
let mut f = 0u;
|
|
let mut i = substs.types.iter();
|
|
for tt in i {
|
|
f |= get(*tt).flags;
|
|
}
|
|
match substs.regions {
|
|
subst::ErasedRegions => {}
|
|
subst::NonerasedRegions(ref regions) => {
|
|
for r in regions.iter() {
|
|
f |= rflags(*r)
|
|
}
|
|
}
|
|
}
|
|
return f;
|
|
}
|
|
fn flags_for_bounds(bounds: &ExistentialBounds) -> uint {
|
|
rflags(bounds.region_bound)
|
|
}
|
|
match &st {
|
|
&ty_nil | &ty_bool | &ty_char | &ty_int(_) | &ty_float(_) | &ty_uint(_) |
|
|
&ty_str => {}
|
|
// You might think that we could just return ty_err for
|
|
// any type containing ty_err as a component, and get
|
|
// rid of the has_ty_err flag -- likewise for ty_bot (with
|
|
// the exception of function types that return bot).
|
|
// But doing so caused sporadic memory corruption, and
|
|
// neither I (tjc) nor nmatsakis could figure out why,
|
|
// so we're doing it this way.
|
|
&ty_bot => flags |= has_ty_bot as uint,
|
|
&ty_err => flags |= has_ty_err as uint,
|
|
&ty_param(ref p) => {
|
|
if p.space == subst::SelfSpace {
|
|
flags |= has_self as uint;
|
|
} else {
|
|
flags |= has_params as uint;
|
|
}
|
|
}
|
|
&ty_unboxed_closure(_, ref region) => flags |= rflags(*region),
|
|
&ty_infer(_) => flags |= needs_infer as uint,
|
|
&ty_enum(_, ref substs) | &ty_struct(_, ref substs) => {
|
|
flags |= sflags(substs);
|
|
}
|
|
&ty_trait(box ty::TyTrait { ref substs, ref bounds, .. }) => {
|
|
flags |= sflags(substs);
|
|
flags |= flags_for_bounds(bounds);
|
|
}
|
|
&ty_box(tt) | &ty_uniq(tt) | &ty_vec(tt, _) | &ty_open(tt) => {
|
|
flags |= get(tt).flags
|
|
}
|
|
&ty_ptr(ref m) => {
|
|
flags |= get(m.ty).flags;
|
|
}
|
|
&ty_rptr(r, ref m) => {
|
|
flags |= rflags(r);
|
|
flags |= get(m.ty).flags;
|
|
}
|
|
&ty_tup(ref ts) => for tt in ts.iter() { flags |= get(*tt).flags; },
|
|
&ty_bare_fn(ref f) => {
|
|
for a in f.sig.inputs.iter() { flags |= get(*a).flags; }
|
|
flags |= get(f.sig.output).flags;
|
|
// T -> _|_ is *not* _|_ !
|
|
flags &= !(has_ty_bot as uint);
|
|
}
|
|
&ty_closure(ref f) => {
|
|
match f.store {
|
|
RegionTraitStore(r, _) => {
|
|
flags |= rflags(r);
|
|
}
|
|
_ => {}
|
|
}
|
|
for a in f.sig.inputs.iter() { flags |= get(*a).flags; }
|
|
flags |= get(f.sig.output).flags;
|
|
// T -> _|_ is *not* _|_ !
|
|
flags &= !(has_ty_bot as uint);
|
|
flags |= flags_for_bounds(&f.bounds);
|
|
}
|
|
}
|
|
|
|
let t = box t_box_ {
|
|
sty: st,
|
|
id: cx.next_id.get(),
|
|
flags: flags,
|
|
};
|
|
|
|
let sty_ptr = &t.sty as *const sty;
|
|
|
|
let key = intern_key {
|
|
sty: sty_ptr,
|
|
};
|
|
|
|
cx.interner.borrow_mut().insert(key, t);
|
|
|
|
cx.next_id.set(cx.next_id.get() + 1);
|
|
|
|
unsafe {
|
|
mem::transmute::<*const sty, t>(sty_ptr)
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn mk_prim_t(primitive: &'static t_box_) -> t {
|
|
unsafe {
|
|
mem::transmute::<&'static t_box_, t>(primitive)
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn mk_nil() -> t { mk_prim_t(&primitives::TY_NIL) }
|
|
|
|
#[inline]
|
|
pub fn mk_err() -> t { mk_prim_t(&primitives::TY_ERR) }
|
|
|
|
#[inline]
|
|
pub fn mk_bot() -> t { mk_prim_t(&primitives::TY_BOT) }
|
|
|
|
#[inline]
|
|
pub fn mk_bool() -> t { mk_prim_t(&primitives::TY_BOOL) }
|
|
|
|
#[inline]
|
|
pub fn mk_int() -> t { mk_prim_t(&primitives::TY_INT) }
|
|
|
|
#[inline]
|
|
pub fn mk_i8() -> t { mk_prim_t(&primitives::TY_I8) }
|
|
|
|
#[inline]
|
|
pub fn mk_i16() -> t { mk_prim_t(&primitives::TY_I16) }
|
|
|
|
#[inline]
|
|
pub fn mk_i32() -> t { mk_prim_t(&primitives::TY_I32) }
|
|
|
|
#[inline]
|
|
pub fn mk_i64() -> t { mk_prim_t(&primitives::TY_I64) }
|
|
|
|
#[inline]
|
|
pub fn mk_f32() -> t { mk_prim_t(&primitives::TY_F32) }
|
|
|
|
#[inline]
|
|
pub fn mk_f64() -> t { mk_prim_t(&primitives::TY_F64) }
|
|
|
|
#[inline]
|
|
pub fn mk_uint() -> t { mk_prim_t(&primitives::TY_UINT) }
|
|
|
|
#[inline]
|
|
pub fn mk_u8() -> t { mk_prim_t(&primitives::TY_U8) }
|
|
|
|
#[inline]
|
|
pub fn mk_u16() -> t { mk_prim_t(&primitives::TY_U16) }
|
|
|
|
#[inline]
|
|
pub fn mk_u32() -> t { mk_prim_t(&primitives::TY_U32) }
|
|
|
|
#[inline]
|
|
pub fn mk_u64() -> t { mk_prim_t(&primitives::TY_U64) }
|
|
|
|
pub fn mk_mach_int(tm: ast::IntTy) -> t {
|
|
match tm {
|
|
ast::TyI => mk_int(),
|
|
ast::TyI8 => mk_i8(),
|
|
ast::TyI16 => mk_i16(),
|
|
ast::TyI32 => mk_i32(),
|
|
ast::TyI64 => mk_i64(),
|
|
}
|
|
}
|
|
|
|
pub fn mk_mach_uint(tm: ast::UintTy) -> t {
|
|
match tm {
|
|
ast::TyU => mk_uint(),
|
|
ast::TyU8 => mk_u8(),
|
|
ast::TyU16 => mk_u16(),
|
|
ast::TyU32 => mk_u32(),
|
|
ast::TyU64 => mk_u64(),
|
|
}
|
|
}
|
|
|
|
pub fn mk_mach_float(tm: ast::FloatTy) -> t {
|
|
match tm {
|
|
ast::TyF32 => mk_f32(),
|
|
ast::TyF64 => mk_f64(),
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
pub fn mk_char() -> t { mk_prim_t(&primitives::TY_CHAR) }
|
|
|
|
pub fn mk_str(cx: &ctxt) -> t {
|
|
mk_t(cx, ty_str)
|
|
}
|
|
|
|
pub fn mk_str_slice(cx: &ctxt, r: Region, m: ast::Mutability) -> t {
|
|
mk_rptr(cx, r,
|
|
mt {
|
|
ty: mk_t(cx, ty_str),
|
|
mutbl: m
|
|
})
|
|
}
|
|
|
|
pub fn mk_enum(cx: &ctxt, did: ast::DefId, substs: Substs) -> t {
|
|
// take a copy of substs so that we own the vectors inside
|
|
mk_t(cx, ty_enum(did, substs))
|
|
}
|
|
|
|
pub fn mk_box(cx: &ctxt, ty: t) -> t { mk_t(cx, ty_box(ty)) }
|
|
|
|
pub fn mk_uniq(cx: &ctxt, ty: t) -> t { mk_t(cx, ty_uniq(ty)) }
|
|
|
|
pub fn mk_ptr(cx: &ctxt, tm: mt) -> t { mk_t(cx, ty_ptr(tm)) }
|
|
|
|
pub fn mk_rptr(cx: &ctxt, r: Region, tm: mt) -> t { mk_t(cx, ty_rptr(r, tm)) }
|
|
|
|
pub fn mk_mut_rptr(cx: &ctxt, r: Region, ty: t) -> t {
|
|
mk_rptr(cx, r, mt {ty: ty, mutbl: ast::MutMutable})
|
|
}
|
|
pub fn mk_imm_rptr(cx: &ctxt, r: Region, ty: t) -> t {
|
|
mk_rptr(cx, r, mt {ty: ty, mutbl: ast::MutImmutable})
|
|
}
|
|
|
|
pub fn mk_mut_ptr(cx: &ctxt, ty: t) -> t {
|
|
mk_ptr(cx, mt {ty: ty, mutbl: ast::MutMutable})
|
|
}
|
|
|
|
pub fn mk_imm_ptr(cx: &ctxt, ty: t) -> t {
|
|
mk_ptr(cx, mt {ty: ty, mutbl: ast::MutImmutable})
|
|
}
|
|
|
|
pub fn mk_nil_ptr(cx: &ctxt) -> t {
|
|
mk_ptr(cx, mt {ty: mk_nil(), mutbl: ast::MutImmutable})
|
|
}
|
|
|
|
pub fn mk_vec(cx: &ctxt, t: t, sz: Option<uint>) -> t {
|
|
mk_t(cx, ty_vec(t, sz))
|
|
}
|
|
|
|
pub fn mk_slice(cx: &ctxt, r: Region, tm: mt) -> t {
|
|
mk_rptr(cx, r,
|
|
mt {
|
|
ty: mk_vec(cx, tm.ty, None),
|
|
mutbl: tm.mutbl
|
|
})
|
|
}
|
|
|
|
pub fn mk_tup(cx: &ctxt, ts: Vec<t>) -> t { mk_t(cx, ty_tup(ts)) }
|
|
|
|
pub fn mk_closure(cx: &ctxt, fty: ClosureTy) -> t {
|
|
mk_t(cx, ty_closure(box fty))
|
|
}
|
|
|
|
pub fn mk_bare_fn(cx: &ctxt, fty: BareFnTy) -> t {
|
|
mk_t(cx, ty_bare_fn(fty))
|
|
}
|
|
|
|
pub fn mk_ctor_fn(cx: &ctxt,
|
|
binder_id: ast::NodeId,
|
|
input_tys: &[ty::t],
|
|
output: ty::t) -> t {
|
|
let input_args = input_tys.iter().map(|t| *t).collect();
|
|
mk_bare_fn(cx,
|
|
BareFnTy {
|
|
fn_style: ast::NormalFn,
|
|
abi: abi::Rust,
|
|
sig: FnSig {
|
|
binder_id: binder_id,
|
|
inputs: input_args,
|
|
output: output,
|
|
variadic: false
|
|
}
|
|
})
|
|
}
|
|
|
|
|
|
pub fn mk_trait(cx: &ctxt,
|
|
did: ast::DefId,
|
|
substs: Substs,
|
|
bounds: ExistentialBounds)
|
|
-> t {
|
|
// take a copy of substs so that we own the vectors inside
|
|
let inner = box TyTrait {
|
|
def_id: did,
|
|
substs: substs,
|
|
bounds: bounds
|
|
};
|
|
mk_t(cx, ty_trait(inner))
|
|
}
|
|
|
|
pub fn mk_struct(cx: &ctxt, struct_id: ast::DefId, substs: Substs) -> t {
|
|
// take a copy of substs so that we own the vectors inside
|
|
mk_t(cx, ty_struct(struct_id, substs))
|
|
}
|
|
|
|
pub fn mk_unboxed_closure(cx: &ctxt, closure_id: ast::DefId, region: Region)
|
|
-> t {
|
|
mk_t(cx, ty_unboxed_closure(closure_id, region))
|
|
}
|
|
|
|
pub fn mk_var(cx: &ctxt, v: TyVid) -> t { mk_infer(cx, TyVar(v)) }
|
|
|
|
pub fn mk_int_var(cx: &ctxt, v: IntVid) -> t { mk_infer(cx, IntVar(v)) }
|
|
|
|
pub fn mk_float_var(cx: &ctxt, v: FloatVid) -> t { mk_infer(cx, FloatVar(v)) }
|
|
|
|
pub fn mk_infer(cx: &ctxt, it: InferTy) -> t { mk_t(cx, ty_infer(it)) }
|
|
|
|
pub fn mk_param(cx: &ctxt, space: subst::ParamSpace, n: uint, k: DefId) -> t {
|
|
mk_t(cx, ty_param(ParamTy { space: space, idx: n, def_id: k }))
|
|
}
|
|
|
|
pub fn mk_self_type(cx: &ctxt, did: ast::DefId) -> t {
|
|
mk_param(cx, subst::SelfSpace, 0, did)
|
|
}
|
|
|
|
pub fn mk_param_from_def(cx: &ctxt, def: &TypeParameterDef) -> t {
|
|
mk_param(cx, def.space, def.index, def.def_id)
|
|
}
|
|
|
|
pub fn mk_open(cx: &ctxt, t: t) -> t { mk_t(cx, ty_open(t)) }
|
|
|
|
pub fn walk_ty(ty: t, f: |t|) {
|
|
maybe_walk_ty(ty, |t| { f(t); true });
|
|
}
|
|
|
|
pub fn maybe_walk_ty(ty: t, f: |t| -> bool) {
|
|
if !f(ty) {
|
|
return;
|
|
}
|
|
match get(ty).sty {
|
|
ty_nil | ty_bot | ty_bool | ty_char | ty_int(_) | ty_uint(_) | ty_float(_) |
|
|
ty_str | ty_infer(_) | ty_param(_) | ty_unboxed_closure(_, _) | ty_err => {}
|
|
ty_box(ty) | ty_uniq(ty) | ty_vec(ty, _) | ty_open(ty) => maybe_walk_ty(ty, f),
|
|
ty_ptr(ref tm) | ty_rptr(_, ref tm) => {
|
|
maybe_walk_ty(tm.ty, f);
|
|
}
|
|
ty_enum(_, ref substs) | ty_struct(_, ref substs) |
|
|
ty_trait(box TyTrait { ref substs, .. }) => {
|
|
for subty in (*substs).types.iter() {
|
|
maybe_walk_ty(*subty, |x| f(x));
|
|
}
|
|
}
|
|
ty_tup(ref ts) => { for tt in ts.iter() { maybe_walk_ty(*tt, |x| f(x)); } }
|
|
ty_bare_fn(ref ft) => {
|
|
for a in ft.sig.inputs.iter() { maybe_walk_ty(*a, |x| f(x)); }
|
|
maybe_walk_ty(ft.sig.output, f);
|
|
}
|
|
ty_closure(ref ft) => {
|
|
for a in ft.sig.inputs.iter() { maybe_walk_ty(*a, |x| f(x)); }
|
|
maybe_walk_ty(ft.sig.output, f);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Folds types from the bottom up.
|
|
pub fn fold_ty(cx: &ctxt, t0: t, fldop: |t| -> t) -> t {
|
|
let mut f = ty_fold::BottomUpFolder {tcx: cx, fldop: fldop};
|
|
f.fold_ty(t0)
|
|
}
|
|
|
|
pub fn walk_regions_and_ty(cx: &ctxt, ty: t, fldr: |r: Region|, fldt: |t: t|)
|
|
-> t {
|
|
ty_fold::RegionFolder::general(cx,
|
|
|r| { fldr(r); r },
|
|
|t| { fldt(t); t }).fold_ty(ty)
|
|
}
|
|
|
|
impl ParamTy {
|
|
pub fn new(space: subst::ParamSpace,
|
|
index: uint,
|
|
def_id: ast::DefId)
|
|
-> ParamTy {
|
|
ParamTy { space: space, idx: index, def_id: def_id }
|
|
}
|
|
|
|
pub fn for_self(trait_def_id: ast::DefId) -> ParamTy {
|
|
ParamTy::new(subst::SelfSpace, 0, trait_def_id)
|
|
}
|
|
|
|
pub fn for_def(def: &TypeParameterDef) -> ParamTy {
|
|
ParamTy::new(def.space, def.index, def.def_id)
|
|
}
|
|
|
|
pub fn to_ty(self, tcx: &ty::ctxt) -> ty::t {
|
|
ty::mk_param(tcx, self.space, self.idx, self.def_id)
|
|
}
|
|
}
|
|
|
|
impl ItemSubsts {
|
|
pub fn empty() -> ItemSubsts {
|
|
ItemSubsts { substs: Substs::empty() }
|
|
}
|
|
|
|
pub fn is_noop(&self) -> bool {
|
|
self.substs.is_noop()
|
|
}
|
|
}
|
|
|
|
// Type utilities
|
|
|
|
pub fn type_is_nil(ty: t) -> bool { get(ty).sty == ty_nil }
|
|
|
|
pub fn type_is_bot(ty: t) -> bool {
|
|
(get(ty).flags & (has_ty_bot as uint)) != 0
|
|
}
|
|
|
|
pub fn type_is_error(ty: t) -> bool {
|
|
(get(ty).flags & (has_ty_err as uint)) != 0
|
|
}
|
|
|
|
pub fn type_needs_subst(ty: t) -> bool {
|
|
tbox_has_flag(get(ty), needs_subst)
|
|
}
|
|
|
|
pub fn trait_ref_contains_error(tref: &ty::TraitRef) -> bool {
|
|
tref.substs.types.any(|&t| type_is_error(t))
|
|
}
|
|
|
|
pub fn type_is_ty_var(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_infer(TyVar(_)) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_bool(ty: t) -> bool { get(ty).sty == ty_bool }
|
|
|
|
pub fn type_is_self(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_param(ref p) => p.space == subst::SelfSpace,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
fn type_is_slice(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_ptr(mt) | ty_rptr(_, mt) => match get(mt.ty).sty {
|
|
ty_vec(_, None) | ty_str => true,
|
|
_ => false,
|
|
},
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_vec(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_vec(..) => true,
|
|
ty_ptr(mt{ty: t, ..}) | ty_rptr(_, mt{ty: t, ..}) |
|
|
ty_box(t) | ty_uniq(t) => match get(t).sty {
|
|
ty_vec(_, None) => true,
|
|
_ => false
|
|
},
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_structural(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_struct(..) | ty_tup(_) | ty_enum(..) | ty_closure(_) |
|
|
ty_vec(_, Some(_)) | ty_unboxed_closure(..) => true,
|
|
_ => type_is_slice(ty) | type_is_trait(ty)
|
|
}
|
|
}
|
|
|
|
pub fn type_is_simd(cx: &ctxt, ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_struct(did, _) => lookup_simd(cx, did),
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn sequence_element_type(cx: &ctxt, ty: t) -> t {
|
|
match get(ty).sty {
|
|
ty_vec(ty, _) => ty,
|
|
ty_str => mk_mach_uint(ast::TyU8),
|
|
ty_open(ty) => sequence_element_type(cx, ty),
|
|
_ => cx.sess.bug(format!("sequence_element_type called on non-sequence value: {}",
|
|
ty_to_string(cx, ty)).as_slice()),
|
|
}
|
|
}
|
|
|
|
pub fn simd_type(cx: &ctxt, ty: t) -> t {
|
|
match get(ty).sty {
|
|
ty_struct(did, ref substs) => {
|
|
let fields = lookup_struct_fields(cx, did);
|
|
lookup_field_type(cx, did, fields.get(0).id, substs)
|
|
}
|
|
_ => fail!("simd_type called on invalid type")
|
|
}
|
|
}
|
|
|
|
pub fn simd_size(cx: &ctxt, ty: t) -> uint {
|
|
match get(ty).sty {
|
|
ty_struct(did, _) => {
|
|
let fields = lookup_struct_fields(cx, did);
|
|
fields.len()
|
|
}
|
|
_ => fail!("simd_size called on invalid type")
|
|
}
|
|
}
|
|
|
|
pub fn type_is_boxed(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_box(_) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_region_ptr(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_rptr(..) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_unsafe_ptr(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_ptr(_) => return true,
|
|
_ => return false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_unique(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_uniq(_) => match get(ty).sty {
|
|
ty_trait(..) => false,
|
|
_ => true
|
|
},
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_fat_ptr(cx: &ctxt, ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_ptr(mt{ty, ..}) | ty_rptr(_, mt{ty, ..})
|
|
| ty_uniq(ty) if !type_is_sized(cx, ty) => true,
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
/*
|
|
A scalar type is one that denotes an atomic datum, with no sub-components.
|
|
(A ty_ptr is scalar because it represents a non-managed pointer, so its
|
|
contents are abstract to rustc.)
|
|
*/
|
|
pub fn type_is_scalar(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_nil | ty_bool | ty_char | ty_int(_) | ty_float(_) | ty_uint(_) |
|
|
ty_infer(IntVar(_)) | ty_infer(FloatVar(_)) |
|
|
ty_bare_fn(..) | ty_ptr(_) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
/// Returns true if this type is a floating point type and false otherwise.
|
|
pub fn type_is_floating_point(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_float(_) => true,
|
|
_ => false,
|
|
}
|
|
}
|
|
|
|
pub fn type_needs_drop(cx: &ctxt, ty: t) -> bool {
|
|
type_contents(cx, ty).needs_drop(cx)
|
|
}
|
|
|
|
// Some things don't need cleanups during unwinding because the
|
|
// task can free them all at once later. Currently only things
|
|
// that only contain scalars and shared boxes can avoid unwind
|
|
// cleanups.
|
|
pub fn type_needs_unwind_cleanup(cx: &ctxt, ty: t) -> bool {
|
|
match cx.needs_unwind_cleanup_cache.borrow().find(&ty) {
|
|
Some(&result) => return result,
|
|
None => ()
|
|
}
|
|
|
|
let mut tycache = HashSet::new();
|
|
let needs_unwind_cleanup =
|
|
type_needs_unwind_cleanup_(cx, ty, &mut tycache, false);
|
|
cx.needs_unwind_cleanup_cache.borrow_mut().insert(ty, needs_unwind_cleanup);
|
|
return needs_unwind_cleanup;
|
|
}
|
|
|
|
fn type_needs_unwind_cleanup_(cx: &ctxt, ty: t,
|
|
tycache: &mut HashSet<t>,
|
|
encountered_box: bool) -> bool {
|
|
|
|
// Prevent infinite recursion
|
|
if !tycache.insert(ty) {
|
|
return false;
|
|
}
|
|
|
|
let mut encountered_box = encountered_box;
|
|
let mut needs_unwind_cleanup = false;
|
|
maybe_walk_ty(ty, |ty| {
|
|
let old_encountered_box = encountered_box;
|
|
let result = match get(ty).sty {
|
|
ty_box(_) => {
|
|
encountered_box = true;
|
|
true
|
|
}
|
|
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_uint(_) | ty_float(_) |
|
|
ty_tup(_) | ty_ptr(_) => {
|
|
true
|
|
}
|
|
ty_enum(did, ref substs) => {
|
|
for v in (*enum_variants(cx, did)).iter() {
|
|
for aty in v.args.iter() {
|
|
let t = aty.subst(cx, substs);
|
|
needs_unwind_cleanup |=
|
|
type_needs_unwind_cleanup_(cx, t, tycache,
|
|
encountered_box);
|
|
}
|
|
}
|
|
!needs_unwind_cleanup
|
|
}
|
|
ty_uniq(_) => {
|
|
// Once we're inside a box, the annihilator will find
|
|
// it and destroy it.
|
|
if !encountered_box {
|
|
needs_unwind_cleanup = true;
|
|
false
|
|
} else {
|
|
true
|
|
}
|
|
}
|
|
_ => {
|
|
needs_unwind_cleanup = true;
|
|
false
|
|
}
|
|
};
|
|
|
|
encountered_box = old_encountered_box;
|
|
result
|
|
});
|
|
|
|
return needs_unwind_cleanup;
|
|
}
|
|
|
|
/**
|
|
* Type contents is how the type checker reasons about kinds.
|
|
* They track what kinds of things are found within a type. You can
|
|
* think of them as kind of an "anti-kind". They track the kinds of values
|
|
* and thinks that are contained in types. Having a larger contents for
|
|
* a type tends to rule that type *out* from various kinds. For example,
|
|
* a type that contains a reference is not sendable.
|
|
*
|
|
* The reason we compute type contents and not kinds is that it is
|
|
* easier for me (nmatsakis) to think about what is contained within
|
|
* a type than to think about what is *not* contained within a type.
|
|
*/
|
|
pub struct TypeContents {
|
|
pub bits: u64
|
|
}
|
|
|
|
macro_rules! def_type_content_sets(
|
|
(mod $mname:ident { $($name:ident = $bits:expr),+ }) => {
|
|
#[allow(non_snake_case)]
|
|
mod $mname {
|
|
use middle::ty::TypeContents;
|
|
$(pub static $name: TypeContents = TypeContents { bits: $bits };)+
|
|
}
|
|
}
|
|
)
|
|
|
|
def_type_content_sets!(
|
|
mod TC {
|
|
None = 0b0000_0000__0000_0000__0000,
|
|
|
|
// Things that are interior to the value (first nibble):
|
|
InteriorUnsized = 0b0000_0000__0000_0000__0001,
|
|
InteriorUnsafe = 0b0000_0000__0000_0000__0010,
|
|
// InteriorAll = 0b00000000__00000000__1111,
|
|
|
|
// Things that are owned by the value (second and third nibbles):
|
|
OwnsOwned = 0b0000_0000__0000_0001__0000,
|
|
OwnsDtor = 0b0000_0000__0000_0010__0000,
|
|
OwnsManaged /* see [1] below */ = 0b0000_0000__0000_0100__0000,
|
|
OwnsAffine = 0b0000_0000__0000_1000__0000,
|
|
OwnsAll = 0b0000_0000__1111_1111__0000,
|
|
|
|
// Things that are reachable by the value in any way (fourth nibble):
|
|
ReachesNonsendAnnot = 0b0000_0001__0000_0000__0000,
|
|
ReachesBorrowed = 0b0000_0010__0000_0000__0000,
|
|
// ReachesManaged /* see [1] below */ = 0b0000_0100__0000_0000__0000,
|
|
ReachesMutable = 0b0000_1000__0000_0000__0000,
|
|
ReachesNoSync = 0b0001_0000__0000_0000__0000,
|
|
ReachesFfiUnsafe = 0b0010_0000__0000_0000__0000,
|
|
ReachesAll = 0b0011_1111__0000_0000__0000,
|
|
|
|
// Things that cause values to *move* rather than *copy*
|
|
Moves = 0b0000_0000__0000_1011__0000,
|
|
|
|
// Things that mean drop glue is necessary
|
|
NeedsDrop = 0b0000_0000__0000_0111__0000,
|
|
|
|
// Things that prevent values from being sent
|
|
//
|
|
// Note: For checking whether something is sendable, it'd
|
|
// be sufficient to have ReachesManaged. However, we include
|
|
// both ReachesManaged and OwnsManaged so that when
|
|
// a parameter has a bound T:Send, we are able to deduce
|
|
// that it neither reaches nor owns a managed pointer.
|
|
Nonsendable = 0b0000_0111__0000_0100__0000,
|
|
|
|
// Things that prevent values from being considered sized
|
|
Nonsized = 0b0000_0000__0000_0000__0001,
|
|
|
|
// Things that prevent values from being sync
|
|
Nonsync = 0b0001_0000__0000_0000__0000,
|
|
|
|
// Things that make values considered not POD (would be same
|
|
// as `Moves`, but for the fact that managed data `@` is
|
|
// not considered POD)
|
|
Noncopy = 0b0000_0000__0000_1111__0000,
|
|
|
|
// Bits to set when a managed value is encountered
|
|
//
|
|
// [1] Do not set the bits TC::OwnsManaged or
|
|
// TC::ReachesManaged directly, instead reference
|
|
// TC::Managed to set them both at once.
|
|
Managed = 0b0000_0100__0000_0100__0000,
|
|
|
|
// All bits
|
|
All = 0b1111_1111__1111_1111__1111
|
|
}
|
|
)
|
|
|
|
impl TypeContents {
|
|
pub fn meets_builtin_bound(&self, cx: &ctxt, bb: BuiltinBound) -> bool {
|
|
match bb {
|
|
BoundSend => self.is_sendable(cx),
|
|
BoundSized => self.is_sized(cx),
|
|
BoundCopy => self.is_copy(cx),
|
|
BoundSync => self.is_sync(cx),
|
|
}
|
|
}
|
|
|
|
pub fn when(&self, cond: bool) -> TypeContents {
|
|
if cond {*self} else {TC::None}
|
|
}
|
|
|
|
pub fn intersects(&self, tc: TypeContents) -> bool {
|
|
(self.bits & tc.bits) != 0
|
|
}
|
|
|
|
pub fn is_sendable(&self, _: &ctxt) -> bool {
|
|
!self.intersects(TC::Nonsendable)
|
|
}
|
|
|
|
pub fn is_sync(&self, _: &ctxt) -> bool {
|
|
!self.intersects(TC::Nonsync)
|
|
}
|
|
|
|
pub fn owns_managed(&self) -> bool {
|
|
self.intersects(TC::OwnsManaged)
|
|
}
|
|
|
|
pub fn owns_owned(&self) -> bool {
|
|
self.intersects(TC::OwnsOwned)
|
|
}
|
|
|
|
pub fn is_sized(&self, _: &ctxt) -> bool {
|
|
!self.intersects(TC::Nonsized)
|
|
}
|
|
|
|
pub fn is_copy(&self, _: &ctxt) -> bool {
|
|
!self.intersects(TC::Noncopy)
|
|
}
|
|
|
|
pub fn interior_unsafe(&self) -> bool {
|
|
self.intersects(TC::InteriorUnsafe)
|
|
}
|
|
|
|
pub fn interior_unsized(&self) -> bool {
|
|
self.intersects(TC::InteriorUnsized)
|
|
}
|
|
|
|
pub fn moves_by_default(&self, _: &ctxt) -> bool {
|
|
self.intersects(TC::Moves)
|
|
}
|
|
|
|
pub fn needs_drop(&self, _: &ctxt) -> bool {
|
|
self.intersects(TC::NeedsDrop)
|
|
}
|
|
|
|
pub fn owned_pointer(&self) -> TypeContents {
|
|
/*!
|
|
* Includes only those bits that still apply
|
|
* when indirected through a `Box` pointer
|
|
*/
|
|
TC::OwnsOwned | (
|
|
*self & (TC::OwnsAll | TC::ReachesAll))
|
|
}
|
|
|
|
pub fn reference(&self, bits: TypeContents) -> TypeContents {
|
|
/*!
|
|
* Includes only those bits that still apply
|
|
* when indirected through a reference (`&`)
|
|
*/
|
|
bits | (
|
|
*self & TC::ReachesAll)
|
|
}
|
|
|
|
pub fn managed_pointer(&self) -> TypeContents {
|
|
/*!
|
|
* Includes only those bits that still apply
|
|
* when indirected through a managed pointer (`@`)
|
|
*/
|
|
TC::Managed | (
|
|
*self & TC::ReachesAll)
|
|
}
|
|
|
|
pub fn unsafe_pointer(&self) -> TypeContents {
|
|
/*!
|
|
* Includes only those bits that still apply
|
|
* when indirected through an unsafe pointer (`*`)
|
|
*/
|
|
*self & TC::ReachesAll
|
|
}
|
|
|
|
pub fn union<T>(v: &[T], f: |&T| -> TypeContents) -> TypeContents {
|
|
v.iter().fold(TC::None, |tc, t| tc | f(t))
|
|
}
|
|
|
|
pub fn has_dtor(&self) -> bool {
|
|
self.intersects(TC::OwnsDtor)
|
|
}
|
|
}
|
|
|
|
impl ops::BitOr<TypeContents,TypeContents> for TypeContents {
|
|
fn bitor(&self, other: &TypeContents) -> TypeContents {
|
|
TypeContents {bits: self.bits | other.bits}
|
|
}
|
|
}
|
|
|
|
impl ops::BitAnd<TypeContents,TypeContents> for TypeContents {
|
|
fn bitand(&self, other: &TypeContents) -> TypeContents {
|
|
TypeContents {bits: self.bits & other.bits}
|
|
}
|
|
}
|
|
|
|
impl ops::Sub<TypeContents,TypeContents> for TypeContents {
|
|
fn sub(&self, other: &TypeContents) -> TypeContents {
|
|
TypeContents {bits: self.bits & !other.bits}
|
|
}
|
|
}
|
|
|
|
impl fmt::Show for TypeContents {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
write!(f, "TypeContents({:t})", self.bits)
|
|
}
|
|
}
|
|
|
|
pub fn type_is_sendable(cx: &ctxt, t: ty::t) -> bool {
|
|
type_contents(cx, t).is_sendable(cx)
|
|
}
|
|
|
|
pub fn type_interior_is_unsafe(cx: &ctxt, t: ty::t) -> bool {
|
|
type_contents(cx, t).interior_unsafe()
|
|
}
|
|
|
|
pub fn type_contents(cx: &ctxt, ty: t) -> TypeContents {
|
|
let ty_id = type_id(ty);
|
|
|
|
match cx.tc_cache.borrow().find(&ty_id) {
|
|
Some(tc) => { return *tc; }
|
|
None => {}
|
|
}
|
|
|
|
let mut cache = HashMap::new();
|
|
let result = tc_ty(cx, ty, &mut cache);
|
|
|
|
cx.tc_cache.borrow_mut().insert(ty_id, result);
|
|
return result;
|
|
|
|
fn tc_ty(cx: &ctxt,
|
|
ty: t,
|
|
cache: &mut HashMap<uint, TypeContents>) -> TypeContents
|
|
{
|
|
// Subtle: Note that we are *not* using cx.tc_cache here but rather a
|
|
// private cache for this walk. This is needed in the case of cyclic
|
|
// types like:
|
|
//
|
|
// struct List { next: Box<Option<List>>, ... }
|
|
//
|
|
// When computing the type contents of such a type, we wind up deeply
|
|
// recursing as we go. So when we encounter the recursive reference
|
|
// to List, we temporarily use TC::None as its contents. Later we'll
|
|
// patch up the cache with the correct value, once we've computed it
|
|
// (this is basically a co-inductive process, if that helps). So in
|
|
// the end we'll compute TC::OwnsOwned, in this case.
|
|
//
|
|
// The problem is, as we are doing the computation, we will also
|
|
// compute an *intermediate* contents for, e.g., Option<List> of
|
|
// TC::None. This is ok during the computation of List itself, but if
|
|
// we stored this intermediate value into cx.tc_cache, then later
|
|
// requests for the contents of Option<List> would also yield TC::None
|
|
// which is incorrect. This value was computed based on the crutch
|
|
// value for the type contents of list. The correct value is
|
|
// TC::OwnsOwned. This manifested as issue #4821.
|
|
let ty_id = type_id(ty);
|
|
match cache.find(&ty_id) {
|
|
Some(tc) => { return *tc; }
|
|
None => {}
|
|
}
|
|
match cx.tc_cache.borrow().find(&ty_id) { // Must check both caches!
|
|
Some(tc) => { return *tc; }
|
|
None => {}
|
|
}
|
|
cache.insert(ty_id, TC::None);
|
|
|
|
let result = match get(ty).sty {
|
|
// uint and int are ffi-unsafe
|
|
ty_uint(ast::TyU) | ty_int(ast::TyI) => {
|
|
TC::ReachesFfiUnsafe
|
|
}
|
|
|
|
// Scalar and unique types are sendable, and durable
|
|
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_uint(_) | ty_float(_) |
|
|
ty_bare_fn(_) | ty::ty_char => {
|
|
TC::None
|
|
}
|
|
|
|
ty_closure(ref c) => {
|
|
closure_contents(cx, &**c) | TC::ReachesFfiUnsafe
|
|
}
|
|
|
|
ty_box(typ) => {
|
|
tc_ty(cx, typ, cache).managed_pointer() | TC::ReachesFfiUnsafe
|
|
}
|
|
|
|
ty_uniq(typ) => {
|
|
TC::ReachesFfiUnsafe | match get(typ).sty {
|
|
ty_str => TC::OwnsOwned,
|
|
_ => tc_ty(cx, typ, cache).owned_pointer(),
|
|
}
|
|
}
|
|
|
|
ty_trait(box ty::TyTrait { bounds, .. }) => {
|
|
object_contents(cx, bounds) | TC::ReachesFfiUnsafe | TC::Nonsized
|
|
}
|
|
|
|
ty_ptr(ref mt) => {
|
|
tc_ty(cx, mt.ty, cache).unsafe_pointer()
|
|
}
|
|
|
|
ty_rptr(r, ref mt) => {
|
|
TC::ReachesFfiUnsafe | match get(mt.ty).sty {
|
|
ty_str => borrowed_contents(r, ast::MutImmutable),
|
|
ty_vec(..) => tc_ty(cx, mt.ty, cache).reference(borrowed_contents(r, mt.mutbl)),
|
|
_ => tc_ty(cx, mt.ty, cache).reference(borrowed_contents(r, mt.mutbl)),
|
|
}
|
|
}
|
|
|
|
ty_vec(t, Some(_)) => {
|
|
tc_ty(cx, t, cache)
|
|
}
|
|
|
|
ty_vec(t, None) => {
|
|
tc_ty(cx, t, cache) | TC::Nonsized
|
|
}
|
|
ty_str => TC::Nonsized,
|
|
|
|
ty_struct(did, ref substs) => {
|
|
let flds = struct_fields(cx, did, substs);
|
|
let mut res =
|
|
TypeContents::union(flds.as_slice(),
|
|
|f| tc_mt(cx, f.mt, cache));
|
|
|
|
if !lookup_repr_hints(cx, did).contains(&attr::ReprExtern) {
|
|
res = res | TC::ReachesFfiUnsafe;
|
|
}
|
|
|
|
if ty::has_dtor(cx, did) {
|
|
res = res | TC::OwnsDtor;
|
|
}
|
|
apply_lang_items(cx, did, res)
|
|
}
|
|
|
|
ty_unboxed_closure(did, r) => {
|
|
// FIXME(#14449): `borrowed_contents` below assumes `&mut`
|
|
// unboxed closure.
|
|
let upvars = unboxed_closure_upvars(cx, did);
|
|
TypeContents::union(upvars.as_slice(),
|
|
|f| tc_ty(cx, f.ty, cache)) |
|
|
borrowed_contents(r, MutMutable)
|
|
}
|
|
|
|
ty_tup(ref tys) => {
|
|
TypeContents::union(tys.as_slice(),
|
|
|ty| tc_ty(cx, *ty, cache))
|
|
}
|
|
|
|
ty_enum(did, ref substs) => {
|
|
let variants = substd_enum_variants(cx, did, substs);
|
|
let mut res =
|
|
TypeContents::union(variants.as_slice(), |variant| {
|
|
TypeContents::union(variant.args.as_slice(),
|
|
|arg_ty| {
|
|
tc_ty(cx, *arg_ty, cache)
|
|
})
|
|
});
|
|
|
|
if ty::has_dtor(cx, did) {
|
|
res = res | TC::OwnsDtor;
|
|
}
|
|
|
|
if variants.len() != 0 {
|
|
let repr_hints = lookup_repr_hints(cx, did);
|
|
if repr_hints.len() > 1 {
|
|
// this is an error later on, but this type isn't safe
|
|
res = res | TC::ReachesFfiUnsafe;
|
|
}
|
|
|
|
match repr_hints.as_slice().get(0) {
|
|
Some(h) => if !h.is_ffi_safe() {
|
|
res = res | TC::ReachesFfiUnsafe;
|
|
},
|
|
// ReprAny
|
|
None => {
|
|
res = res | TC::ReachesFfiUnsafe;
|
|
|
|
// We allow ReprAny enums if they are eligible for
|
|
// the nullable pointer optimization and the
|
|
// contained type is an `extern fn`
|
|
|
|
if variants.len() == 2 {
|
|
let mut data_idx = 0;
|
|
|
|
if variants.get(0).args.len() == 0 {
|
|
data_idx = 1;
|
|
}
|
|
|
|
if variants.get(data_idx).args.len() == 1 {
|
|
match get(*variants.get(data_idx).args.get(0)).sty {
|
|
ty_bare_fn(..) => { res = res - TC::ReachesFfiUnsafe; }
|
|
_ => { }
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
apply_lang_items(cx, did, res)
|
|
}
|
|
|
|
ty_param(p) => {
|
|
// We only ever ask for the kind of types that are defined in
|
|
// the current crate; therefore, the only type parameters that
|
|
// could be in scope are those defined in the current crate.
|
|
// If this assertion failures, it is likely because of a
|
|
// failure in the cross-crate inlining code to translate a
|
|
// def-id.
|
|
assert_eq!(p.def_id.krate, ast::LOCAL_CRATE);
|
|
|
|
let ty_param_defs = cx.ty_param_defs.borrow();
|
|
let tp_def = ty_param_defs.get(&p.def_id.node);
|
|
kind_bounds_to_contents(
|
|
cx,
|
|
tp_def.bounds.builtin_bounds,
|
|
tp_def.bounds.trait_bounds.as_slice())
|
|
}
|
|
|
|
ty_infer(_) => {
|
|
// This occurs during coherence, but shouldn't occur at other
|
|
// times.
|
|
TC::All
|
|
}
|
|
|
|
ty_open(t) => {
|
|
let result = tc_ty(cx, t, cache);
|
|
assert!(!result.is_sized(cx))
|
|
result.unsafe_pointer() | TC::Nonsized
|
|
}
|
|
|
|
ty_err => {
|
|
cx.sess.bug("asked to compute contents of error type");
|
|
}
|
|
};
|
|
|
|
cache.insert(ty_id, result);
|
|
return result;
|
|
}
|
|
|
|
fn tc_mt(cx: &ctxt,
|
|
mt: mt,
|
|
cache: &mut HashMap<uint, TypeContents>) -> TypeContents
|
|
{
|
|
let mc = TC::ReachesMutable.when(mt.mutbl == MutMutable);
|
|
mc | tc_ty(cx, mt.ty, cache)
|
|
}
|
|
|
|
fn apply_lang_items(cx: &ctxt,
|
|
did: ast::DefId,
|
|
tc: TypeContents)
|
|
-> TypeContents {
|
|
if Some(did) == cx.lang_items.no_send_bound() {
|
|
tc | TC::ReachesNonsendAnnot
|
|
} else if Some(did) == cx.lang_items.managed_bound() {
|
|
tc | TC::Managed
|
|
} else if Some(did) == cx.lang_items.no_copy_bound() {
|
|
tc | TC::OwnsAffine
|
|
} else if Some(did) == cx.lang_items.no_sync_bound() {
|
|
tc | TC::ReachesNoSync
|
|
} else if Some(did) == cx.lang_items.unsafe_type() {
|
|
// FIXME(#13231): This shouldn't be needed after
|
|
// opt-in built-in bounds are implemented.
|
|
(tc | TC::InteriorUnsafe) - TC::Nonsync
|
|
} else {
|
|
tc
|
|
}
|
|
}
|
|
|
|
fn borrowed_contents(region: ty::Region,
|
|
mutbl: ast::Mutability)
|
|
-> TypeContents {
|
|
/*!
|
|
* Type contents due to containing a reference
|
|
* with the region `region` and borrow kind `bk`
|
|
*/
|
|
|
|
let b = match mutbl {
|
|
ast::MutMutable => TC::ReachesMutable | TC::OwnsAffine,
|
|
ast::MutImmutable => TC::None,
|
|
};
|
|
b | (TC::ReachesBorrowed).when(region != ty::ReStatic)
|
|
}
|
|
|
|
fn closure_contents(cx: &ctxt, cty: &ClosureTy) -> TypeContents {
|
|
// Closure contents are just like trait contents, but with potentially
|
|
// even more stuff.
|
|
let st = object_contents(cx, cty.bounds);
|
|
|
|
let st = match cty.store {
|
|
UniqTraitStore => {
|
|
st.owned_pointer()
|
|
}
|
|
RegionTraitStore(r, mutbl) => {
|
|
st.reference(borrowed_contents(r, mutbl))
|
|
}
|
|
};
|
|
|
|
// This also prohibits "@once fn" from being copied, which allows it to
|
|
// be called. Neither way really makes much sense.
|
|
let ot = match cty.onceness {
|
|
ast::Once => TC::OwnsAffine,
|
|
ast::Many => TC::None,
|
|
};
|
|
|
|
st | ot
|
|
}
|
|
|
|
fn object_contents(cx: &ctxt,
|
|
bounds: ExistentialBounds)
|
|
-> TypeContents {
|
|
// These are the type contents of the (opaque) interior
|
|
kind_bounds_to_contents(cx, bounds.builtin_bounds, [])
|
|
}
|
|
|
|
fn kind_bounds_to_contents(cx: &ctxt,
|
|
bounds: BuiltinBounds,
|
|
traits: &[Rc<TraitRef>])
|
|
-> TypeContents {
|
|
let _i = indenter();
|
|
let mut tc = TC::All;
|
|
each_inherited_builtin_bound(cx, bounds, traits, |bound| {
|
|
tc = tc - match bound {
|
|
BoundSend => TC::Nonsendable,
|
|
BoundSized => TC::Nonsized,
|
|
BoundCopy => TC::Noncopy,
|
|
BoundSync => TC::Nonsync,
|
|
};
|
|
});
|
|
return tc;
|
|
|
|
// Iterates over all builtin bounds on the type parameter def, including
|
|
// those inherited from traits with builtin-kind-supertraits.
|
|
fn each_inherited_builtin_bound(cx: &ctxt,
|
|
bounds: BuiltinBounds,
|
|
traits: &[Rc<TraitRef>],
|
|
f: |BuiltinBound|) {
|
|
for bound in bounds.iter() {
|
|
f(bound);
|
|
}
|
|
|
|
each_bound_trait_and_supertraits(cx, traits, |trait_ref| {
|
|
let trait_def = lookup_trait_def(cx, trait_ref.def_id);
|
|
for bound in trait_def.bounds.builtin_bounds.iter() {
|
|
f(bound);
|
|
}
|
|
true
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn type_moves_by_default(cx: &ctxt, ty: t) -> bool {
|
|
type_contents(cx, ty).moves_by_default(cx)
|
|
}
|
|
|
|
pub fn is_ffi_safe(cx: &ctxt, ty: t) -> bool {
|
|
!type_contents(cx, ty).intersects(TC::ReachesFfiUnsafe)
|
|
}
|
|
|
|
// True if instantiating an instance of `r_ty` requires an instance of `r_ty`.
|
|
pub fn is_instantiable(cx: &ctxt, r_ty: t) -> bool {
|
|
fn type_requires(cx: &ctxt, seen: &mut Vec<DefId>,
|
|
r_ty: t, ty: t) -> bool {
|
|
debug!("type_requires({}, {})?",
|
|
::util::ppaux::ty_to_string(cx, r_ty),
|
|
::util::ppaux::ty_to_string(cx, ty));
|
|
|
|
let r = {
|
|
get(r_ty).sty == get(ty).sty ||
|
|
subtypes_require(cx, seen, r_ty, ty)
|
|
};
|
|
|
|
debug!("type_requires({}, {})? {}",
|
|
::util::ppaux::ty_to_string(cx, r_ty),
|
|
::util::ppaux::ty_to_string(cx, ty),
|
|
r);
|
|
return r;
|
|
}
|
|
|
|
fn subtypes_require(cx: &ctxt, seen: &mut Vec<DefId>,
|
|
r_ty: t, ty: t) -> bool {
|
|
debug!("subtypes_require({}, {})?",
|
|
::util::ppaux::ty_to_string(cx, r_ty),
|
|
::util::ppaux::ty_to_string(cx, ty));
|
|
|
|
let r = match get(ty).sty {
|
|
// fixed length vectors need special treatment compared to
|
|
// normal vectors, since they don't necessarily have the
|
|
// possibility to have length zero.
|
|
ty_vec(_, Some(0)) => false, // don't need no contents
|
|
ty_vec(ty, Some(_)) => type_requires(cx, seen, r_ty, ty),
|
|
|
|
ty_nil |
|
|
ty_bot |
|
|
ty_bool |
|
|
ty_char |
|
|
ty_int(_) |
|
|
ty_uint(_) |
|
|
ty_float(_) |
|
|
ty_str |
|
|
ty_bare_fn(_) |
|
|
ty_closure(_) |
|
|
ty_infer(_) |
|
|
ty_err |
|
|
ty_param(_) |
|
|
ty_vec(_, None) => {
|
|
false
|
|
}
|
|
ty_box(typ) | ty_uniq(typ) | ty_open(typ) => {
|
|
type_requires(cx, seen, r_ty, typ)
|
|
}
|
|
ty_rptr(_, ref mt) => {
|
|
type_requires(cx, seen, r_ty, mt.ty)
|
|
}
|
|
|
|
ty_ptr(..) => {
|
|
false // unsafe ptrs can always be NULL
|
|
}
|
|
|
|
ty_trait(..) => {
|
|
false
|
|
}
|
|
|
|
ty_struct(ref did, _) if seen.contains(did) => {
|
|
false
|
|
}
|
|
|
|
ty_struct(did, ref substs) => {
|
|
seen.push(did);
|
|
let fields = struct_fields(cx, did, substs);
|
|
let r = fields.iter().any(|f| type_requires(cx, seen, r_ty, f.mt.ty));
|
|
seen.pop().unwrap();
|
|
r
|
|
}
|
|
|
|
ty_unboxed_closure(did, _) => {
|
|
let upvars = unboxed_closure_upvars(cx, did);
|
|
upvars.iter().any(|f| type_requires(cx, seen, r_ty, f.ty))
|
|
}
|
|
|
|
ty_tup(ref ts) => {
|
|
ts.iter().any(|t| type_requires(cx, seen, r_ty, *t))
|
|
}
|
|
|
|
ty_enum(ref did, _) if seen.contains(did) => {
|
|
false
|
|
}
|
|
|
|
ty_enum(did, ref substs) => {
|
|
seen.push(did);
|
|
let vs = enum_variants(cx, did);
|
|
let r = !vs.is_empty() && vs.iter().all(|variant| {
|
|
variant.args.iter().any(|aty| {
|
|
let sty = aty.subst(cx, substs);
|
|
type_requires(cx, seen, r_ty, sty)
|
|
})
|
|
});
|
|
seen.pop().unwrap();
|
|
r
|
|
}
|
|
};
|
|
|
|
debug!("subtypes_require({}, {})? {}",
|
|
::util::ppaux::ty_to_string(cx, r_ty),
|
|
::util::ppaux::ty_to_string(cx, ty),
|
|
r);
|
|
|
|
return r;
|
|
}
|
|
|
|
let mut seen = Vec::new();
|
|
!subtypes_require(cx, &mut seen, r_ty, r_ty)
|
|
}
|
|
|
|
/// Describes whether a type is representable. For types that are not
|
|
/// representable, 'SelfRecursive' and 'ContainsRecursive' are used to
|
|
/// distinguish between types that are recursive with themselves and types that
|
|
/// contain a different recursive type. These cases can therefore be treated
|
|
/// differently when reporting errors.
|
|
#[deriving(PartialEq)]
|
|
pub enum Representability {
|
|
Representable,
|
|
SelfRecursive,
|
|
ContainsRecursive,
|
|
}
|
|
|
|
/// Check whether a type is representable. This means it cannot contain unboxed
|
|
/// structural recursion. This check is needed for structs and enums.
|
|
pub fn is_type_representable(cx: &ctxt, sp: Span, ty: t) -> Representability {
|
|
|
|
// Iterate until something non-representable is found
|
|
fn find_nonrepresentable<It: Iterator<t>>(cx: &ctxt, sp: Span, seen: &mut Vec<DefId>,
|
|
mut iter: It) -> Representability {
|
|
for ty in iter {
|
|
let r = type_structurally_recursive(cx, sp, seen, ty);
|
|
if r != Representable {
|
|
return r
|
|
}
|
|
}
|
|
Representable
|
|
}
|
|
|
|
// Does the type `ty` directly (without indirection through a pointer)
|
|
// contain any types on stack `seen`?
|
|
fn type_structurally_recursive(cx: &ctxt, sp: Span, seen: &mut Vec<DefId>,
|
|
ty: t) -> Representability {
|
|
debug!("type_structurally_recursive: {}",
|
|
::util::ppaux::ty_to_string(cx, ty));
|
|
|
|
// Compare current type to previously seen types
|
|
match get(ty).sty {
|
|
ty_struct(did, _) |
|
|
ty_enum(did, _) => {
|
|
for (i, &seen_did) in seen.iter().enumerate() {
|
|
if did == seen_did {
|
|
return if i == 0 { SelfRecursive }
|
|
else { ContainsRecursive }
|
|
}
|
|
}
|
|
}
|
|
_ => (),
|
|
}
|
|
|
|
// Check inner types
|
|
match get(ty).sty {
|
|
// Tuples
|
|
ty_tup(ref ts) => {
|
|
find_nonrepresentable(cx, sp, seen, ts.iter().map(|t| *t))
|
|
}
|
|
// Fixed-length vectors.
|
|
// FIXME(#11924) Behavior undecided for zero-length vectors.
|
|
ty_vec(ty, Some(_)) => {
|
|
type_structurally_recursive(cx, sp, seen, ty)
|
|
}
|
|
|
|
// Push struct and enum def-ids onto `seen` before recursing.
|
|
ty_struct(did, ref substs) => {
|
|
seen.push(did);
|
|
let fields = struct_fields(cx, did, substs);
|
|
let r = find_nonrepresentable(cx, sp, seen,
|
|
fields.iter().map(|f| f.mt.ty));
|
|
seen.pop();
|
|
r
|
|
}
|
|
|
|
ty_enum(did, ref substs) => {
|
|
seen.push(did);
|
|
let vs = enum_variants(cx, did);
|
|
|
|
let mut r = Representable;
|
|
for variant in vs.iter() {
|
|
let iter = variant.args.iter().map(|aty| {
|
|
aty.subst_spanned(cx, substs, Some(sp))
|
|
});
|
|
r = find_nonrepresentable(cx, sp, seen, iter);
|
|
|
|
if r != Representable { break }
|
|
}
|
|
|
|
seen.pop();
|
|
r
|
|
}
|
|
|
|
ty_unboxed_closure(did, _) => {
|
|
let upvars = unboxed_closure_upvars(cx, did);
|
|
find_nonrepresentable(cx,
|
|
sp,
|
|
seen,
|
|
upvars.iter().map(|f| f.ty))
|
|
}
|
|
|
|
_ => Representable,
|
|
}
|
|
}
|
|
|
|
debug!("is_type_representable: {}",
|
|
::util::ppaux::ty_to_string(cx, ty));
|
|
|
|
// To avoid a stack overflow when checking an enum variant or struct that
|
|
// contains a different, structurally recursive type, maintain a stack
|
|
// of seen types and check recursion for each of them (issues #3008, #3779).
|
|
let mut seen: Vec<DefId> = Vec::new();
|
|
type_structurally_recursive(cx, sp, &mut seen, ty)
|
|
}
|
|
|
|
pub fn type_is_trait(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_uniq(ty) | ty_rptr(_, mt { ty, ..}) | ty_ptr(mt { ty, ..}) => match get(ty).sty {
|
|
ty_trait(..) => true,
|
|
_ => false
|
|
},
|
|
ty_trait(..) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_integral(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_infer(IntVar(_)) | ty_int(_) | ty_uint(_) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_uint(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_infer(IntVar(_)) | ty_uint(ast::TyU) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_char(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_char => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_bare_fn(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_bare_fn(..) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_fp(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_infer(FloatVar(_)) | ty_float(_) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_numeric(ty: t) -> bool {
|
|
return type_is_integral(ty) || type_is_fp(ty);
|
|
}
|
|
|
|
pub fn type_is_signed(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_int(_) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_machine(ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_int(ast::TyI) | ty_uint(ast::TyU) => false,
|
|
ty_int(..) | ty_uint(..) | ty_float(..) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
// Is the type's representation size known at compile time?
|
|
pub fn type_is_sized(cx: &ctxt, ty: t) -> bool {
|
|
type_contents(cx, ty).is_sized(cx)
|
|
}
|
|
|
|
pub fn lltype_is_sized(cx: &ctxt, ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_open(_) => true,
|
|
_ => type_contents(cx, ty).is_sized(cx)
|
|
}
|
|
}
|
|
|
|
// Return the smallest part of t which is unsized. Fails if t is sized.
|
|
// 'Smallest' here means component of the static representation of the type; not
|
|
// the size of an object at runtime.
|
|
pub fn unsized_part_of_type(cx: &ctxt, ty: t) -> t {
|
|
match get(ty).sty {
|
|
ty_str | ty_trait(..) | ty_vec(..) => ty,
|
|
ty_struct(_, ref substs) => {
|
|
// Exactly one of the type parameters must be unsized.
|
|
for tp in substs.types.get_slice(subst::TypeSpace).iter() {
|
|
if !type_is_sized(cx, *tp) {
|
|
return unsized_part_of_type(cx, *tp);
|
|
}
|
|
}
|
|
fail!("Unsized struct type with no unsized type params? {}", ty_to_string(cx, ty));
|
|
}
|
|
_ => {
|
|
assert!(type_is_sized(cx, ty),
|
|
"unsized_part_of_type failed even though ty is unsized");
|
|
fail!("called unsized_part_of_type with sized ty");
|
|
}
|
|
}
|
|
}
|
|
|
|
// Whether a type is enum like, that is an enum type with only nullary
|
|
// constructors
|
|
pub fn type_is_c_like_enum(cx: &ctxt, ty: t) -> bool {
|
|
match get(ty).sty {
|
|
ty_enum(did, _) => {
|
|
let variants = enum_variants(cx, did);
|
|
if variants.len() == 0 {
|
|
false
|
|
} else {
|
|
variants.iter().all(|v| v.args.len() == 0)
|
|
}
|
|
}
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
// Returns the type and mutability of *t.
|
|
//
|
|
// The parameter `explicit` indicates if this is an *explicit* dereference.
|
|
// Some types---notably unsafe ptrs---can only be dereferenced explicitly.
|
|
pub fn deref(t: t, explicit: bool) -> Option<mt> {
|
|
match get(t).sty {
|
|
ty_box(ty) | ty_uniq(ty) => {
|
|
Some(mt {
|
|
ty: ty,
|
|
mutbl: ast::MutImmutable,
|
|
})
|
|
},
|
|
ty_rptr(_, mt) => Some(mt),
|
|
ty_ptr(mt) if explicit => Some(mt),
|
|
_ => None
|
|
}
|
|
}
|
|
|
|
pub fn deref_or_dont(t: t) -> t {
|
|
match get(t).sty {
|
|
ty_box(ty) | ty_uniq(ty) => {
|
|
ty
|
|
},
|
|
ty_rptr(_, mt) | ty_ptr(mt) => mt.ty,
|
|
_ => t
|
|
}
|
|
}
|
|
|
|
pub fn close_type(cx: &ctxt, t: t) -> t {
|
|
match get(t).sty {
|
|
ty_open(t) => mk_rptr(cx, ReStatic, mt {ty: t, mutbl:ast::MutImmutable}),
|
|
_ => cx.sess.bug(format!("Trying to close a non-open type {}",
|
|
ty_to_string(cx, t)).as_slice())
|
|
}
|
|
}
|
|
|
|
pub fn type_content(t: t) -> t {
|
|
match get(t).sty {
|
|
ty_box(ty) | ty_uniq(ty) => ty,
|
|
ty_rptr(_, mt) |ty_ptr(mt) => mt.ty,
|
|
_ => t
|
|
}
|
|
|
|
}
|
|
|
|
// Extract the unsized type in an open type (or just return t if it is not open).
|
|
pub fn unopen_type(t: t) -> t {
|
|
match get(t).sty {
|
|
ty_open(t) => t,
|
|
_ => t
|
|
}
|
|
}
|
|
|
|
// Returns the type of t[i]
|
|
pub fn index(ty: t) -> Option<t> {
|
|
match get(ty).sty {
|
|
ty_vec(t, _) => Some(t),
|
|
_ => None
|
|
}
|
|
}
|
|
|
|
// Returns the type of elements contained within an 'array-like' type.
|
|
// This is exactly the same as the above, except it supports strings,
|
|
// which can't actually be indexed.
|
|
pub fn array_element_ty(t: t) -> Option<t> {
|
|
match get(t).sty {
|
|
ty_vec(t, _) => Some(t),
|
|
ty_str => Some(mk_u8()),
|
|
_ => None
|
|
}
|
|
}
|
|
|
|
pub fn node_id_to_trait_ref(cx: &ctxt, id: ast::NodeId) -> Rc<ty::TraitRef> {
|
|
match cx.trait_refs.borrow().find(&id) {
|
|
Some(t) => t.clone(),
|
|
None => cx.sess.bug(
|
|
format!("node_id_to_trait_ref: no trait ref for node `{}`",
|
|
cx.map.node_to_string(id)).as_slice())
|
|
}
|
|
}
|
|
|
|
pub fn try_node_id_to_type(cx: &ctxt, id: ast::NodeId) -> Option<t> {
|
|
cx.node_types.borrow().find_copy(&(id as uint))
|
|
}
|
|
|
|
pub fn node_id_to_type(cx: &ctxt, id: ast::NodeId) -> t {
|
|
match try_node_id_to_type(cx, id) {
|
|
Some(t) => t,
|
|
None => cx.sess.bug(
|
|
format!("node_id_to_type: no type for node `{}`",
|
|
cx.map.node_to_string(id)).as_slice())
|
|
}
|
|
}
|
|
|
|
pub fn node_id_to_type_opt(cx: &ctxt, id: ast::NodeId) -> Option<t> {
|
|
match cx.node_types.borrow().find(&(id as uint)) {
|
|
Some(&t) => Some(t),
|
|
None => None
|
|
}
|
|
}
|
|
|
|
pub fn node_id_item_substs(cx: &ctxt, id: ast::NodeId) -> ItemSubsts {
|
|
match cx.item_substs.borrow().find(&id) {
|
|
None => ItemSubsts::empty(),
|
|
Some(ts) => ts.clone(),
|
|
}
|
|
}
|
|
|
|
pub fn fn_is_variadic(fty: t) -> bool {
|
|
match get(fty).sty {
|
|
ty_bare_fn(ref f) => f.sig.variadic,
|
|
ty_closure(ref f) => f.sig.variadic,
|
|
ref s => {
|
|
fail!("fn_is_variadic() called on non-fn type: {:?}", s)
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn ty_fn_sig(fty: t) -> FnSig {
|
|
match get(fty).sty {
|
|
ty_bare_fn(ref f) => f.sig.clone(),
|
|
ty_closure(ref f) => f.sig.clone(),
|
|
ref s => {
|
|
fail!("ty_fn_sig() called on non-fn type: {:?}", s)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Returns the ABI of the given function.
|
|
pub fn ty_fn_abi(fty: t) -> abi::Abi {
|
|
match get(fty).sty {
|
|
ty_bare_fn(ref f) => f.abi,
|
|
ty_closure(ref f) => f.abi,
|
|
_ => fail!("ty_fn_abi() called on non-fn type"),
|
|
}
|
|
}
|
|
|
|
// Type accessors for substructures of types
|
|
pub fn ty_fn_args(fty: t) -> Vec<t> {
|
|
match get(fty).sty {
|
|
ty_bare_fn(ref f) => f.sig.inputs.clone(),
|
|
ty_closure(ref f) => f.sig.inputs.clone(),
|
|
ref s => {
|
|
fail!("ty_fn_args() called on non-fn type: {:?}", s)
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn ty_closure_store(fty: t) -> TraitStore {
|
|
match get(fty).sty {
|
|
ty_closure(ref f) => f.store,
|
|
ty_unboxed_closure(..) => {
|
|
// Close enough for the purposes of all the callers of this
|
|
// function (which is soon to be deprecated anyhow).
|
|
UniqTraitStore
|
|
}
|
|
ref s => {
|
|
fail!("ty_closure_store() called on non-closure type: {:?}", s)
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn ty_fn_ret(fty: t) -> t {
|
|
match get(fty).sty {
|
|
ty_bare_fn(ref f) => f.sig.output,
|
|
ty_closure(ref f) => f.sig.output,
|
|
ref s => {
|
|
fail!("ty_fn_ret() called on non-fn type: {:?}", s)
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn is_fn_ty(fty: t) -> bool {
|
|
match get(fty).sty {
|
|
ty_bare_fn(_) => true,
|
|
ty_closure(_) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn ty_region(tcx: &ctxt,
|
|
span: Span,
|
|
ty: t) -> Region {
|
|
match get(ty).sty {
|
|
ty_rptr(r, _) => r,
|
|
ref s => {
|
|
tcx.sess.span_bug(
|
|
span,
|
|
format!("ty_region() invoked on in appropriate ty: {:?}",
|
|
s).as_slice());
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn free_region_from_def(free_id: ast::NodeId, def: &RegionParameterDef)
|
|
-> ty::Region
|
|
{
|
|
ty::ReFree(ty::FreeRegion { scope_id: free_id,
|
|
bound_region: ty::BrNamed(def.def_id,
|
|
def.name) })
|
|
}
|
|
|
|
// Returns the type of a pattern as a monotype. Like @expr_ty, this function
|
|
// doesn't provide type parameter substitutions.
|
|
pub fn pat_ty(cx: &ctxt, pat: &ast::Pat) -> t {
|
|
return node_id_to_type(cx, pat.id);
|
|
}
|
|
|
|
|
|
// Returns the type of an expression as a monotype.
|
|
//
|
|
// NB (1): This is the PRE-ADJUSTMENT TYPE for the expression. That is, in
|
|
// some cases, we insert `AutoAdjustment` annotations such as auto-deref or
|
|
// auto-ref. The type returned by this function does not consider such
|
|
// adjustments. See `expr_ty_adjusted()` instead.
|
|
//
|
|
// NB (2): This type doesn't provide type parameter substitutions; e.g. if you
|
|
// ask for the type of "id" in "id(3)", it will return "fn(&int) -> int"
|
|
// instead of "fn(t) -> T with T = int".
|
|
pub fn expr_ty(cx: &ctxt, expr: &ast::Expr) -> t {
|
|
return node_id_to_type(cx, expr.id);
|
|
}
|
|
|
|
pub fn expr_ty_opt(cx: &ctxt, expr: &ast::Expr) -> Option<t> {
|
|
return node_id_to_type_opt(cx, expr.id);
|
|
}
|
|
|
|
pub fn expr_ty_adjusted(cx: &ctxt, expr: &ast::Expr) -> t {
|
|
/*!
|
|
*
|
|
* Returns the type of `expr`, considering any `AutoAdjustment`
|
|
* entry recorded for that expression.
|
|
*
|
|
* It would almost certainly be better to store the adjusted ty in with
|
|
* the `AutoAdjustment`, but I opted not to do this because it would
|
|
* require serializing and deserializing the type and, although that's not
|
|
* hard to do, I just hate that code so much I didn't want to touch it
|
|
* unless it was to fix it properly, which seemed a distraction from the
|
|
* task at hand! -nmatsakis
|
|
*/
|
|
|
|
adjust_ty(cx, expr.span, expr.id, expr_ty(cx, expr),
|
|
cx.adjustments.borrow().find(&expr.id),
|
|
|method_call| cx.method_map.borrow().find(&method_call).map(|method| method.ty))
|
|
}
|
|
|
|
pub fn expr_span(cx: &ctxt, id: NodeId) -> Span {
|
|
match cx.map.find(id) {
|
|
Some(ast_map::NodeExpr(e)) => {
|
|
e.span
|
|
}
|
|
Some(f) => {
|
|
cx.sess.bug(format!("Node id {} is not an expr: {:?}",
|
|
id,
|
|
f).as_slice());
|
|
}
|
|
None => {
|
|
cx.sess.bug(format!("Node id {} is not present \
|
|
in the node map", id).as_slice());
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn local_var_name_str(cx: &ctxt, id: NodeId) -> InternedString {
|
|
match cx.map.find(id) {
|
|
Some(ast_map::NodeLocal(pat)) => {
|
|
match pat.node {
|
|
ast::PatIdent(_, ref path1, _) => {
|
|
token::get_ident(path1.node)
|
|
}
|
|
_ => {
|
|
cx.sess.bug(
|
|
format!("Variable id {} maps to {:?}, not local",
|
|
id,
|
|
pat).as_slice());
|
|
}
|
|
}
|
|
}
|
|
r => {
|
|
cx.sess.bug(format!("Variable id {} maps to {:?}, not local",
|
|
id,
|
|
r).as_slice());
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn adjust_ty(cx: &ctxt,
|
|
span: Span,
|
|
expr_id: ast::NodeId,
|
|
unadjusted_ty: ty::t,
|
|
adjustment: Option<&AutoAdjustment>,
|
|
method_type: |typeck::MethodCall| -> Option<ty::t>)
|
|
-> ty::t {
|
|
/*! See `expr_ty_adjusted` */
|
|
|
|
match get(unadjusted_ty).sty {
|
|
ty_err => return unadjusted_ty,
|
|
_ => {}
|
|
}
|
|
|
|
return match adjustment {
|
|
Some(adjustment) => {
|
|
match *adjustment {
|
|
AutoAddEnv(store) => {
|
|
match ty::get(unadjusted_ty).sty {
|
|
ty::ty_bare_fn(ref b) => {
|
|
let bounds = ty::ExistentialBounds {
|
|
region_bound: ReStatic,
|
|
builtin_bounds: all_builtin_bounds(),
|
|
};
|
|
|
|
ty::mk_closure(
|
|
cx,
|
|
ty::ClosureTy {fn_style: b.fn_style,
|
|
onceness: ast::Many,
|
|
store: store,
|
|
bounds: bounds,
|
|
sig: b.sig.clone(),
|
|
abi: b.abi})
|
|
}
|
|
ref b => {
|
|
cx.sess.bug(
|
|
format!("add_env adjustment on non-bare-fn: \
|
|
{:?}",
|
|
b).as_slice());
|
|
}
|
|
}
|
|
}
|
|
|
|
AutoDerefRef(ref adj) => {
|
|
let mut adjusted_ty = unadjusted_ty;
|
|
|
|
if !ty::type_is_error(adjusted_ty) {
|
|
for i in range(0, adj.autoderefs) {
|
|
let method_call = typeck::MethodCall::autoderef(expr_id, i);
|
|
match method_type(method_call) {
|
|
Some(method_ty) => {
|
|
adjusted_ty = ty_fn_ret(method_ty);
|
|
}
|
|
None => {}
|
|
}
|
|
match deref(adjusted_ty, true) {
|
|
Some(mt) => { adjusted_ty = mt.ty; }
|
|
None => {
|
|
cx.sess.span_bug(
|
|
span,
|
|
format!("the {}th autoderef failed: \
|
|
{}",
|
|
i,
|
|
ty_to_string(cx, adjusted_ty))
|
|
.as_slice());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
match adj.autoref {
|
|
None => adjusted_ty,
|
|
Some(ref autoref) => adjust_for_autoref(cx, span, adjusted_ty, autoref)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
None => unadjusted_ty
|
|
};
|
|
|
|
fn adjust_for_autoref(cx: &ctxt,
|
|
span: Span,
|
|
ty: ty::t,
|
|
autoref: &AutoRef) -> ty::t{
|
|
match *autoref {
|
|
AutoPtr(r, m, ref a) => {
|
|
let adjusted_ty = match a {
|
|
&Some(box ref a) => adjust_for_autoref(cx, span, ty, a),
|
|
&None => ty
|
|
};
|
|
mk_rptr(cx, r, mt {
|
|
ty: adjusted_ty,
|
|
mutbl: m
|
|
})
|
|
}
|
|
|
|
AutoUnsafe(m, ref a) => {
|
|
let adjusted_ty = match a {
|
|
&Some(box ref a) => adjust_for_autoref(cx, span, ty, a),
|
|
&None => ty
|
|
};
|
|
mk_ptr(cx, mt {ty: adjusted_ty, mutbl: m})
|
|
}
|
|
|
|
AutoUnsize(ref k) => unsize_ty(cx, ty, k, span),
|
|
AutoUnsizeUniq(ref k) => ty::mk_uniq(cx, unsize_ty(cx, ty, k, span)),
|
|
}
|
|
}
|
|
}
|
|
|
|
// Take a sized type and a sizing adjustment and produce an unsized version of
|
|
// the type.
|
|
pub fn unsize_ty(cx: &ctxt,
|
|
ty: ty::t,
|
|
kind: &UnsizeKind,
|
|
span: Span)
|
|
-> ty::t {
|
|
match kind {
|
|
&UnsizeLength(len) => match get(ty).sty {
|
|
ty_vec(t, Some(n)) => {
|
|
assert!(len == n);
|
|
mk_vec(cx, t, None)
|
|
}
|
|
_ => cx.sess.span_bug(span,
|
|
format!("UnsizeLength with bad sty: {}",
|
|
ty_to_string(cx, ty)).as_slice())
|
|
},
|
|
&UnsizeStruct(box ref k, tp_index) => match get(ty).sty {
|
|
ty_struct(did, ref substs) => {
|
|
let ty_substs = substs.types.get_slice(subst::TypeSpace);
|
|
let new_ty = unsize_ty(cx, ty_substs[tp_index], k, span);
|
|
let mut unsized_substs = substs.clone();
|
|
unsized_substs.types.get_mut_slice(subst::TypeSpace)[tp_index] = new_ty;
|
|
mk_struct(cx, did, unsized_substs)
|
|
}
|
|
_ => cx.sess.span_bug(span,
|
|
format!("UnsizeStruct with bad sty: {}",
|
|
ty_to_string(cx, ty)).as_slice())
|
|
},
|
|
&UnsizeVtable(bounds, def_id, ref substs) => {
|
|
mk_trait(cx, def_id, substs.clone(), bounds)
|
|
}
|
|
}
|
|
}
|
|
|
|
impl AutoRef {
|
|
pub fn map_region(&self, f: |Region| -> Region) -> AutoRef {
|
|
match *self {
|
|
ty::AutoPtr(r, m, None) => ty::AutoPtr(f(r), m, None),
|
|
ty::AutoPtr(r, m, Some(ref a)) => ty::AutoPtr(f(r), m, Some(box a.map_region(f))),
|
|
ty::AutoUnsize(ref k) => ty::AutoUnsize(k.clone()),
|
|
ty::AutoUnsizeUniq(ref k) => ty::AutoUnsizeUniq(k.clone()),
|
|
ty::AutoUnsafe(m, None) => ty::AutoUnsafe(m, None),
|
|
ty::AutoUnsafe(m, Some(ref a)) => ty::AutoUnsafe(m, Some(box a.map_region(f))),
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn method_call_type_param_defs<T>(typer: &T,
|
|
origin: typeck::MethodOrigin)
|
|
-> VecPerParamSpace<TypeParameterDef>
|
|
where T: mc::Typer {
|
|
match origin {
|
|
typeck::MethodStatic(did) => {
|
|
ty::lookup_item_type(typer.tcx(), did).generics.types.clone()
|
|
}
|
|
typeck::MethodStaticUnboxedClosure(did) => {
|
|
let def_id = typer.unboxed_closures()
|
|
.borrow()
|
|
.find(&did)
|
|
.expect("method_call_type_param_defs: didn't \
|
|
find unboxed closure")
|
|
.kind
|
|
.trait_did(typer.tcx());
|
|
lookup_trait_def(typer.tcx(), def_id).generics.types.clone()
|
|
}
|
|
typeck::MethodParam(typeck::MethodParam{
|
|
trait_id: trt_id,
|
|
method_num: n_mth,
|
|
..
|
|
}) |
|
|
typeck::MethodObject(typeck::MethodObject{
|
|
trait_id: trt_id,
|
|
method_num: n_mth,
|
|
..
|
|
}) => {
|
|
match ty::trait_item(typer.tcx(), trt_id, n_mth) {
|
|
ty::MethodTraitItem(method) => method.generics.types.clone(),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn resolve_expr(tcx: &ctxt, expr: &ast::Expr) -> def::Def {
|
|
match tcx.def_map.borrow().find(&expr.id) {
|
|
Some(&def) => def,
|
|
None => {
|
|
tcx.sess.span_bug(expr.span, format!(
|
|
"no def-map entry for expr {:?}", expr.id).as_slice());
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn expr_is_lval(tcx: &ctxt, e: &ast::Expr) -> bool {
|
|
match expr_kind(tcx, e) {
|
|
LvalueExpr => true,
|
|
RvalueDpsExpr | RvalueDatumExpr | RvalueStmtExpr => false
|
|
}
|
|
}
|
|
|
|
/// We categorize expressions into three kinds. The distinction between
|
|
/// lvalue/rvalue is fundamental to the language. The distinction between the
|
|
/// two kinds of rvalues is an artifact of trans which reflects how we will
|
|
/// generate code for that kind of expression. See trans/expr.rs for more
|
|
/// information.
|
|
pub enum ExprKind {
|
|
LvalueExpr,
|
|
RvalueDpsExpr,
|
|
RvalueDatumExpr,
|
|
RvalueStmtExpr
|
|
}
|
|
|
|
pub fn expr_kind(tcx: &ctxt, expr: &ast::Expr) -> ExprKind {
|
|
if tcx.method_map.borrow().contains_key(&typeck::MethodCall::expr(expr.id)) {
|
|
// Overloaded operations are generally calls, and hence they are
|
|
// generated via DPS, but there are a few exceptions:
|
|
return match expr.node {
|
|
// `a += b` has a unit result.
|
|
ast::ExprAssignOp(..) => RvalueStmtExpr,
|
|
|
|
// the deref method invoked for `*a` always yields an `&T`
|
|
ast::ExprUnary(ast::UnDeref, _) => LvalueExpr,
|
|
|
|
// the index method invoked for `a[i]` always yields an `&T`
|
|
ast::ExprIndex(..) => LvalueExpr,
|
|
|
|
// `for` loops are statements
|
|
ast::ExprForLoop(..) => RvalueStmtExpr,
|
|
|
|
// in the general case, result could be any type, use DPS
|
|
_ => RvalueDpsExpr
|
|
};
|
|
}
|
|
|
|
match expr.node {
|
|
ast::ExprPath(..) => {
|
|
match resolve_expr(tcx, expr) {
|
|
def::DefVariant(tid, vid, _) => {
|
|
let variant_info = enum_variant_with_id(tcx, tid, vid);
|
|
if variant_info.args.len() > 0u {
|
|
// N-ary variant.
|
|
RvalueDatumExpr
|
|
} else {
|
|
// Nullary variant.
|
|
RvalueDpsExpr
|
|
}
|
|
}
|
|
|
|
def::DefStruct(_) => {
|
|
match get(expr_ty(tcx, expr)).sty {
|
|
ty_bare_fn(..) => RvalueDatumExpr,
|
|
_ => RvalueDpsExpr
|
|
}
|
|
}
|
|
|
|
// Fn pointers are just scalar values.
|
|
def::DefFn(..) | def::DefStaticMethod(..) => RvalueDatumExpr,
|
|
|
|
// Note: there is actually a good case to be made that
|
|
// DefArg's, particularly those of immediate type, ought to
|
|
// considered rvalues.
|
|
def::DefStatic(..) |
|
|
def::DefBinding(..) |
|
|
def::DefUpvar(..) |
|
|
def::DefArg(..) |
|
|
def::DefLocal(..) => LvalueExpr,
|
|
|
|
def => {
|
|
tcx.sess.span_bug(
|
|
expr.span,
|
|
format!("uncategorized def for expr {:?}: {:?}",
|
|
expr.id,
|
|
def).as_slice());
|
|
}
|
|
}
|
|
}
|
|
|
|
ast::ExprUnary(ast::UnDeref, _) |
|
|
ast::ExprField(..) |
|
|
ast::ExprIndex(..) => {
|
|
LvalueExpr
|
|
}
|
|
|
|
ast::ExprCall(..) |
|
|
ast::ExprMethodCall(..) |
|
|
ast::ExprStruct(..) |
|
|
ast::ExprTup(..) |
|
|
ast::ExprIf(..) |
|
|
ast::ExprMatch(..) |
|
|
ast::ExprFnBlock(..) |
|
|
ast::ExprProc(..) |
|
|
ast::ExprUnboxedFn(..) |
|
|
ast::ExprBlock(..) |
|
|
ast::ExprRepeat(..) |
|
|
ast::ExprVec(..) => {
|
|
RvalueDpsExpr
|
|
}
|
|
|
|
ast::ExprLit(lit) if lit_is_str(lit) => {
|
|
RvalueDpsExpr
|
|
}
|
|
|
|
ast::ExprCast(..) => {
|
|
match tcx.node_types.borrow().find(&(expr.id as uint)) {
|
|
Some(&t) => {
|
|
if type_is_trait(t) {
|
|
RvalueDpsExpr
|
|
} else {
|
|
RvalueDatumExpr
|
|
}
|
|
}
|
|
None => {
|
|
// Technically, it should not happen that the expr is not
|
|
// present within the table. However, it DOES happen
|
|
// during type check, because the final types from the
|
|
// expressions are not yet recorded in the tcx. At that
|
|
// time, though, we are only interested in knowing lvalue
|
|
// vs rvalue. It would be better to base this decision on
|
|
// the AST type in cast node---but (at the time of this
|
|
// writing) it's not easy to distinguish casts to traits
|
|
// from other casts based on the AST. This should be
|
|
// easier in the future, when casts to traits
|
|
// would like @Foo, Box<Foo>, or &Foo.
|
|
RvalueDatumExpr
|
|
}
|
|
}
|
|
}
|
|
|
|
ast::ExprBreak(..) |
|
|
ast::ExprAgain(..) |
|
|
ast::ExprRet(..) |
|
|
ast::ExprWhile(..) |
|
|
ast::ExprLoop(..) |
|
|
ast::ExprAssign(..) |
|
|
ast::ExprInlineAsm(..) |
|
|
ast::ExprAssignOp(..) |
|
|
ast::ExprForLoop(..) => {
|
|
RvalueStmtExpr
|
|
}
|
|
|
|
ast::ExprLit(_) | // Note: LitStr is carved out above
|
|
ast::ExprUnary(..) |
|
|
ast::ExprAddrOf(..) |
|
|
ast::ExprBinary(..) => {
|
|
RvalueDatumExpr
|
|
}
|
|
|
|
ast::ExprBox(place, _) => {
|
|
// Special case `Box<T>`/`Gc<T>` for now:
|
|
let definition = match tcx.def_map.borrow().find(&place.id) {
|
|
Some(&def) => def,
|
|
None => fail!("no def for place"),
|
|
};
|
|
let def_id = definition.def_id();
|
|
if tcx.lang_items.exchange_heap() == Some(def_id) ||
|
|
tcx.lang_items.managed_heap() == Some(def_id) {
|
|
RvalueDatumExpr
|
|
} else {
|
|
RvalueDpsExpr
|
|
}
|
|
}
|
|
|
|
ast::ExprParen(ref e) => expr_kind(tcx, &**e),
|
|
|
|
ast::ExprMac(..) => {
|
|
tcx.sess.span_bug(
|
|
expr.span,
|
|
"macro expression remains after expansion");
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn stmt_node_id(s: &ast::Stmt) -> ast::NodeId {
|
|
match s.node {
|
|
ast::StmtDecl(_, id) | StmtExpr(_, id) | StmtSemi(_, id) => {
|
|
return id;
|
|
}
|
|
ast::StmtMac(..) => fail!("unexpanded macro in trans")
|
|
}
|
|
}
|
|
|
|
pub fn field_idx_strict(tcx: &ctxt, name: ast::Name, fields: &[field])
|
|
-> uint {
|
|
let mut i = 0u;
|
|
for f in fields.iter() { if f.ident.name == name { return i; } i += 1u; }
|
|
tcx.sess.bug(format!(
|
|
"no field named `{}` found in the list of fields `{:?}`",
|
|
token::get_name(name),
|
|
fields.iter()
|
|
.map(|f| token::get_ident(f.ident).get().to_string())
|
|
.collect::<Vec<String>>()).as_slice());
|
|
}
|
|
|
|
pub fn impl_or_trait_item_idx(id: ast::Ident, trait_items: &[ImplOrTraitItem])
|
|
-> Option<uint> {
|
|
trait_items.iter().position(|m| m.ident() == id)
|
|
}
|
|
|
|
/// Returns a vector containing the indices of all type parameters that appear
|
|
/// in `ty`. The vector may contain duplicates. Probably should be converted
|
|
/// to a bitset or some other representation.
|
|
pub fn param_tys_in_type(ty: t) -> Vec<ParamTy> {
|
|
let mut rslt = Vec::new();
|
|
walk_ty(ty, |ty| {
|
|
match get(ty).sty {
|
|
ty_param(p) => {
|
|
rslt.push(p);
|
|
}
|
|
_ => ()
|
|
}
|
|
});
|
|
rslt
|
|
}
|
|
|
|
pub fn ty_sort_string(cx: &ctxt, t: t) -> String {
|
|
match get(t).sty {
|
|
ty_nil | ty_bot | ty_bool | ty_char | ty_int(_) |
|
|
ty_uint(_) | ty_float(_) | ty_str => {
|
|
::util::ppaux::ty_to_string(cx, t)
|
|
}
|
|
|
|
ty_enum(id, _) => format!("enum {}", item_path_str(cx, id)),
|
|
ty_box(_) => "Gc-ptr".to_string(),
|
|
ty_uniq(_) => "box".to_string(),
|
|
ty_vec(_, _) => "vector".to_string(),
|
|
ty_ptr(_) => "*-ptr".to_string(),
|
|
ty_rptr(_, _) => "&-ptr".to_string(),
|
|
ty_bare_fn(_) => "extern fn".to_string(),
|
|
ty_closure(_) => "fn".to_string(),
|
|
ty_trait(ref inner) => {
|
|
format!("trait {}", item_path_str(cx, inner.def_id))
|
|
}
|
|
ty_struct(id, _) => {
|
|
format!("struct {}", item_path_str(cx, id))
|
|
}
|
|
ty_unboxed_closure(..) => "closure".to_string(),
|
|
ty_tup(_) => "tuple".to_string(),
|
|
ty_infer(TyVar(_)) => "inferred type".to_string(),
|
|
ty_infer(IntVar(_)) => "integral variable".to_string(),
|
|
ty_infer(FloatVar(_)) => "floating-point variable".to_string(),
|
|
ty_param(ref p) => {
|
|
if p.space == subst::SelfSpace {
|
|
"Self".to_string()
|
|
} else {
|
|
"type parameter".to_string()
|
|
}
|
|
}
|
|
ty_err => "type error".to_string(),
|
|
ty_open(_) => "opened DST".to_string(),
|
|
}
|
|
}
|
|
|
|
pub fn type_err_to_str(cx: &ctxt, err: &type_err) -> String {
|
|
/*!
|
|
*
|
|
* Explains the source of a type err in a short,
|
|
* human readable way. This is meant to be placed in
|
|
* parentheses after some larger message. You should
|
|
* also invoke `note_and_explain_type_err()` afterwards
|
|
* to present additional details, particularly when
|
|
* it comes to lifetime-related errors. */
|
|
|
|
fn tstore_to_closure(s: &TraitStore) -> String {
|
|
match s {
|
|
&UniqTraitStore => "proc".to_string(),
|
|
&RegionTraitStore(..) => "closure".to_string()
|
|
}
|
|
}
|
|
|
|
match *err {
|
|
terr_mismatch => "types differ".to_string(),
|
|
terr_fn_style_mismatch(values) => {
|
|
format!("expected {} fn, found {} fn",
|
|
values.expected.to_string(),
|
|
values.found.to_string())
|
|
}
|
|
terr_abi_mismatch(values) => {
|
|
format!("expected {} fn, found {} fn",
|
|
values.expected.to_string(),
|
|
values.found.to_string())
|
|
}
|
|
terr_onceness_mismatch(values) => {
|
|
format!("expected {} fn, found {} fn",
|
|
values.expected.to_string(),
|
|
values.found.to_string())
|
|
}
|
|
terr_sigil_mismatch(values) => {
|
|
format!("expected {}, found {}",
|
|
tstore_to_closure(&values.expected),
|
|
tstore_to_closure(&values.found))
|
|
}
|
|
terr_mutability => "values differ in mutability".to_string(),
|
|
terr_box_mutability => {
|
|
"boxed values differ in mutability".to_string()
|
|
}
|
|
terr_vec_mutability => "vectors differ in mutability".to_string(),
|
|
terr_ptr_mutability => "pointers differ in mutability".to_string(),
|
|
terr_ref_mutability => "references differ in mutability".to_string(),
|
|
terr_ty_param_size(values) => {
|
|
format!("expected a type with {} type params, \
|
|
found one with {} type params",
|
|
values.expected,
|
|
values.found)
|
|
}
|
|
terr_tuple_size(values) => {
|
|
format!("expected a tuple with {} elements, \
|
|
found one with {} elements",
|
|
values.expected,
|
|
values.found)
|
|
}
|
|
terr_record_size(values) => {
|
|
format!("expected a record with {} fields, \
|
|
found one with {} fields",
|
|
values.expected,
|
|
values.found)
|
|
}
|
|
terr_record_mutability => {
|
|
"record elements differ in mutability".to_string()
|
|
}
|
|
terr_record_fields(values) => {
|
|
format!("expected a record with field `{}`, found one \
|
|
with field `{}`",
|
|
token::get_ident(values.expected),
|
|
token::get_ident(values.found))
|
|
}
|
|
terr_arg_count => {
|
|
"incorrect number of function parameters".to_string()
|
|
}
|
|
terr_regions_does_not_outlive(..) => {
|
|
"lifetime mismatch".to_string()
|
|
}
|
|
terr_regions_not_same(..) => {
|
|
"lifetimes are not the same".to_string()
|
|
}
|
|
terr_regions_no_overlap(..) => {
|
|
"lifetimes do not intersect".to_string()
|
|
}
|
|
terr_regions_insufficiently_polymorphic(br, _) => {
|
|
format!("expected bound lifetime parameter {}, \
|
|
found concrete lifetime",
|
|
bound_region_ptr_to_string(cx, br))
|
|
}
|
|
terr_regions_overly_polymorphic(br, _) => {
|
|
format!("expected concrete lifetime, \
|
|
found bound lifetime parameter {}",
|
|
bound_region_ptr_to_string(cx, br))
|
|
}
|
|
terr_trait_stores_differ(_, ref values) => {
|
|
format!("trait storage differs: expected `{}`, found `{}`",
|
|
trait_store_to_string(cx, (*values).expected),
|
|
trait_store_to_string(cx, (*values).found))
|
|
}
|
|
terr_sorts(values) => {
|
|
format!("expected {}, found {}",
|
|
ty_sort_string(cx, values.expected),
|
|
ty_sort_string(cx, values.found))
|
|
}
|
|
terr_traits(values) => {
|
|
format!("expected trait `{}`, found trait `{}`",
|
|
item_path_str(cx, values.expected),
|
|
item_path_str(cx, values.found))
|
|
}
|
|
terr_builtin_bounds(values) => {
|
|
if values.expected.is_empty() {
|
|
format!("expected no bounds, found `{}`",
|
|
values.found.user_string(cx))
|
|
} else if values.found.is_empty() {
|
|
format!("expected bounds `{}`, found no bounds",
|
|
values.expected.user_string(cx))
|
|
} else {
|
|
format!("expected bounds `{}`, found bounds `{}`",
|
|
values.expected.user_string(cx),
|
|
values.found.user_string(cx))
|
|
}
|
|
}
|
|
terr_integer_as_char => {
|
|
"expected an integral type, found `char`".to_string()
|
|
}
|
|
terr_int_mismatch(ref values) => {
|
|
format!("expected `{}`, found `{}`",
|
|
values.expected.to_string(),
|
|
values.found.to_string())
|
|
}
|
|
terr_float_mismatch(ref values) => {
|
|
format!("expected `{}`, found `{}`",
|
|
values.expected.to_string(),
|
|
values.found.to_string())
|
|
}
|
|
terr_variadic_mismatch(ref values) => {
|
|
format!("expected {} fn, found {} function",
|
|
if values.expected { "variadic" } else { "non-variadic" },
|
|
if values.found { "variadic" } else { "non-variadic" })
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn note_and_explain_type_err(cx: &ctxt, err: &type_err) {
|
|
match *err {
|
|
terr_regions_does_not_outlive(subregion, superregion) => {
|
|
note_and_explain_region(cx, "", subregion, "...");
|
|
note_and_explain_region(cx, "...does not necessarily outlive ",
|
|
superregion, "");
|
|
}
|
|
terr_regions_not_same(region1, region2) => {
|
|
note_and_explain_region(cx, "", region1, "...");
|
|
note_and_explain_region(cx, "...is not the same lifetime as ",
|
|
region2, "");
|
|
}
|
|
terr_regions_no_overlap(region1, region2) => {
|
|
note_and_explain_region(cx, "", region1, "...");
|
|
note_and_explain_region(cx, "...does not overlap ",
|
|
region2, "");
|
|
}
|
|
terr_regions_insufficiently_polymorphic(_, conc_region) => {
|
|
note_and_explain_region(cx,
|
|
"concrete lifetime that was found is ",
|
|
conc_region, "");
|
|
}
|
|
terr_regions_overly_polymorphic(_, conc_region) => {
|
|
note_and_explain_region(cx,
|
|
"expected concrete lifetime is ",
|
|
conc_region, "");
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
|
|
pub fn provided_source(cx: &ctxt, id: ast::DefId) -> Option<ast::DefId> {
|
|
cx.provided_method_sources.borrow().find(&id).map(|x| *x)
|
|
}
|
|
|
|
pub fn provided_trait_methods(cx: &ctxt, id: ast::DefId) -> Vec<Rc<Method>> {
|
|
if is_local(id) {
|
|
match cx.map.find(id.node) {
|
|
Some(ast_map::NodeItem(item)) => {
|
|
match item.node {
|
|
ItemTrait(_, _, _, ref ms) => {
|
|
let (_, p) = ast_util::split_trait_methods(ms.as_slice());
|
|
p.iter()
|
|
.map(|m| {
|
|
match impl_or_trait_item(
|
|
cx,
|
|
ast_util::local_def(m.id)) {
|
|
MethodTraitItem(m) => m,
|
|
}
|
|
})
|
|
.collect()
|
|
}
|
|
_ => {
|
|
cx.sess.bug(format!("provided_trait_methods: `{}` is \
|
|
not a trait",
|
|
id).as_slice())
|
|
}
|
|
}
|
|
}
|
|
_ => {
|
|
cx.sess.bug(format!("provided_trait_methods: `{}` is not a \
|
|
trait",
|
|
id).as_slice())
|
|
}
|
|
}
|
|
} else {
|
|
csearch::get_provided_trait_methods(cx, id)
|
|
}
|
|
}
|
|
|
|
fn lookup_locally_or_in_crate_store<V:Clone>(
|
|
descr: &str,
|
|
def_id: ast::DefId,
|
|
map: &mut DefIdMap<V>,
|
|
load_external: || -> V) -> V {
|
|
/*!
|
|
* Helper for looking things up in the various maps
|
|
* that are populated during typeck::collect (e.g.,
|
|
* `cx.impl_or_trait_items`, `cx.tcache`, etc). All of these share
|
|
* the pattern that if the id is local, it should have
|
|
* been loaded into the map by the `typeck::collect` phase.
|
|
* If the def-id is external, then we have to go consult
|
|
* the crate loading code (and cache the result for the future).
|
|
*/
|
|
|
|
match map.find_copy(&def_id) {
|
|
Some(v) => { return v; }
|
|
None => { }
|
|
}
|
|
|
|
if def_id.krate == ast::LOCAL_CRATE {
|
|
fail!("No def'n found for {:?} in tcx.{}", def_id, descr);
|
|
}
|
|
let v = load_external();
|
|
map.insert(def_id, v.clone());
|
|
v
|
|
}
|
|
|
|
pub fn trait_item(cx: &ctxt, trait_did: ast::DefId, idx: uint)
|
|
-> ImplOrTraitItem {
|
|
let method_def_id = ty::trait_item_def_ids(cx, trait_did).get(idx)
|
|
.def_id();
|
|
impl_or_trait_item(cx, method_def_id)
|
|
}
|
|
|
|
pub fn trait_items(cx: &ctxt, trait_did: ast::DefId)
|
|
-> Rc<Vec<ImplOrTraitItem>> {
|
|
let mut trait_items = cx.trait_items_cache.borrow_mut();
|
|
match trait_items.find_copy(&trait_did) {
|
|
Some(trait_items) => trait_items,
|
|
None => {
|
|
let def_ids = ty::trait_item_def_ids(cx, trait_did);
|
|
let items: Rc<Vec<ImplOrTraitItem>> =
|
|
Rc::new(def_ids.iter()
|
|
.map(|d| impl_or_trait_item(cx, d.def_id()))
|
|
.collect());
|
|
trait_items.insert(trait_did, items.clone());
|
|
items
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn impl_or_trait_item(cx: &ctxt, id: ast::DefId) -> ImplOrTraitItem {
|
|
lookup_locally_or_in_crate_store("impl_or_trait_items",
|
|
id,
|
|
&mut *cx.impl_or_trait_items
|
|
.borrow_mut(),
|
|
|| {
|
|
csearch::get_impl_or_trait_item(cx, id)
|
|
})
|
|
}
|
|
|
|
pub fn trait_item_def_ids(cx: &ctxt, id: ast::DefId)
|
|
-> Rc<Vec<ImplOrTraitItemId>> {
|
|
lookup_locally_or_in_crate_store("trait_item_def_ids",
|
|
id,
|
|
&mut *cx.trait_item_def_ids.borrow_mut(),
|
|
|| {
|
|
Rc::new(csearch::get_trait_item_def_ids(&cx.sess.cstore, id))
|
|
})
|
|
}
|
|
|
|
pub fn impl_trait_ref(cx: &ctxt, id: ast::DefId) -> Option<Rc<TraitRef>> {
|
|
match cx.impl_trait_cache.borrow().find(&id) {
|
|
Some(ret) => { return ret.clone(); }
|
|
None => {}
|
|
}
|
|
|
|
let ret = if id.krate == ast::LOCAL_CRATE {
|
|
debug!("(impl_trait_ref) searching for trait impl {:?}", id);
|
|
match cx.map.find(id.node) {
|
|
Some(ast_map::NodeItem(item)) => {
|
|
match item.node {
|
|
ast::ItemImpl(_, ref opt_trait, _, _) => {
|
|
match opt_trait {
|
|
&Some(ref t) => {
|
|
Some(ty::node_id_to_trait_ref(cx, t.ref_id))
|
|
}
|
|
&None => None
|
|
}
|
|
}
|
|
_ => None
|
|
}
|
|
}
|
|
_ => None
|
|
}
|
|
} else {
|
|
csearch::get_impl_trait(cx, id)
|
|
};
|
|
|
|
cx.impl_trait_cache.borrow_mut().insert(id, ret.clone());
|
|
ret
|
|
}
|
|
|
|
pub fn trait_ref_to_def_id(tcx: &ctxt, tr: &ast::TraitRef) -> ast::DefId {
|
|
let def = *tcx.def_map.borrow()
|
|
.find(&tr.ref_id)
|
|
.expect("no def-map entry for trait");
|
|
def.def_id()
|
|
}
|
|
|
|
pub fn try_add_builtin_trait(
|
|
tcx: &ctxt,
|
|
trait_def_id: ast::DefId,
|
|
builtin_bounds: &mut EnumSet<BuiltinBound>)
|
|
-> bool
|
|
{
|
|
//! Checks whether `trait_ref` refers to one of the builtin
|
|
//! traits, like `Send`, and adds the corresponding
|
|
//! bound to the set `builtin_bounds` if so. Returns true if `trait_ref`
|
|
//! is a builtin trait.
|
|
|
|
match tcx.lang_items.to_builtin_kind(trait_def_id) {
|
|
Some(bound) => { builtin_bounds.add(bound); true }
|
|
None => false
|
|
}
|
|
}
|
|
|
|
pub fn ty_to_def_id(ty: t) -> Option<ast::DefId> {
|
|
match get(ty).sty {
|
|
ty_trait(box TyTrait { def_id: id, .. }) |
|
|
ty_struct(id, _) |
|
|
ty_enum(id, _) |
|
|
ty_unboxed_closure(id, _) => Some(id),
|
|
_ => None
|
|
}
|
|
}
|
|
|
|
// Enum information
|
|
#[deriving(Clone)]
|
|
pub struct VariantInfo {
|
|
pub args: Vec<t>,
|
|
pub arg_names: Option<Vec<ast::Ident> >,
|
|
pub ctor_ty: t,
|
|
pub name: ast::Ident,
|
|
pub id: ast::DefId,
|
|
pub disr_val: Disr,
|
|
pub vis: Visibility
|
|
}
|
|
|
|
impl VariantInfo {
|
|
|
|
/// Creates a new VariantInfo from the corresponding ast representation.
|
|
///
|
|
/// Does not do any caching of the value in the type context.
|
|
pub fn from_ast_variant(cx: &ctxt,
|
|
ast_variant: &ast::Variant,
|
|
discriminant: Disr) -> VariantInfo {
|
|
let ctor_ty = node_id_to_type(cx, ast_variant.node.id);
|
|
|
|
match ast_variant.node.kind {
|
|
ast::TupleVariantKind(ref args) => {
|
|
let arg_tys = if args.len() > 0 {
|
|
ty_fn_args(ctor_ty).iter().map(|a| *a).collect()
|
|
} else {
|
|
Vec::new()
|
|
};
|
|
|
|
return VariantInfo {
|
|
args: arg_tys,
|
|
arg_names: None,
|
|
ctor_ty: ctor_ty,
|
|
name: ast_variant.node.name,
|
|
id: ast_util::local_def(ast_variant.node.id),
|
|
disr_val: discriminant,
|
|
vis: ast_variant.node.vis
|
|
};
|
|
},
|
|
ast::StructVariantKind(ref struct_def) => {
|
|
|
|
let fields: &[StructField] = struct_def.fields.as_slice();
|
|
|
|
assert!(fields.len() > 0);
|
|
|
|
let arg_tys = ty_fn_args(ctor_ty).iter().map(|a| *a).collect();
|
|
let arg_names = fields.iter().map(|field| {
|
|
match field.node.kind {
|
|
NamedField(ident, _) => ident,
|
|
UnnamedField(..) => cx.sess.bug(
|
|
"enum_variants: all fields in struct must have a name")
|
|
}
|
|
}).collect();
|
|
|
|
return VariantInfo {
|
|
args: arg_tys,
|
|
arg_names: Some(arg_names),
|
|
ctor_ty: ctor_ty,
|
|
name: ast_variant.node.name,
|
|
id: ast_util::local_def(ast_variant.node.id),
|
|
disr_val: discriminant,
|
|
vis: ast_variant.node.vis
|
|
};
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn substd_enum_variants(cx: &ctxt,
|
|
id: ast::DefId,
|
|
substs: &Substs)
|
|
-> Vec<Rc<VariantInfo>> {
|
|
enum_variants(cx, id).iter().map(|variant_info| {
|
|
let substd_args = variant_info.args.iter()
|
|
.map(|aty| aty.subst(cx, substs)).collect::<Vec<_>>();
|
|
|
|
let substd_ctor_ty = variant_info.ctor_ty.subst(cx, substs);
|
|
|
|
Rc::new(VariantInfo {
|
|
args: substd_args,
|
|
ctor_ty: substd_ctor_ty,
|
|
..(**variant_info).clone()
|
|
})
|
|
}).collect()
|
|
}
|
|
|
|
pub fn item_path_str(cx: &ctxt, id: ast::DefId) -> String {
|
|
with_path(cx, id, |path| ast_map::path_to_string(path)).to_string()
|
|
}
|
|
|
|
pub enum DtorKind {
|
|
NoDtor,
|
|
TraitDtor(DefId, bool)
|
|
}
|
|
|
|
impl DtorKind {
|
|
pub fn is_present(&self) -> bool {
|
|
match *self {
|
|
TraitDtor(..) => true,
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn has_drop_flag(&self) -> bool {
|
|
match self {
|
|
&NoDtor => false,
|
|
&TraitDtor(_, flag) => flag
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If struct_id names a struct with a dtor, return Some(the dtor's id).
|
|
Otherwise return none. */
|
|
pub fn ty_dtor(cx: &ctxt, struct_id: DefId) -> DtorKind {
|
|
match cx.destructor_for_type.borrow().find(&struct_id) {
|
|
Some(&method_def_id) => {
|
|
let flag = !has_attr(cx, struct_id, "unsafe_no_drop_flag");
|
|
|
|
TraitDtor(method_def_id, flag)
|
|
}
|
|
None => NoDtor,
|
|
}
|
|
}
|
|
|
|
pub fn has_dtor(cx: &ctxt, struct_id: DefId) -> bool {
|
|
ty_dtor(cx, struct_id).is_present()
|
|
}
|
|
|
|
pub fn with_path<T>(cx: &ctxt, id: ast::DefId, f: |ast_map::PathElems| -> T) -> T {
|
|
if id.krate == ast::LOCAL_CRATE {
|
|
cx.map.with_path(id.node, f)
|
|
} else {
|
|
f(ast_map::Values(csearch::get_item_path(cx, id).iter()).chain(None))
|
|
}
|
|
}
|
|
|
|
pub fn enum_is_univariant(cx: &ctxt, id: ast::DefId) -> bool {
|
|
enum_variants(cx, id).len() == 1
|
|
}
|
|
|
|
pub fn type_is_empty(cx: &ctxt, t: t) -> bool {
|
|
match ty::get(t).sty {
|
|
ty_enum(did, _) => (*enum_variants(cx, did)).is_empty(),
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn enum_variants(cx: &ctxt, id: ast::DefId) -> Rc<Vec<Rc<VariantInfo>>> {
|
|
match cx.enum_var_cache.borrow().find(&id) {
|
|
Some(variants) => return variants.clone(),
|
|
_ => { /* fallthrough */ }
|
|
}
|
|
|
|
let result = if ast::LOCAL_CRATE != id.krate {
|
|
Rc::new(csearch::get_enum_variants(cx, id))
|
|
} else {
|
|
/*
|
|
Although both this code and check_enum_variants in typeck/check
|
|
call eval_const_expr, it should never get called twice for the same
|
|
expr, since check_enum_variants also updates the enum_var_cache
|
|
*/
|
|
match cx.map.get(id.node) {
|
|
ast_map::NodeItem(item) => {
|
|
match item.node {
|
|
ast::ItemEnum(ref enum_definition, _) => {
|
|
let mut last_discriminant: Option<Disr> = None;
|
|
Rc::new(enum_definition.variants.iter().map(|&variant| {
|
|
|
|
let mut discriminant = match last_discriminant {
|
|
Some(val) => val + 1,
|
|
None => INITIAL_DISCRIMINANT_VALUE
|
|
};
|
|
|
|
match variant.node.disr_expr {
|
|
Some(ref e) => match const_eval::eval_const_expr_partial(cx, &**e) {
|
|
Ok(const_eval::const_int(val)) => {
|
|
discriminant = val as Disr
|
|
}
|
|
Ok(const_eval::const_uint(val)) => {
|
|
discriminant = val as Disr
|
|
}
|
|
Ok(_) => {
|
|
cx.sess
|
|
.span_err(e.span,
|
|
"expected signed integer constant");
|
|
}
|
|
Err(ref err) => {
|
|
cx.sess
|
|
.span_err(e.span,
|
|
format!("expected constant: {}",
|
|
*err).as_slice());
|
|
}
|
|
},
|
|
None => {}
|
|
};
|
|
|
|
last_discriminant = Some(discriminant);
|
|
Rc::new(VariantInfo::from_ast_variant(cx, &*variant,
|
|
discriminant))
|
|
}).collect())
|
|
}
|
|
_ => {
|
|
cx.sess.bug("enum_variants: id not bound to an enum")
|
|
}
|
|
}
|
|
}
|
|
_ => cx.sess.bug("enum_variants: id not bound to an enum")
|
|
}
|
|
};
|
|
|
|
cx.enum_var_cache.borrow_mut().insert(id, result.clone());
|
|
result
|
|
}
|
|
|
|
|
|
// Returns information about the enum variant with the given ID:
|
|
pub fn enum_variant_with_id(cx: &ctxt,
|
|
enum_id: ast::DefId,
|
|
variant_id: ast::DefId)
|
|
-> Rc<VariantInfo> {
|
|
enum_variants(cx, enum_id).iter()
|
|
.find(|variant| variant.id == variant_id)
|
|
.expect("enum_variant_with_id(): no variant exists with that ID")
|
|
.clone()
|
|
}
|
|
|
|
|
|
// If the given item is in an external crate, looks up its type and adds it to
|
|
// the type cache. Returns the type parameters and type.
|
|
pub fn lookup_item_type(cx: &ctxt,
|
|
did: ast::DefId)
|
|
-> Polytype {
|
|
lookup_locally_or_in_crate_store(
|
|
"tcache", did, &mut *cx.tcache.borrow_mut(),
|
|
|| csearch::get_type(cx, did))
|
|
}
|
|
|
|
pub fn lookup_impl_vtables(cx: &ctxt,
|
|
did: ast::DefId)
|
|
-> typeck::vtable_res {
|
|
lookup_locally_or_in_crate_store(
|
|
"impl_vtables", did, &mut *cx.impl_vtables.borrow_mut(),
|
|
|| csearch::get_impl_vtables(cx, did) )
|
|
}
|
|
|
|
/// Given the did of a trait, returns its canonical trait ref.
|
|
pub fn lookup_trait_def(cx: &ctxt, did: ast::DefId) -> Rc<ty::TraitDef> {
|
|
let mut trait_defs = cx.trait_defs.borrow_mut();
|
|
match trait_defs.find_copy(&did) {
|
|
Some(trait_def) => {
|
|
// The item is in this crate. The caller should have added it to the
|
|
// type cache already
|
|
trait_def
|
|
}
|
|
None => {
|
|
assert!(did.krate != ast::LOCAL_CRATE);
|
|
let trait_def = Rc::new(csearch::get_trait_def(cx, did));
|
|
trait_defs.insert(did, trait_def.clone());
|
|
trait_def
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Given a reference to a trait, returns the bounds declared on the
|
|
/// trait, with appropriate substitutions applied.
|
|
pub fn bounds_for_trait_ref(tcx: &ctxt,
|
|
trait_ref: &TraitRef)
|
|
-> ty::ParamBounds
|
|
{
|
|
let trait_def = lookup_trait_def(tcx, trait_ref.def_id);
|
|
debug!("bounds_for_trait_ref(trait_def={}, trait_ref={})",
|
|
trait_def.repr(tcx), trait_ref.repr(tcx));
|
|
trait_def.bounds.subst(tcx, &trait_ref.substs)
|
|
}
|
|
|
|
/// Iterate over attributes of a definition.
|
|
// (This should really be an iterator, but that would require csearch and
|
|
// decoder to use iterators instead of higher-order functions.)
|
|
pub fn each_attr(tcx: &ctxt, did: DefId, f: |&ast::Attribute| -> bool) -> bool {
|
|
if is_local(did) {
|
|
let item = tcx.map.expect_item(did.node);
|
|
item.attrs.iter().all(|attr| f(attr))
|
|
} else {
|
|
info!("getting foreign attrs");
|
|
let mut cont = true;
|
|
csearch::get_item_attrs(&tcx.sess.cstore, did, |attrs| {
|
|
if cont {
|
|
cont = attrs.iter().all(|attr| f(attr));
|
|
}
|
|
});
|
|
info!("done");
|
|
cont
|
|
}
|
|
}
|
|
|
|
/// Determine whether an item is annotated with an attribute
|
|
pub fn has_attr(tcx: &ctxt, did: DefId, attr: &str) -> bool {
|
|
let mut found = false;
|
|
each_attr(tcx, did, |item| {
|
|
if item.check_name(attr) {
|
|
found = true;
|
|
false
|
|
} else {
|
|
true
|
|
}
|
|
});
|
|
found
|
|
}
|
|
|
|
/// Determine whether an item is annotated with `#[repr(packed)]`
|
|
pub fn lookup_packed(tcx: &ctxt, did: DefId) -> bool {
|
|
lookup_repr_hints(tcx, did).contains(&attr::ReprPacked)
|
|
}
|
|
|
|
/// Determine whether an item is annotated with `#[simd]`
|
|
pub fn lookup_simd(tcx: &ctxt, did: DefId) -> bool {
|
|
has_attr(tcx, did, "simd")
|
|
}
|
|
|
|
/// Obtain the representation annotation for a struct definition.
|
|
pub fn lookup_repr_hints(tcx: &ctxt, did: DefId) -> Vec<attr::ReprAttr> {
|
|
let mut acc = Vec::new();
|
|
|
|
ty::each_attr(tcx, did, |meta| {
|
|
acc.extend(attr::find_repr_attrs(tcx.sess.diagnostic(), meta).move_iter());
|
|
true
|
|
});
|
|
|
|
acc
|
|
}
|
|
|
|
// Look up a field ID, whether or not it's local
|
|
// Takes a list of type substs in case the struct is generic
|
|
pub fn lookup_field_type(tcx: &ctxt,
|
|
struct_id: DefId,
|
|
id: DefId,
|
|
substs: &Substs)
|
|
-> ty::t {
|
|
let t = if id.krate == ast::LOCAL_CRATE {
|
|
node_id_to_type(tcx, id.node)
|
|
} else {
|
|
let mut tcache = tcx.tcache.borrow_mut();
|
|
let pty = tcache.find_or_insert_with(id, |_| {
|
|
csearch::get_field_type(tcx, struct_id, id)
|
|
});
|
|
pty.ty
|
|
};
|
|
t.subst(tcx, substs)
|
|
}
|
|
|
|
// Lookup all ancestor structs of a struct indicated by did. That is the reflexive,
|
|
// transitive closure of doing a single lookup in cx.superstructs.
|
|
fn each_super_struct(cx: &ctxt, mut did: ast::DefId, f: |ast::DefId|) {
|
|
let superstructs = cx.superstructs.borrow();
|
|
|
|
loop {
|
|
f(did);
|
|
match superstructs.find(&did) {
|
|
Some(&Some(def_id)) => {
|
|
did = def_id;
|
|
},
|
|
Some(&None) => break,
|
|
None => {
|
|
cx.sess.bug(
|
|
format!("ID not mapped to super-struct: {}",
|
|
cx.map.node_to_string(did.node)).as_slice());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Look up the list of field names and IDs for a given struct.
|
|
// Fails if the id is not bound to a struct.
|
|
pub fn lookup_struct_fields(cx: &ctxt, did: ast::DefId) -> Vec<field_ty> {
|
|
if did.krate == ast::LOCAL_CRATE {
|
|
// We store the fields which are syntactically in each struct in cx. So
|
|
// we have to walk the inheritance chain of the struct to get all the
|
|
// structs (explicit and inherited) for a struct. If this is expensive
|
|
// we could cache the whole list of fields here.
|
|
let struct_fields = cx.struct_fields.borrow();
|
|
let mut results: SmallVector<&[field_ty]> = SmallVector::zero();
|
|
each_super_struct(cx, did, |s| {
|
|
match struct_fields.find(&s) {
|
|
Some(fields) => results.push(fields.as_slice()),
|
|
_ => {
|
|
cx.sess.bug(
|
|
format!("ID not mapped to struct fields: {}",
|
|
cx.map.node_to_string(did.node)).as_slice());
|
|
}
|
|
}
|
|
});
|
|
|
|
let len = results.as_slice().iter().map(|x| x.len()).sum();
|
|
let mut result: Vec<field_ty> = Vec::with_capacity(len);
|
|
result.extend(results.as_slice().iter().flat_map(|rs| rs.iter().map(|f| f.clone())));
|
|
assert!(result.len() == len);
|
|
result
|
|
} else {
|
|
csearch::get_struct_fields(&cx.sess.cstore, did)
|
|
}
|
|
}
|
|
|
|
pub fn lookup_struct_field(cx: &ctxt,
|
|
parent: ast::DefId,
|
|
field_id: ast::DefId)
|
|
-> field_ty {
|
|
let r = lookup_struct_fields(cx, parent);
|
|
match r.iter().find(|f| f.id.node == field_id.node) {
|
|
Some(t) => t.clone(),
|
|
None => cx.sess.bug("struct ID not found in parent's fields")
|
|
}
|
|
}
|
|
|
|
// Returns a list of fields corresponding to the struct's items. trans uses
|
|
// this. Takes a list of substs with which to instantiate field types.
|
|
pub fn struct_fields(cx: &ctxt, did: ast::DefId, substs: &Substs)
|
|
-> Vec<field> {
|
|
lookup_struct_fields(cx, did).iter().map(|f| {
|
|
field {
|
|
// FIXME #6993: change type of field to Name and get rid of new()
|
|
ident: ast::Ident::new(f.name),
|
|
mt: mt {
|
|
ty: lookup_field_type(cx, did, f.id, substs),
|
|
mutbl: MutImmutable
|
|
}
|
|
}
|
|
}).collect()
|
|
}
|
|
|
|
pub struct UnboxedClosureUpvar {
|
|
pub def: def::Def,
|
|
pub span: Span,
|
|
pub ty: t,
|
|
}
|
|
|
|
// Returns a list of `UnboxedClosureUpvar`s for each upvar.
|
|
pub fn unboxed_closure_upvars(tcx: &ctxt, closure_id: ast::DefId)
|
|
-> Vec<UnboxedClosureUpvar> {
|
|
if closure_id.krate == ast::LOCAL_CRATE {
|
|
match tcx.freevars.borrow().find(&closure_id.node) {
|
|
None => tcx.sess.bug("no freevars for unboxed closure?!"),
|
|
Some(ref freevars) => {
|
|
freevars.iter().map(|freevar| {
|
|
let freevar_def_id = freevar.def.def_id();
|
|
UnboxedClosureUpvar {
|
|
def: freevar.def,
|
|
span: freevar.span,
|
|
ty: node_id_to_type(tcx, freevar_def_id.node),
|
|
}
|
|
}).collect()
|
|
}
|
|
}
|
|
} else {
|
|
tcx.sess.bug("unimplemented cross-crate closure upvars")
|
|
}
|
|
}
|
|
|
|
pub fn is_binopable(cx: &ctxt, ty: t, op: ast::BinOp) -> bool {
|
|
static tycat_other: int = 0;
|
|
static tycat_bool: int = 1;
|
|
static tycat_char: int = 2;
|
|
static tycat_int: int = 3;
|
|
static tycat_float: int = 4;
|
|
static tycat_bot: int = 5;
|
|
static tycat_raw_ptr: int = 6;
|
|
|
|
static opcat_add: int = 0;
|
|
static opcat_sub: int = 1;
|
|
static opcat_mult: int = 2;
|
|
static opcat_shift: int = 3;
|
|
static opcat_rel: int = 4;
|
|
static opcat_eq: int = 5;
|
|
static opcat_bit: int = 6;
|
|
static opcat_logic: int = 7;
|
|
static opcat_mod: int = 8;
|
|
|
|
fn opcat(op: ast::BinOp) -> int {
|
|
match op {
|
|
ast::BiAdd => opcat_add,
|
|
ast::BiSub => opcat_sub,
|
|
ast::BiMul => opcat_mult,
|
|
ast::BiDiv => opcat_mult,
|
|
ast::BiRem => opcat_mod,
|
|
ast::BiAnd => opcat_logic,
|
|
ast::BiOr => opcat_logic,
|
|
ast::BiBitXor => opcat_bit,
|
|
ast::BiBitAnd => opcat_bit,
|
|
ast::BiBitOr => opcat_bit,
|
|
ast::BiShl => opcat_shift,
|
|
ast::BiShr => opcat_shift,
|
|
ast::BiEq => opcat_eq,
|
|
ast::BiNe => opcat_eq,
|
|
ast::BiLt => opcat_rel,
|
|
ast::BiLe => opcat_rel,
|
|
ast::BiGe => opcat_rel,
|
|
ast::BiGt => opcat_rel
|
|
}
|
|
}
|
|
|
|
fn tycat(cx: &ctxt, ty: t) -> int {
|
|
if type_is_simd(cx, ty) {
|
|
return tycat(cx, simd_type(cx, ty))
|
|
}
|
|
match get(ty).sty {
|
|
ty_char => tycat_char,
|
|
ty_bool => tycat_bool,
|
|
ty_int(_) | ty_uint(_) | ty_infer(IntVar(_)) => tycat_int,
|
|
ty_float(_) | ty_infer(FloatVar(_)) => tycat_float,
|
|
ty_bot => tycat_bot,
|
|
ty_ptr(_) => tycat_raw_ptr,
|
|
_ => tycat_other
|
|
}
|
|
}
|
|
|
|
static t: bool = true;
|
|
static f: bool = false;
|
|
|
|
let tbl = [
|
|
// +, -, *, shift, rel, ==, bit, logic, mod
|
|
/*other*/ [f, f, f, f, f, f, f, f, f],
|
|
/*bool*/ [f, f, f, f, t, t, t, t, f],
|
|
/*char*/ [f, f, f, f, t, t, f, f, f],
|
|
/*int*/ [t, t, t, t, t, t, t, f, t],
|
|
/*float*/ [t, t, t, f, t, t, f, f, f],
|
|
/*bot*/ [t, t, t, t, t, t, t, t, t],
|
|
/*raw ptr*/ [f, f, f, f, t, t, f, f, f]];
|
|
|
|
return tbl[tycat(cx, ty) as uint ][opcat(op) as uint];
|
|
}
|
|
|
|
/// Returns an equivalent type with all the typedefs and self regions removed.
|
|
pub fn normalize_ty(cx: &ctxt, t: t) -> t {
|
|
let u = TypeNormalizer(cx).fold_ty(t);
|
|
return u;
|
|
|
|
struct TypeNormalizer<'a>(&'a ctxt);
|
|
|
|
impl<'a> TypeFolder for TypeNormalizer<'a> {
|
|
fn tcx<'a>(&'a self) -> &'a ctxt { let TypeNormalizer(c) = *self; c }
|
|
|
|
fn fold_ty(&mut self, t: ty::t) -> ty::t {
|
|
match self.tcx().normalized_cache.borrow().find_copy(&t) {
|
|
None => {}
|
|
Some(u) => return u
|
|
}
|
|
|
|
let t_norm = ty_fold::super_fold_ty(self, t);
|
|
self.tcx().normalized_cache.borrow_mut().insert(t, t_norm);
|
|
return t_norm;
|
|
}
|
|
|
|
fn fold_region(&mut self, _: ty::Region) -> ty::Region {
|
|
ty::ReStatic
|
|
}
|
|
|
|
fn fold_substs(&mut self,
|
|
substs: &subst::Substs)
|
|
-> subst::Substs {
|
|
subst::Substs { regions: subst::ErasedRegions,
|
|
types: substs.types.fold_with(self) }
|
|
}
|
|
|
|
fn fold_sig(&mut self,
|
|
sig: &ty::FnSig)
|
|
-> ty::FnSig {
|
|
// The binder-id is only relevant to bound regions, which
|
|
// are erased at trans time.
|
|
ty::FnSig {
|
|
binder_id: ast::DUMMY_NODE_ID,
|
|
inputs: sig.inputs.fold_with(self),
|
|
output: sig.output.fold_with(self),
|
|
variadic: sig.variadic,
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
pub trait ExprTyProvider {
|
|
fn expr_ty(&self, ex: &ast::Expr) -> t;
|
|
fn ty_ctxt<'a>(&'a self) -> &'a ctxt;
|
|
}
|
|
|
|
impl ExprTyProvider for ctxt {
|
|
fn expr_ty(&self, ex: &ast::Expr) -> t {
|
|
expr_ty(self, ex)
|
|
}
|
|
|
|
fn ty_ctxt<'a>(&'a self) -> &'a ctxt {
|
|
self
|
|
}
|
|
}
|
|
|
|
// Returns the repeat count for a repeating vector expression.
|
|
pub fn eval_repeat_count<T: ExprTyProvider>(tcx: &T, count_expr: &ast::Expr) -> uint {
|
|
match const_eval::eval_const_expr_partial(tcx, count_expr) {
|
|
Ok(ref const_val) => match *const_val {
|
|
const_eval::const_int(count) => if count < 0 {
|
|
tcx.ty_ctxt().sess.span_err(count_expr.span,
|
|
"expected positive integer for \
|
|
repeat count, found negative integer");
|
|
return 0;
|
|
} else {
|
|
return count as uint
|
|
},
|
|
const_eval::const_uint(count) => return count as uint,
|
|
const_eval::const_float(count) => {
|
|
tcx.ty_ctxt().sess.span_err(count_expr.span,
|
|
"expected positive integer for \
|
|
repeat count, found float");
|
|
return count as uint;
|
|
}
|
|
const_eval::const_str(_) => {
|
|
tcx.ty_ctxt().sess.span_err(count_expr.span,
|
|
"expected positive integer for \
|
|
repeat count, found string");
|
|
return 0;
|
|
}
|
|
const_eval::const_bool(_) => {
|
|
tcx.ty_ctxt().sess.span_err(count_expr.span,
|
|
"expected positive integer for \
|
|
repeat count, found boolean");
|
|
return 0;
|
|
}
|
|
const_eval::const_binary(_) => {
|
|
tcx.ty_ctxt().sess.span_err(count_expr.span,
|
|
"expected positive integer for \
|
|
repeat count, found binary array");
|
|
return 0;
|
|
}
|
|
const_eval::const_nil => {
|
|
tcx.ty_ctxt().sess.span_err(count_expr.span,
|
|
"expected positive integer for \
|
|
repeat count, found ()");
|
|
return 0;
|
|
}
|
|
},
|
|
Err(..) => {
|
|
tcx.ty_ctxt().sess.span_err(count_expr.span,
|
|
"expected constant integer for repeat count, \
|
|
found variable");
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Iterate over a type parameter's bounded traits and any supertraits
|
|
// of those traits, ignoring kinds.
|
|
// Here, the supertraits are the transitive closure of the supertrait
|
|
// relation on the supertraits from each bounded trait's constraint
|
|
// list.
|
|
pub fn each_bound_trait_and_supertraits(tcx: &ctxt,
|
|
bounds: &[Rc<TraitRef>],
|
|
f: |Rc<TraitRef>| -> bool)
|
|
-> bool {
|
|
for bound_trait_ref in bounds.iter() {
|
|
let mut supertrait_set = HashMap::new();
|
|
let mut trait_refs = Vec::new();
|
|
let mut i = 0;
|
|
|
|
// Seed the worklist with the trait from the bound
|
|
supertrait_set.insert(bound_trait_ref.def_id, ());
|
|
trait_refs.push(bound_trait_ref.clone());
|
|
|
|
// Add the given trait ty to the hash map
|
|
while i < trait_refs.len() {
|
|
debug!("each_bound_trait_and_supertraits(i={:?}, trait_ref={})",
|
|
i, trait_refs.get(i).repr(tcx));
|
|
|
|
if !f(trait_refs.get(i).clone()) {
|
|
return false;
|
|
}
|
|
|
|
// Add supertraits to supertrait_set
|
|
let trait_ref = trait_refs.get(i).clone();
|
|
let trait_def = lookup_trait_def(tcx, trait_ref.def_id);
|
|
for supertrait_ref in trait_def.bounds.trait_bounds.iter() {
|
|
let supertrait_ref = supertrait_ref.subst(tcx, &trait_ref.substs);
|
|
debug!("each_bound_trait_and_supertraits(supertrait_ref={})",
|
|
supertrait_ref.repr(tcx));
|
|
|
|
let d_id = supertrait_ref.def_id;
|
|
if !supertrait_set.contains_key(&d_id) {
|
|
// FIXME(#5527) Could have same trait multiple times
|
|
supertrait_set.insert(d_id, ());
|
|
trait_refs.push(supertrait_ref.clone());
|
|
}
|
|
}
|
|
|
|
i += 1;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
pub fn required_region_bounds(tcx: &ctxt,
|
|
region_bounds: &[ty::Region],
|
|
builtin_bounds: BuiltinBounds,
|
|
trait_bounds: &[Rc<TraitRef>])
|
|
-> Vec<ty::Region>
|
|
{
|
|
/*!
|
|
* Given a type which must meet the builtin bounds and trait
|
|
* bounds, returns a set of lifetimes which the type must outlive.
|
|
*
|
|
* Requires that trait definitions have been processed.
|
|
*/
|
|
|
|
let mut all_bounds = Vec::new();
|
|
|
|
debug!("required_region_bounds(builtin_bounds={}, trait_bounds={})",
|
|
builtin_bounds.repr(tcx),
|
|
trait_bounds.repr(tcx));
|
|
|
|
all_bounds.push_all(region_bounds);
|
|
|
|
push_region_bounds([],
|
|
builtin_bounds,
|
|
&mut all_bounds);
|
|
|
|
debug!("from builtin bounds: all_bounds={}", all_bounds.repr(tcx));
|
|
|
|
each_bound_trait_and_supertraits(
|
|
tcx,
|
|
trait_bounds,
|
|
|trait_ref| {
|
|
let bounds = ty::bounds_for_trait_ref(tcx, &*trait_ref);
|
|
push_region_bounds(bounds.opt_region_bound.as_slice(),
|
|
bounds.builtin_bounds,
|
|
&mut all_bounds);
|
|
debug!("from {}: bounds={} all_bounds={}",
|
|
trait_ref.repr(tcx),
|
|
bounds.repr(tcx),
|
|
all_bounds.repr(tcx));
|
|
true
|
|
});
|
|
|
|
return all_bounds;
|
|
|
|
fn push_region_bounds(region_bounds: &[ty::Region],
|
|
builtin_bounds: ty::BuiltinBounds,
|
|
all_bounds: &mut Vec<ty::Region>) {
|
|
all_bounds.push_all(region_bounds.as_slice());
|
|
|
|
if builtin_bounds.contains_elem(ty::BoundSend) {
|
|
all_bounds.push(ty::ReStatic);
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn get_tydesc_ty(tcx: &ctxt) -> Result<t, String> {
|
|
tcx.lang_items.require(TyDescStructLangItem).map(|tydesc_lang_item| {
|
|
tcx.intrinsic_defs.borrow().find_copy(&tydesc_lang_item)
|
|
.expect("Failed to resolve TyDesc")
|
|
})
|
|
}
|
|
|
|
pub fn get_opaque_ty(tcx: &ctxt) -> Result<t, String> {
|
|
tcx.lang_items.require(OpaqueStructLangItem).map(|opaque_lang_item| {
|
|
tcx.intrinsic_defs.borrow().find_copy(&opaque_lang_item)
|
|
.expect("Failed to resolve Opaque")
|
|
})
|
|
}
|
|
|
|
pub fn visitor_object_ty(tcx: &ctxt,
|
|
ptr_region: ty::Region,
|
|
trait_region: ty::Region)
|
|
-> Result<(Rc<TraitRef>, t), String>
|
|
{
|
|
let trait_lang_item = match tcx.lang_items.require(TyVisitorTraitLangItem) {
|
|
Ok(id) => id,
|
|
Err(s) => { return Err(s); }
|
|
};
|
|
let substs = Substs::empty();
|
|
let trait_ref = Rc::new(TraitRef { def_id: trait_lang_item, substs: substs });
|
|
Ok((trait_ref.clone(),
|
|
mk_rptr(tcx, ptr_region,
|
|
mt {mutbl: ast::MutMutable,
|
|
ty: mk_trait(tcx,
|
|
trait_ref.def_id,
|
|
trait_ref.substs.clone(),
|
|
ty::region_existential_bound(trait_region))})))
|
|
}
|
|
|
|
pub fn item_variances(tcx: &ctxt, item_id: ast::DefId) -> Rc<ItemVariances> {
|
|
lookup_locally_or_in_crate_store(
|
|
"item_variance_map", item_id, &mut *tcx.item_variance_map.borrow_mut(),
|
|
|| Rc::new(csearch::get_item_variances(&tcx.sess.cstore, item_id)))
|
|
}
|
|
|
|
/// Records a trait-to-implementation mapping.
|
|
pub fn record_trait_implementation(tcx: &ctxt,
|
|
trait_def_id: DefId,
|
|
impl_def_id: DefId) {
|
|
match tcx.trait_impls.borrow().find(&trait_def_id) {
|
|
Some(impls_for_trait) => {
|
|
impls_for_trait.borrow_mut().push(impl_def_id);
|
|
return;
|
|
}
|
|
None => {}
|
|
}
|
|
tcx.trait_impls.borrow_mut().insert(trait_def_id, Rc::new(RefCell::new(vec!(impl_def_id))));
|
|
}
|
|
|
|
/// Populates the type context with all the implementations for the given type
|
|
/// if necessary.
|
|
pub fn populate_implementations_for_type_if_necessary(tcx: &ctxt,
|
|
type_id: ast::DefId) {
|
|
if type_id.krate == LOCAL_CRATE {
|
|
return
|
|
}
|
|
if tcx.populated_external_types.borrow().contains(&type_id) {
|
|
return
|
|
}
|
|
|
|
csearch::each_implementation_for_type(&tcx.sess.cstore, type_id,
|
|
|impl_def_id| {
|
|
let impl_items = csearch::get_impl_items(&tcx.sess.cstore,
|
|
impl_def_id);
|
|
|
|
// Record the trait->implementation mappings, if applicable.
|
|
let associated_traits = csearch::get_impl_trait(tcx, impl_def_id);
|
|
for trait_ref in associated_traits.iter() {
|
|
record_trait_implementation(tcx, trait_ref.def_id, impl_def_id);
|
|
}
|
|
|
|
// For any methods that use a default implementation, add them to
|
|
// the map. This is a bit unfortunate.
|
|
for impl_item_def_id in impl_items.iter() {
|
|
let method_def_id = impl_item_def_id.def_id();
|
|
match impl_or_trait_item(tcx, method_def_id) {
|
|
MethodTraitItem(method) => {
|
|
for &source in method.provided_source.iter() {
|
|
tcx.provided_method_sources
|
|
.borrow_mut()
|
|
.insert(method_def_id, source);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Store the implementation info.
|
|
tcx.impl_items.borrow_mut().insert(impl_def_id, impl_items);
|
|
|
|
// If this is an inherent implementation, record it.
|
|
if associated_traits.is_none() {
|
|
match tcx.inherent_impls.borrow().find(&type_id) {
|
|
Some(implementation_list) => {
|
|
implementation_list.borrow_mut().push(impl_def_id);
|
|
return;
|
|
}
|
|
None => {}
|
|
}
|
|
tcx.inherent_impls.borrow_mut().insert(type_id,
|
|
Rc::new(RefCell::new(vec!(impl_def_id))));
|
|
}
|
|
});
|
|
|
|
tcx.populated_external_types.borrow_mut().insert(type_id);
|
|
}
|
|
|
|
/// Populates the type context with all the implementations for the given
|
|
/// trait if necessary.
|
|
pub fn populate_implementations_for_trait_if_necessary(
|
|
tcx: &ctxt,
|
|
trait_id: ast::DefId) {
|
|
if trait_id.krate == LOCAL_CRATE {
|
|
return
|
|
}
|
|
if tcx.populated_external_traits.borrow().contains(&trait_id) {
|
|
return
|
|
}
|
|
|
|
csearch::each_implementation_for_trait(&tcx.sess.cstore, trait_id,
|
|
|implementation_def_id| {
|
|
let impl_items = csearch::get_impl_items(&tcx.sess.cstore, implementation_def_id);
|
|
|
|
// Record the trait->implementation mapping.
|
|
record_trait_implementation(tcx, trait_id, implementation_def_id);
|
|
|
|
// For any methods that use a default implementation, add them to
|
|
// the map. This is a bit unfortunate.
|
|
for impl_item_def_id in impl_items.iter() {
|
|
let method_def_id = impl_item_def_id.def_id();
|
|
match impl_or_trait_item(tcx, method_def_id) {
|
|
MethodTraitItem(method) => {
|
|
for &source in method.provided_source.iter() {
|
|
tcx.provided_method_sources
|
|
.borrow_mut()
|
|
.insert(method_def_id, source);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Store the implementation info.
|
|
tcx.impl_items.borrow_mut().insert(implementation_def_id, impl_items);
|
|
});
|
|
|
|
tcx.populated_external_traits.borrow_mut().insert(trait_id);
|
|
}
|
|
|
|
/// Given the def_id of an impl, return the def_id of the trait it implements.
|
|
/// If it implements no trait, return `None`.
|
|
pub fn trait_id_of_impl(tcx: &ctxt,
|
|
def_id: ast::DefId) -> Option<ast::DefId> {
|
|
let node = match tcx.map.find(def_id.node) {
|
|
Some(node) => node,
|
|
None => return None
|
|
};
|
|
match node {
|
|
ast_map::NodeItem(item) => {
|
|
match item.node {
|
|
ast::ItemImpl(_, Some(ref trait_ref), _, _) => {
|
|
Some(node_id_to_trait_ref(tcx, trait_ref.ref_id).def_id)
|
|
}
|
|
_ => None
|
|
}
|
|
}
|
|
_ => None
|
|
}
|
|
}
|
|
|
|
/// If the given def ID describes a method belonging to an impl, return the
|
|
/// ID of the impl that the method belongs to. Otherwise, return `None`.
|
|
pub fn impl_of_method(tcx: &ctxt, def_id: ast::DefId)
|
|
-> Option<ast::DefId> {
|
|
if def_id.krate != LOCAL_CRATE {
|
|
return match csearch::get_impl_or_trait_item(tcx,
|
|
def_id).container() {
|
|
TraitContainer(_) => None,
|
|
ImplContainer(def_id) => Some(def_id),
|
|
};
|
|
}
|
|
match tcx.impl_or_trait_items.borrow().find_copy(&def_id) {
|
|
Some(trait_item) => {
|
|
match trait_item.container() {
|
|
TraitContainer(_) => None,
|
|
ImplContainer(def_id) => Some(def_id),
|
|
}
|
|
}
|
|
None => None
|
|
}
|
|
}
|
|
|
|
/// If the given def ID describes an item belonging to a trait (either a
|
|
/// default method or an implementation of a trait method), return the ID of
|
|
/// the trait that the method belongs to. Otherwise, return `None`.
|
|
pub fn trait_of_item(tcx: &ctxt, def_id: ast::DefId) -> Option<ast::DefId> {
|
|
if def_id.krate != LOCAL_CRATE {
|
|
return csearch::get_trait_of_item(&tcx.sess.cstore, def_id, tcx);
|
|
}
|
|
match tcx.impl_or_trait_items.borrow().find_copy(&def_id) {
|
|
Some(impl_or_trait_item) => {
|
|
match impl_or_trait_item.container() {
|
|
TraitContainer(def_id) => Some(def_id),
|
|
ImplContainer(def_id) => trait_id_of_impl(tcx, def_id),
|
|
}
|
|
}
|
|
None => None
|
|
}
|
|
}
|
|
|
|
/// If the given def ID describes an item belonging to a trait, (either a
|
|
/// default method or an implementation of a trait method), return the ID of
|
|
/// the method inside trait definition (this means that if the given def ID
|
|
/// is already that of the original trait method, then the return value is
|
|
/// the same).
|
|
/// Otherwise, return `None`.
|
|
pub fn trait_item_of_item(tcx: &ctxt, def_id: ast::DefId)
|
|
-> Option<ImplOrTraitItemId> {
|
|
let impl_item = match tcx.impl_or_trait_items.borrow().find(&def_id) {
|
|
Some(m) => m.clone(),
|
|
None => return None,
|
|
};
|
|
let name = match impl_item {
|
|
MethodTraitItem(method) => method.ident.name,
|
|
};
|
|
match trait_of_item(tcx, def_id) {
|
|
Some(trait_did) => {
|
|
let trait_items = ty::trait_items(tcx, trait_did);
|
|
trait_items.iter()
|
|
.position(|m| m.ident().name == name)
|
|
.map(|idx| ty::trait_item(tcx, trait_did, idx).id())
|
|
}
|
|
None => None
|
|
}
|
|
}
|
|
|
|
/// Creates a hash of the type `t` which will be the same no matter what crate
|
|
/// context it's calculated within. This is used by the `type_id` intrinsic.
|
|
pub fn hash_crate_independent(tcx: &ctxt, t: t, svh: &Svh) -> u64 {
|
|
let mut state = sip::SipState::new();
|
|
macro_rules! byte( ($b:expr) => { ($b as u8).hash(&mut state) } );
|
|
macro_rules! hash( ($e:expr) => { $e.hash(&mut state) } );
|
|
|
|
let region = |_state: &mut sip::SipState, r: Region| {
|
|
match r {
|
|
ReStatic => {}
|
|
|
|
ReEmpty |
|
|
ReEarlyBound(..) |
|
|
ReLateBound(..) |
|
|
ReFree(..) |
|
|
ReScope(..) |
|
|
ReInfer(..) => {
|
|
tcx.sess.bug("non-static region found when hashing a type")
|
|
}
|
|
}
|
|
};
|
|
let did = |state: &mut sip::SipState, did: DefId| {
|
|
let h = if ast_util::is_local(did) {
|
|
svh.clone()
|
|
} else {
|
|
tcx.sess.cstore.get_crate_hash(did.krate)
|
|
};
|
|
h.as_str().hash(state);
|
|
did.node.hash(state);
|
|
};
|
|
let mt = |state: &mut sip::SipState, mt: mt| {
|
|
mt.mutbl.hash(state);
|
|
};
|
|
ty::walk_ty(t, |t| {
|
|
match ty::get(t).sty {
|
|
ty_nil => byte!(0),
|
|
ty_bot => byte!(1),
|
|
ty_bool => byte!(2),
|
|
ty_char => byte!(3),
|
|
ty_int(i) => {
|
|
byte!(4);
|
|
hash!(i);
|
|
}
|
|
ty_uint(u) => {
|
|
byte!(5);
|
|
hash!(u);
|
|
}
|
|
ty_float(f) => {
|
|
byte!(6);
|
|
hash!(f);
|
|
}
|
|
ty_str => {
|
|
byte!(7);
|
|
}
|
|
ty_enum(d, _) => {
|
|
byte!(8);
|
|
did(&mut state, d);
|
|
}
|
|
ty_box(_) => {
|
|
byte!(9);
|
|
}
|
|
ty_uniq(_) => {
|
|
byte!(10);
|
|
}
|
|
ty_vec(_, Some(n)) => {
|
|
byte!(11);
|
|
n.hash(&mut state);
|
|
}
|
|
ty_vec(_, None) => {
|
|
byte!(11);
|
|
0u8.hash(&mut state);
|
|
}
|
|
ty_ptr(m) => {
|
|
byte!(12);
|
|
mt(&mut state, m);
|
|
}
|
|
ty_rptr(r, m) => {
|
|
byte!(13);
|
|
region(&mut state, r);
|
|
mt(&mut state, m);
|
|
}
|
|
ty_bare_fn(ref b) => {
|
|
byte!(14);
|
|
hash!(b.fn_style);
|
|
hash!(b.abi);
|
|
}
|
|
ty_closure(ref c) => {
|
|
byte!(15);
|
|
hash!(c.fn_style);
|
|
hash!(c.onceness);
|
|
hash!(c.bounds);
|
|
match c.store {
|
|
UniqTraitStore => byte!(0),
|
|
RegionTraitStore(r, m) => {
|
|
byte!(1)
|
|
region(&mut state, r);
|
|
assert_eq!(m, ast::MutMutable);
|
|
}
|
|
}
|
|
}
|
|
ty_trait(box ty::TyTrait { def_id: d, bounds, .. }) => {
|
|
byte!(17);
|
|
did(&mut state, d);
|
|
hash!(bounds);
|
|
}
|
|
ty_struct(d, _) => {
|
|
byte!(18);
|
|
did(&mut state, d);
|
|
}
|
|
ty_tup(ref inner) => {
|
|
byte!(19);
|
|
hash!(inner.len());
|
|
}
|
|
ty_param(p) => {
|
|
byte!(20);
|
|
hash!(p.idx);
|
|
did(&mut state, p.def_id);
|
|
}
|
|
ty_open(_) => byte!(22),
|
|
ty_infer(_) => unreachable!(),
|
|
ty_err => byte!(23),
|
|
ty_unboxed_closure(d, r) => {
|
|
byte!(24);
|
|
did(&mut state, d);
|
|
region(&mut state, r);
|
|
}
|
|
}
|
|
});
|
|
|
|
state.result()
|
|
}
|
|
|
|
impl Variance {
|
|
pub fn to_string(self) -> &'static str {
|
|
match self {
|
|
Covariant => "+",
|
|
Contravariant => "-",
|
|
Invariant => "o",
|
|
Bivariant => "*",
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn construct_parameter_environment(
|
|
tcx: &ctxt,
|
|
generics: &ty::Generics,
|
|
free_id: ast::NodeId)
|
|
-> ParameterEnvironment
|
|
{
|
|
/*! See `ParameterEnvironment` struct def'n for details */
|
|
|
|
//
|
|
// Construct the free substs.
|
|
//
|
|
|
|
// map T => T
|
|
let mut types = VecPerParamSpace::empty();
|
|
for &space in subst::ParamSpace::all().iter() {
|
|
push_types_from_defs(tcx, &mut types, space,
|
|
generics.types.get_slice(space));
|
|
}
|
|
|
|
// map bound 'a => free 'a
|
|
let mut regions = VecPerParamSpace::empty();
|
|
for &space in subst::ParamSpace::all().iter() {
|
|
push_region_params(&mut regions, space, free_id,
|
|
generics.regions.get_slice(space));
|
|
}
|
|
|
|
let free_substs = Substs {
|
|
types: types,
|
|
regions: subst::NonerasedRegions(regions)
|
|
};
|
|
|
|
//
|
|
// Compute the bounds on Self and the type parameters.
|
|
//
|
|
|
|
let mut bounds = VecPerParamSpace::empty();
|
|
for &space in subst::ParamSpace::all().iter() {
|
|
push_bounds_from_defs(tcx, &mut bounds, space, &free_substs,
|
|
generics.types.get_slice(space));
|
|
}
|
|
|
|
//
|
|
// Compute region bounds. For now, these relations are stored in a
|
|
// global table on the tcx, so just enter them there. I'm not
|
|
// crazy about this scheme, but it's convenient, at least.
|
|
//
|
|
|
|
for &space in subst::ParamSpace::all().iter() {
|
|
record_region_bounds_from_defs(tcx, space, &free_substs,
|
|
generics.regions.get_slice(space));
|
|
}
|
|
|
|
|
|
debug!("construct_parameter_environment: free_id={} \
|
|
free_subst={} \
|
|
bounds={}",
|
|
free_id,
|
|
free_substs.repr(tcx),
|
|
bounds.repr(tcx));
|
|
|
|
return ty::ParameterEnvironment {
|
|
free_substs: free_substs,
|
|
bounds: bounds,
|
|
implicit_region_bound: ty::ReScope(free_id),
|
|
};
|
|
|
|
fn push_region_params(regions: &mut VecPerParamSpace<ty::Region>,
|
|
space: subst::ParamSpace,
|
|
free_id: ast::NodeId,
|
|
region_params: &[RegionParameterDef])
|
|
{
|
|
for r in region_params.iter() {
|
|
regions.push(space, ty::free_region_from_def(free_id, r));
|
|
}
|
|
}
|
|
|
|
fn push_types_from_defs(tcx: &ty::ctxt,
|
|
types: &mut subst::VecPerParamSpace<ty::t>,
|
|
space: subst::ParamSpace,
|
|
defs: &[TypeParameterDef]) {
|
|
for (i, def) in defs.iter().enumerate() {
|
|
let ty = ty::mk_param(tcx, space, i, def.def_id);
|
|
types.push(space, ty);
|
|
}
|
|
}
|
|
|
|
fn push_bounds_from_defs(tcx: &ty::ctxt,
|
|
bounds: &mut subst::VecPerParamSpace<ParamBounds>,
|
|
space: subst::ParamSpace,
|
|
free_substs: &subst::Substs,
|
|
defs: &[TypeParameterDef]) {
|
|
for def in defs.iter() {
|
|
let b = def.bounds.subst(tcx, free_substs);
|
|
bounds.push(space, b);
|
|
}
|
|
}
|
|
|
|
fn record_region_bounds_from_defs(tcx: &ty::ctxt,
|
|
space: subst::ParamSpace,
|
|
free_substs: &subst::Substs,
|
|
defs: &[RegionParameterDef]) {
|
|
for (subst_region, def) in
|
|
free_substs.regions().get_slice(space).iter().zip(
|
|
defs.iter())
|
|
{
|
|
// For each region parameter 'subst...
|
|
let bounds = def.bounds.subst(tcx, free_substs);
|
|
for bound_region in bounds.iter() {
|
|
// Which is declared with a bound like 'subst:'bound...
|
|
match (subst_region, bound_region) {
|
|
(&ty::ReFree(subst_fr), &ty::ReFree(bound_fr)) => {
|
|
// Record that 'subst outlives 'bound. Or, put
|
|
// another way, 'bound <= 'subst.
|
|
tcx.region_maps.relate_free_regions(bound_fr, subst_fr);
|
|
},
|
|
_ => {
|
|
// All named regions are instantiated with free regions.
|
|
tcx.sess.bug(
|
|
format!("push_region_bounds_from_defs: \
|
|
non free region: {} / {}",
|
|
subst_region.repr(tcx),
|
|
bound_region.repr(tcx)).as_slice());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl BorrowKind {
|
|
pub fn from_mutbl(m: ast::Mutability) -> BorrowKind {
|
|
match m {
|
|
ast::MutMutable => MutBorrow,
|
|
ast::MutImmutable => ImmBorrow,
|
|
}
|
|
}
|
|
|
|
pub fn to_user_str(&self) -> &'static str {
|
|
match *self {
|
|
MutBorrow => "mutable",
|
|
ImmBorrow => "immutable",
|
|
UniqueImmBorrow => "uniquely immutable",
|
|
}
|
|
}
|
|
}
|
|
|
|
impl mc::Typer for ty::ctxt {
|
|
fn tcx<'a>(&'a self) -> &'a ty::ctxt {
|
|
self
|
|
}
|
|
|
|
fn node_ty(&self, id: ast::NodeId) -> mc::McResult<ty::t> {
|
|
Ok(ty::node_id_to_type(self, id))
|
|
}
|
|
|
|
fn node_method_ty(&self, method_call: typeck::MethodCall) -> Option<ty::t> {
|
|
self.method_map.borrow().find(&method_call).map(|method| method.ty)
|
|
}
|
|
|
|
fn adjustments<'a>(&'a self) -> &'a RefCell<NodeMap<ty::AutoAdjustment>> {
|
|
&self.adjustments
|
|
}
|
|
|
|
fn is_method_call(&self, id: ast::NodeId) -> bool {
|
|
self.method_map.borrow().contains_key(&typeck::MethodCall::expr(id))
|
|
}
|
|
|
|
fn temporary_scope(&self, rvalue_id: ast::NodeId) -> Option<ast::NodeId> {
|
|
self.region_maps.temporary_scope(rvalue_id)
|
|
}
|
|
|
|
fn upvar_borrow(&self, upvar_id: ty::UpvarId) -> ty::UpvarBorrow {
|
|
self.upvar_borrow_map.borrow().get_copy(&upvar_id)
|
|
}
|
|
|
|
fn capture_mode(&self, closure_expr_id: ast::NodeId)
|
|
-> freevars::CaptureMode {
|
|
self.capture_modes.borrow().get_copy(&closure_expr_id)
|
|
}
|
|
|
|
fn unboxed_closures<'a>(&'a self)
|
|
-> &'a RefCell<DefIdMap<UnboxedClosure>> {
|
|
&self.unboxed_closures
|
|
}
|
|
}
|
|
|
|
/// The category of explicit self.
|
|
#[deriving(Clone, Eq, PartialEq)]
|
|
pub enum ExplicitSelfCategory {
|
|
StaticExplicitSelfCategory,
|
|
ByValueExplicitSelfCategory,
|
|
ByReferenceExplicitSelfCategory(Region, ast::Mutability),
|
|
ByBoxExplicitSelfCategory,
|
|
}
|
|
|
|
/// Pushes all the lifetimes in the given type onto the given list. A
|
|
/// "lifetime in a type" is a lifetime specified by a reference or a lifetime
|
|
/// in a list of type substitutions. This does *not* traverse into nominal
|
|
/// types, nor does it resolve fictitious types.
|
|
pub fn accumulate_lifetimes_in_type(accumulator: &mut Vec<ty::Region>,
|
|
typ: t) {
|
|
walk_ty(typ, |typ| {
|
|
match get(typ).sty {
|
|
ty_rptr(region, _) => accumulator.push(region),
|
|
ty_enum(_, ref substs) |
|
|
ty_trait(box TyTrait {
|
|
substs: ref substs,
|
|
..
|
|
}) |
|
|
ty_struct(_, ref substs) => {
|
|
match substs.regions {
|
|
subst::ErasedRegions => {}
|
|
subst::NonerasedRegions(ref regions) => {
|
|
for region in regions.iter() {
|
|
accumulator.push(*region)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
ty_closure(ref closure_ty) => {
|
|
match closure_ty.store {
|
|
RegionTraitStore(region, _) => accumulator.push(region),
|
|
UniqTraitStore => {}
|
|
}
|
|
}
|
|
ty_unboxed_closure(_, ref region) => accumulator.push(*region),
|
|
ty_nil |
|
|
ty_bot |
|
|
ty_bool |
|
|
ty_char |
|
|
ty_int(_) |
|
|
ty_uint(_) |
|
|
ty_float(_) |
|
|
ty_box(_) |
|
|
ty_uniq(_) |
|
|
ty_str |
|
|
ty_vec(_, _) |
|
|
ty_ptr(_) |
|
|
ty_bare_fn(_) |
|
|
ty_tup(_) |
|
|
ty_param(_) |
|
|
ty_infer(_) |
|
|
ty_open(_) |
|
|
ty_err => {}
|
|
}
|
|
})
|
|
}
|