rust/clippy_lints/src/pass_by_ref_or_value.rs

316 lines
12 KiB
Rust

use std::{cmp, iter};
use clippy_utils::diagnostics::span_lint_and_sugg;
use clippy_utils::source::snippet;
use clippy_utils::ty::{for_each_top_level_late_bound_region, is_copy};
use clippy_utils::{is_self, is_self_ty};
use core::ops::ControlFlow;
use rustc_ast::attr;
use rustc_data_structures::fx::FxHashSet;
use rustc_errors::Applicability;
use rustc_hir as hir;
use rustc_hir::intravisit::FnKind;
use rustc_hir::{BindingAnnotation, Body, FnDecl, Impl, ItemKind, MutTy, Mutability, Node, PatKind};
use rustc_lint::{LateContext, LateLintPass};
use rustc_middle::ty::adjustment::{Adjust, PointerCoercion};
use rustc_middle::ty::layout::LayoutOf;
use rustc_middle::ty::{self, RegionKind};
use rustc_session::impl_lint_pass;
use rustc_span::def_id::LocalDefId;
use rustc_span::{sym, Span};
use rustc_target::spec::abi::Abi;
declare_clippy_lint! {
/// ### What it does
/// Checks for functions taking arguments by reference, where
/// the argument type is `Copy` and small enough to be more efficient to always
/// pass by value.
///
/// ### Why is this bad?
/// In many calling conventions instances of structs will
/// be passed through registers if they fit into two or less general purpose
/// registers.
///
/// ### Known problems
/// This lint is target register size dependent, it is
/// limited to 32-bit to try and reduce portability problems between 32 and
/// 64-bit, but if you are compiling for 8 or 16-bit targets then the limit
/// will be different.
///
/// The configuration option `trivial_copy_size_limit` can be set to override
/// this limit for a project.
///
/// This lint attempts to allow passing arguments by reference if a reference
/// to that argument is returned. This is implemented by comparing the lifetime
/// of the argument and return value for equality. However, this can cause
/// false positives in cases involving multiple lifetimes that are bounded by
/// each other.
///
/// Also, it does not take account of other similar cases where getting memory addresses
/// matters; namely, returning the pointer to the argument in question,
/// and passing the argument, as both references and pointers,
/// to a function that needs the memory address. For further details, refer to
/// [this issue](https://github.com/rust-lang/rust-clippy/issues/5953)
/// that explains a real case in which this false positive
/// led to an **undefined behavior** introduced with unsafe code.
///
/// ### Example
///
/// ```no_run
/// fn foo(v: &u32) {}
/// ```
///
/// Use instead:
/// ```no_run
/// fn foo(v: u32) {}
/// ```
#[clippy::version = "pre 1.29.0"]
pub TRIVIALLY_COPY_PASS_BY_REF,
pedantic,
"functions taking small copyable arguments by reference"
}
declare_clippy_lint! {
/// ### What it does
/// Checks for functions taking arguments by value, where
/// the argument type is `Copy` and large enough to be worth considering
/// passing by reference. Does not trigger if the function is being exported,
/// because that might induce API breakage, if the parameter is declared as mutable,
/// or if the argument is a `self`.
///
/// ### Why is this bad?
/// Arguments passed by value might result in an unnecessary
/// shallow copy, taking up more space in the stack and requiring a call to
/// `memcpy`, which can be expensive.
///
/// ### Example
/// ```no_run
/// #[derive(Clone, Copy)]
/// struct TooLarge([u8; 2048]);
///
/// fn foo(v: TooLarge) {}
/// ```
///
/// Use instead:
/// ```no_run
/// # #[derive(Clone, Copy)]
/// # struct TooLarge([u8; 2048]);
/// fn foo(v: &TooLarge) {}
/// ```
#[clippy::version = "1.49.0"]
pub LARGE_TYPES_PASSED_BY_VALUE,
pedantic,
"functions taking large arguments by value"
}
#[derive(Copy, Clone)]
pub struct PassByRefOrValue {
ref_min_size: u64,
value_max_size: u64,
avoid_breaking_exported_api: bool,
}
impl<'tcx> PassByRefOrValue {
pub fn new(
ref_min_size: Option<u64>,
value_max_size: u64,
avoid_breaking_exported_api: bool,
pointer_width: u32,
) -> Self {
let ref_min_size = ref_min_size.unwrap_or_else(|| {
let bit_width = u64::from(pointer_width);
// Cap the calculated bit width at 32-bits to reduce
// portability problems between 32 and 64-bit targets
let bit_width = cmp::min(bit_width, 32);
#[expect(clippy::integer_division)]
let byte_width = bit_width / 8;
// Use a limit of 2 times the register byte width
byte_width * 2
});
Self {
ref_min_size,
value_max_size,
avoid_breaking_exported_api,
}
}
fn check_poly_fn(&mut self, cx: &LateContext<'tcx>, def_id: LocalDefId, decl: &FnDecl<'_>, span: Option<Span>) {
if self.avoid_breaking_exported_api && cx.effective_visibilities.is_exported(def_id) {
return;
}
let fn_sig = cx.tcx.fn_sig(def_id).instantiate_identity();
let fn_body = cx.enclosing_body.map(|id| cx.tcx.hir().body(id));
// Gather all the lifetimes found in the output type which may affect whether
// `TRIVIALLY_COPY_PASS_BY_REF` should be linted.
let mut output_regions = FxHashSet::default();
for_each_top_level_late_bound_region(fn_sig.skip_binder().output(), |region| -> ControlFlow<!> {
output_regions.insert(region);
ControlFlow::Continue(())
});
for (index, (input, ty)) in iter::zip(
decl.inputs,
fn_sig.skip_binder().inputs().iter().map(|&ty| fn_sig.rebind(ty)),
)
.enumerate()
{
// All spans generated from a proc-macro invocation are the same...
match span {
Some(s) if s == input.span => continue,
_ => (),
}
match *ty.skip_binder().kind() {
ty::Ref(lt, ty, Mutability::Not) => {
match lt.kind() {
RegionKind::ReBound(index, region)
if index.as_u32() == 0 && output_regions.contains(&region) =>
{
continue;
},
// Early bound regions on functions are either from the containing item, are bounded by another
// lifetime, or are used as a bound for a type or lifetime.
RegionKind::ReEarlyParam(..) => continue,
_ => (),
}
let ty = cx.tcx.instantiate_bound_regions_with_erased(fn_sig.rebind(ty));
if is_copy(cx, ty)
&& let Some(size) = cx.layout_of(ty).ok().map(|l| l.size.bytes())
&& size <= self.ref_min_size
&& let hir::TyKind::Ref(_, MutTy { ty: decl_ty, .. }) = input.kind
{
if let Some(typeck) = cx.maybe_typeck_results() {
// Don't lint if an unsafe pointer is created.
// TODO: Limit the check only to unsafe pointers to the argument (or part of the argument)
// which escape the current function.
if typeck.node_types().items().any(|(_, &ty)| ty.is_unsafe_ptr())
|| typeck
.adjustments()
.items()
.flat_map(|(_, a)| a)
.any(|a| matches!(a.kind, Adjust::Pointer(PointerCoercion::UnsafeFnPointer)))
{
continue;
}
}
let value_type = if fn_body.and_then(|body| body.params.get(index)).map_or(false, is_self) {
"self".into()
} else {
snippet(cx, decl_ty.span, "_").into()
};
span_lint_and_sugg(
cx,
TRIVIALLY_COPY_PASS_BY_REF,
input.span,
&format!(
"this argument ({size} byte) is passed by reference, but would be more efficient if passed by value (limit: {} byte)",
self.ref_min_size
),
"consider passing by value instead",
value_type,
Applicability::Unspecified,
);
}
},
ty::Adt(_, _) | ty::Array(_, _) | ty::Tuple(_) => {
// if function has a body and parameter is annotated with mut, ignore
if let Some(param) = fn_body.and_then(|body| body.params.get(index)) {
match param.pat.kind {
PatKind::Binding(BindingAnnotation::NONE, _, _, _) => {},
_ => continue,
}
}
let ty = cx.tcx.instantiate_bound_regions_with_erased(ty);
if is_copy(cx, ty)
&& !is_self_ty(input)
&& let Some(size) = cx.layout_of(ty).ok().map(|l| l.size.bytes())
&& size > self.value_max_size
{
span_lint_and_sugg(
cx,
LARGE_TYPES_PASSED_BY_VALUE,
input.span,
&format!(
"this argument ({size} byte) is passed by value, but might be more efficient if passed by reference (limit: {} byte)",
self.value_max_size
),
"consider passing by reference instead",
format!("&{}", snippet(cx, input.span, "_")),
Applicability::MaybeIncorrect,
);
}
},
_ => {},
}
}
}
}
impl_lint_pass!(PassByRefOrValue => [TRIVIALLY_COPY_PASS_BY_REF, LARGE_TYPES_PASSED_BY_VALUE]);
impl<'tcx> LateLintPass<'tcx> for PassByRefOrValue {
fn check_trait_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::TraitItem<'_>) {
if item.span.from_expansion() {
return;
}
if let hir::TraitItemKind::Fn(method_sig, _) = &item.kind {
self.check_poly_fn(cx, item.owner_id.def_id, method_sig.decl, None);
}
}
fn check_fn(
&mut self,
cx: &LateContext<'tcx>,
kind: FnKind<'tcx>,
decl: &'tcx FnDecl<'_>,
_body: &'tcx Body<'_>,
span: Span,
def_id: LocalDefId,
) {
if span.from_expansion() {
return;
}
let hir_id = cx.tcx.local_def_id_to_hir_id(def_id);
match kind {
FnKind::ItemFn(.., header) => {
if header.abi != Abi::Rust {
return;
}
let attrs = cx.tcx.hir().attrs(hir_id);
for a in attrs {
if let Some(meta_items) = a.meta_item_list() {
if a.has_name(sym::proc_macro_derive)
|| (a.has_name(sym::inline) && attr::list_contains_name(&meta_items, sym::always))
{
return;
}
}
}
},
FnKind::Method(..) => (),
FnKind::Closure => return,
}
// Exclude non-inherent impls
if let Some(Node::Item(item)) = cx.tcx.hir().find_parent(hir_id) {
if matches!(
item.kind,
ItemKind::Impl(Impl { of_trait: Some(_), .. }) | ItemKind::Trait(..)
) {
return;
}
}
self.check_poly_fn(cx, def_id, decl, Some(span));
}
}