rust/src/libcore/result.rs
2015-02-02 13:40:18 -05:00

971 lines
29 KiB
Rust

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Error handling with the `Result` type
//!
//! `Result<T, E>` is the type used for returning and propagating
//! errors. It is an enum with the variants, `Ok(T)`, representing
//! success and containing a value, and `Err(E)`, representing error
//! and containing an error value.
//!
//! ```
//! enum Result<T, E> {
//! Ok(T),
//! Err(E)
//! }
//! ```
//!
//! Functions return `Result` whenever errors are expected and
//! recoverable. In the `std` crate `Result` is most prominently used
//! for [I/O](../../std/io/index.html).
//!
//! A simple function returning `Result` might be
//! defined and used like so:
//!
//! ```
//! #[derive(Debug)]
//! enum Version { Version1, Version2 }
//!
//! fn parse_version(header: &[u8]) -> Result<Version, &'static str> {
//! if header.len() < 1 {
//! return Err("invalid header length");
//! }
//! match header[0] {
//! 1 => Ok(Version::Version1),
//! 2 => Ok(Version::Version2),
//! _ => Err("invalid version")
//! }
//! }
//!
//! let version = parse_version(&[1, 2, 3, 4]);
//! match version {
//! Ok(v) => {
//! println!("working with version: {:?}", v);
//! }
//! Err(e) => {
//! println!("error parsing header: {:?}", e);
//! }
//! }
//! ```
//!
//! Pattern matching on `Result`s is clear and straightforward for
//! simple cases, but `Result` comes with some convenience methods
//! that make working with it more succinct.
//!
//! ```
//! let good_result: Result<int, int> = Ok(10);
//! let bad_result: Result<int, int> = Err(10);
//!
//! // The `is_ok` and `is_err` methods do what they say.
//! assert!(good_result.is_ok() && !good_result.is_err());
//! assert!(bad_result.is_err() && !bad_result.is_ok());
//!
//! // `map` consumes the `Result` and produces another.
//! let good_result: Result<int, int> = good_result.map(|i| i + 1);
//! let bad_result: Result<int, int> = bad_result.map(|i| i - 1);
//!
//! // Use `and_then` to continue the computation.
//! let good_result: Result<bool, int> = good_result.and_then(|i| Ok(i == 11));
//!
//! // Use `or_else` to handle the error.
//! let bad_result: Result<int, int> = bad_result.or_else(|i| Ok(11));
//!
//! // Consume the result and return the contents with `unwrap`.
//! let final_awesome_result = good_result.ok().unwrap();
//! ```
//!
//! # Results must be used
//!
//! A common problem with using return values to indicate errors is
//! that it is easy to ignore the return value, thus failing to handle
//! the error. Result is annotated with the #[must_use] attribute,
//! which will cause the compiler to issue a warning when a Result
//! value is ignored. This makes `Result` especially useful with
//! functions that may encounter errors but don't otherwise return a
//! useful value.
//!
//! Consider the `write_line` method defined for I/O types
//! by the [`Writer`](../io/trait.Writer.html) trait:
//!
//! ```
//! use std::old_io::IoError;
//!
//! trait Writer {
//! fn write_line(&mut self, s: &str) -> Result<(), IoError>;
//! }
//! ```
//!
//! *Note: The actual definition of `Writer` uses `IoResult`, which
//! is just a synonym for `Result<T, IoError>`.*
//!
//! This method doesn't produce a value, but the write may
//! fail. It's crucial to handle the error case, and *not* write
//! something like this:
//!
//! ```{.ignore}
//! use std::old_io::{File, Open, Write};
//!
//! let mut file = File::open_mode(&Path::new("valuable_data.txt"), Open, Write);
//! // If `write_line` errors, then we'll never know, because the return
//! // value is ignored.
//! file.write_line("important message");
//! drop(file);
//! ```
//!
//! If you *do* write that in Rust, the compiler will give you a
//! warning (by default, controlled by the `unused_must_use` lint).
//!
//! You might instead, if you don't want to handle the error, simply
//! panic, by converting to an `Option` with `ok`, then asserting
//! success with `expect`. This will panic if the write fails, proving
//! a marginally useful message indicating why:
//!
//! ```{.no_run}
//! use std::old_io::{File, Open, Write};
//!
//! let mut file = File::open_mode(&Path::new("valuable_data.txt"), Open, Write);
//! file.write_line("important message").ok().expect("failed to write message");
//! drop(file);
//! ```
//!
//! You might also simply assert success:
//!
//! ```{.no_run}
//! # use std::old_io::{File, Open, Write};
//!
//! # let mut file = File::open_mode(&Path::new("valuable_data.txt"), Open, Write);
//! assert!(file.write_line("important message").is_ok());
//! # drop(file);
//! ```
//!
//! Or propagate the error up the call stack with `try!`:
//!
//! ```
//! # use std::old_io::{File, Open, Write, IoError};
//! fn write_message() -> Result<(), IoError> {
//! let mut file = File::open_mode(&Path::new("valuable_data.txt"), Open, Write);
//! try!(file.write_line("important message"));
//! drop(file);
//! return Ok(());
//! }
//! ```
//!
//! # The `try!` macro
//!
//! When writing code that calls many functions that return the
//! `Result` type, the error handling can be tedious. The `try!`
//! macro hides some of the boilerplate of propagating errors up the
//! call stack.
//!
//! It replaces this:
//!
//! ```
//! use std::old_io::{File, Open, Write, IoError};
//!
//! struct Info {
//! name: String,
//! age: int,
//! rating: int
//! }
//!
//! fn write_info(info: &Info) -> Result<(), IoError> {
//! let mut file = File::open_mode(&Path::new("my_best_friends.txt"), Open, Write);
//! // Early return on error
//! if let Err(e) = file.write_line(format!("name: {}", info.name).as_slice()) {
//! return Err(e)
//! }
//! if let Err(e) = file.write_line(format!("age: {}", info.age).as_slice()) {
//! return Err(e)
//! }
//! return file.write_line(format!("rating: {}", info.rating).as_slice());
//! }
//! ```
//!
//! With this:
//!
//! ```
//! use std::old_io::{File, Open, Write, IoError};
//!
//! struct Info {
//! name: String,
//! age: int,
//! rating: int
//! }
//!
//! fn write_info(info: &Info) -> Result<(), IoError> {
//! let mut file = File::open_mode(&Path::new("my_best_friends.txt"), Open, Write);
//! // Early return on error
//! try!(file.write_line(format!("name: {}", info.name).as_slice()));
//! try!(file.write_line(format!("age: {}", info.age).as_slice()));
//! try!(file.write_line(format!("rating: {}", info.rating).as_slice()));
//! return Ok(());
//! }
//! ```
//!
//! *It's much nicer!*
//!
//! Wrapping an expression in `try!` will result in the unwrapped
//! success (`Ok`) value, unless the result is `Err`, in which case
//! `Err` is returned early from the enclosing function. Its simple definition
//! makes it clear:
//!
//! ```
//! macro_rules! try {
//! ($e:expr) => (match $e { Ok(e) => e, Err(e) => return Err(e) })
//! }
//! ```
//!
//! `try!` is imported by the prelude, and is available everywhere.
#![stable(feature = "rust1", since = "1.0.0")]
use self::Result::{Ok, Err};
use clone::Clone;
use fmt;
use iter::{Iterator, IteratorExt, DoubleEndedIterator, FromIterator, ExactSizeIterator};
use ops::{FnMut, FnOnce};
use option::Option::{self, None, Some};
use slice::AsSlice;
use slice;
/// `Result` is a type that represents either success (`Ok`) or failure (`Err`).
///
/// See the [`std::result`](index.html) module documentation for details.
#[derive(Clone, Copy, PartialEq, PartialOrd, Eq, Ord, Debug, Hash)]
#[must_use]
#[stable(feature = "rust1", since = "1.0.0")]
pub enum Result<T, E> {
/// Contains the success value
#[stable(feature = "rust1", since = "1.0.0")]
Ok(T),
/// Contains the error value
#[stable(feature = "rust1", since = "1.0.0")]
Err(E)
}
/////////////////////////////////////////////////////////////////////////////
// Type implementation
/////////////////////////////////////////////////////////////////////////////
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, E> Result<T, E> {
/////////////////////////////////////////////////////////////////////////
// Querying the contained values
/////////////////////////////////////////////////////////////////////////
/// Returns true if the result is `Ok`
///
/// # Example
///
/// ```
/// let x: Result<int, &str> = Ok(-3);
/// assert_eq!(x.is_ok(), true);
///
/// let x: Result<int, &str> = Err("Some error message");
/// assert_eq!(x.is_ok(), false);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn is_ok(&self) -> bool {
match *self {
Ok(_) => true,
Err(_) => false
}
}
/// Returns true if the result is `Err`
///
/// # Example
///
/// ```
/// let x: Result<int, &str> = Ok(-3);
/// assert_eq!(x.is_err(), false);
///
/// let x: Result<int, &str> = Err("Some error message");
/// assert_eq!(x.is_err(), true);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn is_err(&self) -> bool {
!self.is_ok()
}
/////////////////////////////////////////////////////////////////////////
// Adapter for each variant
/////////////////////////////////////////////////////////////////////////
/// Convert from `Result<T, E>` to `Option<T>`
///
/// Converts `self` into an `Option<T>`, consuming `self`,
/// and discarding the error, if any.
///
/// # Example
///
/// ```
/// let x: Result<uint, &str> = Ok(2);
/// assert_eq!(x.ok(), Some(2));
///
/// let x: Result<uint, &str> = Err("Nothing here");
/// assert_eq!(x.ok(), None);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn ok(self) -> Option<T> {
match self {
Ok(x) => Some(x),
Err(_) => None,
}
}
/// Convert from `Result<T, E>` to `Option<E>`
///
/// Converts `self` into an `Option<E>`, consuming `self`,
/// and discarding the value, if any.
///
/// # Example
///
/// ```
/// let x: Result<uint, &str> = Ok(2);
/// assert_eq!(x.err(), None);
///
/// let x: Result<uint, &str> = Err("Nothing here");
/// assert_eq!(x.err(), Some("Nothing here"));
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn err(self) -> Option<E> {
match self {
Ok(_) => None,
Err(x) => Some(x),
}
}
/////////////////////////////////////////////////////////////////////////
// Adapter for working with references
/////////////////////////////////////////////////////////////////////////
/// Convert from `Result<T, E>` to `Result<&T, &E>`
///
/// Produces a new `Result`, containing a reference
/// into the original, leaving the original in place.
///
/// ```
/// let x: Result<uint, &str> = Ok(2);
/// assert_eq!(x.as_ref(), Ok(&2));
///
/// let x: Result<uint, &str> = Err("Error");
/// assert_eq!(x.as_ref(), Err(&"Error"));
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn as_ref(&self) -> Result<&T, &E> {
match *self {
Ok(ref x) => Ok(x),
Err(ref x) => Err(x),
}
}
/// Convert from `Result<T, E>` to `Result<&mut T, &mut E>`
///
/// ```
/// fn mutate(r: &mut Result<int, int>) {
/// match r.as_mut() {
/// Ok(&mut ref mut v) => *v = 42,
/// Err(&mut ref mut e) => *e = 0,
/// }
/// }
///
/// let mut x: Result<int, int> = Ok(2);
/// mutate(&mut x);
/// assert_eq!(x.unwrap(), 42);
///
/// let mut x: Result<int, int> = Err(13);
/// mutate(&mut x);
/// assert_eq!(x.unwrap_err(), 0);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn as_mut(&mut self) -> Result<&mut T, &mut E> {
match *self {
Ok(ref mut x) => Ok(x),
Err(ref mut x) => Err(x),
}
}
/// Convert from `Result<T, E>` to `&mut [T]` (without copying)
///
/// ```
/// let mut x: Result<&str, uint> = Ok("Gold");
/// {
/// let v = x.as_mut_slice();
/// assert!(v == ["Gold"]);
/// v[0] = "Silver";
/// assert!(v == ["Silver"]);
/// }
/// assert_eq!(x, Ok("Silver"));
///
/// let mut x: Result<&str, uint> = Err(45);
/// assert!(x.as_mut_slice().is_empty());
/// ```
#[inline]
#[unstable(feature = "core",
reason = "waiting for mut conventions")]
pub fn as_mut_slice(&mut self) -> &mut [T] {
match *self {
Ok(ref mut x) => slice::mut_ref_slice(x),
Err(_) => {
// work around lack of implicit coercion from fixed-size array to slice
let emp: &mut [_] = &mut [];
emp
}
}
}
/////////////////////////////////////////////////////////////////////////
// Transforming contained values
/////////////////////////////////////////////////////////////////////////
/// Maps a `Result<T, E>` to `Result<U, E>` by applying a function to an
/// contained `Ok` value, leaving an `Err` value untouched.
///
/// This function can be used to compose the results of two functions.
///
/// # Example
///
/// Sum the lines of a buffer by mapping strings to numbers,
/// ignoring I/O and parse errors:
///
/// ```
/// use std::old_io::IoResult;
///
/// let mut buffer = &mut b"1\n2\n3\n4\n";
///
/// let mut sum = 0;
///
/// while !buffer.is_empty() {
/// let line: IoResult<String> = buffer.read_line();
/// // Convert the string line to a number using `map` and `from_str`
/// let val: IoResult<int> = line.map(|line| {
/// line.trim_right().parse::<int>().unwrap_or(0)
/// });
/// // Add the value if there were no errors, otherwise add 0
/// sum += val.ok().unwrap_or(0);
/// }
///
/// assert!(sum == 10);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn map<U, F: FnOnce(T) -> U>(self, op: F) -> Result<U,E> {
match self {
Ok(t) => Ok(op(t)),
Err(e) => Err(e)
}
}
/// Maps a `Result<T, E>` to `Result<T, F>` by applying a function to an
/// contained `Err` value, leaving an `Ok` value untouched.
///
/// This function can be used to pass through a successful result while handling
/// an error.
///
/// # Example
///
/// ```
/// fn stringify(x: uint) -> String { format!("error code: {}", x) }
///
/// let x: Result<uint, uint> = Ok(2);
/// assert_eq!(x.map_err(stringify), Ok(2));
///
/// let x: Result<uint, uint> = Err(13);
/// assert_eq!(x.map_err(stringify), Err("error code: 13".to_string()));
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn map_err<F, O: FnOnce(E) -> F>(self, op: O) -> Result<T,F> {
match self {
Ok(t) => Ok(t),
Err(e) => Err(op(e))
}
}
/////////////////////////////////////////////////////////////////////////
// Iterator constructors
/////////////////////////////////////////////////////////////////////////
/// Returns an iterator over the possibly contained value.
///
/// # Example
///
/// ```
/// let x: Result<uint, &str> = Ok(7);
/// assert_eq!(x.iter().next(), Some(&7));
///
/// let x: Result<uint, &str> = Err("nothing!");
/// assert_eq!(x.iter().next(), None);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn iter(&self) -> Iter<T> {
Iter { inner: self.as_ref().ok() }
}
/// Returns a mutable iterator over the possibly contained value.
///
/// # Example
///
/// ```
/// let mut x: Result<uint, &str> = Ok(7);
/// match x.iter_mut().next() {
/// Some(&mut ref mut x) => *x = 40,
/// None => {},
/// }
/// assert_eq!(x, Ok(40));
///
/// let mut x: Result<uint, &str> = Err("nothing!");
/// assert_eq!(x.iter_mut().next(), None);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn iter_mut(&mut self) -> IterMut<T> {
IterMut { inner: self.as_mut().ok() }
}
/// Returns a consuming iterator over the possibly contained value.
///
/// # Example
///
/// ```
/// let x: Result<uint, &str> = Ok(5);
/// let v: Vec<uint> = x.into_iter().collect();
/// assert_eq!(v, vec![5]);
///
/// let x: Result<uint, &str> = Err("nothing!");
/// let v: Vec<uint> = x.into_iter().collect();
/// assert_eq!(v, vec![]);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn into_iter(self) -> IntoIter<T> {
IntoIter { inner: self.ok() }
}
////////////////////////////////////////////////////////////////////////
// Boolean operations on the values, eager and lazy
/////////////////////////////////////////////////////////////////////////
/// Returns `res` if the result is `Ok`, otherwise returns the `Err` value of `self`.
///
/// # Example
///
/// ```
/// let x: Result<uint, &str> = Ok(2);
/// let y: Result<&str, &str> = Err("late error");
/// assert_eq!(x.and(y), Err("late error"));
///
/// let x: Result<uint, &str> = Err("early error");
/// let y: Result<&str, &str> = Ok("foo");
/// assert_eq!(x.and(y), Err("early error"));
///
/// let x: Result<uint, &str> = Err("not a 2");
/// let y: Result<&str, &str> = Err("late error");
/// assert_eq!(x.and(y), Err("not a 2"));
///
/// let x: Result<uint, &str> = Ok(2);
/// let y: Result<&str, &str> = Ok("different result type");
/// assert_eq!(x.and(y), Ok("different result type"));
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn and<U>(self, res: Result<U, E>) -> Result<U, E> {
match self {
Ok(_) => res,
Err(e) => Err(e),
}
}
/// Calls `op` if the result is `Ok`, otherwise returns the `Err` value of `self`.
///
/// This function can be used for control flow based on result values.
///
/// # Example
///
/// ```
/// fn sq(x: uint) -> Result<uint, uint> { Ok(x * x) }
/// fn err(x: uint) -> Result<uint, uint> { Err(x) }
///
/// assert_eq!(Ok(2).and_then(sq).and_then(sq), Ok(16));
/// assert_eq!(Ok(2).and_then(sq).and_then(err), Err(4));
/// assert_eq!(Ok(2).and_then(err).and_then(sq), Err(2));
/// assert_eq!(Err(3).and_then(sq).and_then(sq), Err(3));
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn and_then<U, F: FnOnce(T) -> Result<U, E>>(self, op: F) -> Result<U, E> {
match self {
Ok(t) => op(t),
Err(e) => Err(e),
}
}
/// Returns `res` if the result is `Err`, otherwise returns the `Ok` value of `self`.
///
/// # Example
///
/// ```
/// let x: Result<uint, &str> = Ok(2);
/// let y: Result<uint, &str> = Err("late error");
/// assert_eq!(x.or(y), Ok(2));
///
/// let x: Result<uint, &str> = Err("early error");
/// let y: Result<uint, &str> = Ok(2);
/// assert_eq!(x.or(y), Ok(2));
///
/// let x: Result<uint, &str> = Err("not a 2");
/// let y: Result<uint, &str> = Err("late error");
/// assert_eq!(x.or(y), Err("late error"));
///
/// let x: Result<uint, &str> = Ok(2);
/// let y: Result<uint, &str> = Ok(100);
/// assert_eq!(x.or(y), Ok(2));
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn or(self, res: Result<T, E>) -> Result<T, E> {
match self {
Ok(_) => self,
Err(_) => res,
}
}
/// Calls `op` if the result is `Err`, otherwise returns the `Ok` value of `self`.
///
/// This function can be used for control flow based on result values.
///
/// # Example
///
/// ```
/// fn sq(x: uint) -> Result<uint, uint> { Ok(x * x) }
/// fn err(x: uint) -> Result<uint, uint> { Err(x) }
///
/// assert_eq!(Ok(2).or_else(sq).or_else(sq), Ok(2));
/// assert_eq!(Ok(2).or_else(err).or_else(sq), Ok(2));
/// assert_eq!(Err(3).or_else(sq).or_else(err), Ok(9));
/// assert_eq!(Err(3).or_else(err).or_else(err), Err(3));
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn or_else<F, O: FnOnce(E) -> Result<T, F>>(self, op: O) -> Result<T, F> {
match self {
Ok(t) => Ok(t),
Err(e) => op(e),
}
}
/// Unwraps a result, yielding the content of an `Ok`.
/// Else it returns `optb`.
///
/// # Example
///
/// ```
/// let optb = 2;
/// let x: Result<uint, &str> = Ok(9);
/// assert_eq!(x.unwrap_or(optb), 9);
///
/// let x: Result<uint, &str> = Err("error");
/// assert_eq!(x.unwrap_or(optb), optb);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn unwrap_or(self, optb: T) -> T {
match self {
Ok(t) => t,
Err(_) => optb
}
}
/// Unwraps a result, yielding the content of an `Ok`.
/// If the value is an `Err` then it calls `op` with its value.
///
/// # Example
///
/// ```
/// fn count(x: &str) -> uint { x.len() }
///
/// assert_eq!(Ok(2).unwrap_or_else(count), 2);
/// assert_eq!(Err("foo").unwrap_or_else(count), 3);
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn unwrap_or_else<F: FnOnce(E) -> T>(self, op: F) -> T {
match self {
Ok(t) => t,
Err(e) => op(e)
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T, E: fmt::Debug> Result<T, E> {
/// Unwraps a result, yielding the content of an `Ok`.
///
/// # Panics
///
/// Panics if the value is an `Err`, with a custom panic message provided
/// by the `Err`'s value.
///
/// # Example
///
/// ```
/// let x: Result<uint, &str> = Ok(2);
/// assert_eq!(x.unwrap(), 2);
/// ```
///
/// ```{.should_fail}
/// let x: Result<uint, &str> = Err("emergency failure");
/// x.unwrap(); // panics with `emergency failure`
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn unwrap(self) -> T {
match self {
Ok(t) => t,
Err(e) =>
panic!("called `Result::unwrap()` on an `Err` value: {:?}", e)
}
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: fmt::Debug, E> Result<T, E> {
/// Unwraps a result, yielding the content of an `Err`.
///
/// # Panics
///
/// Panics if the value is an `Ok`, with a custom panic message provided
/// by the `Ok`'s value.
///
/// # Example
///
/// ```{.should_fail}
/// let x: Result<uint, &str> = Ok(2);
/// x.unwrap_err(); // panics with `2`
/// ```
///
/// ```
/// let x: Result<uint, &str> = Err("emergency failure");
/// assert_eq!(x.unwrap_err(), "emergency failure");
/// ```
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
pub fn unwrap_err(self) -> E {
match self {
Ok(t) =>
panic!("called `Result::unwrap_err()` on an `Ok` value: {:?}", t),
Err(e) => e
}
}
}
/////////////////////////////////////////////////////////////////////////////
// Trait implementations
/////////////////////////////////////////////////////////////////////////////
impl<T, E> AsSlice<T> for Result<T, E> {
/// Convert from `Result<T, E>` to `&[T]` (without copying)
#[inline]
#[stable(feature = "rust1", since = "1.0.0")]
fn as_slice<'a>(&'a self) -> &'a [T] {
match *self {
Ok(ref x) => slice::ref_slice(x),
Err(_) => {
// work around lack of implicit coercion from fixed-size array to slice
let emp: &[_] = &[];
emp
}
}
}
}
/////////////////////////////////////////////////////////////////////////////
// The Result Iterators
/////////////////////////////////////////////////////////////////////////////
/// An iterator over a reference to the `Ok` variant of a `Result`.
#[stable(feature = "rust1", since = "1.0.0")]
pub struct Iter<'a, T: 'a> { inner: Option<&'a T> }
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> Iterator for Iter<'a, T> {
type Item = &'a T;
#[inline]
fn next(&mut self) -> Option<&'a T> { self.inner.take() }
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
let n = if self.inner.is_some() {1} else {0};
(n, Some(n))
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<&'a T> { self.inner.take() }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> ExactSizeIterator for Iter<'a, T> {}
impl<'a, T> Clone for Iter<'a, T> {
fn clone(&self) -> Iter<'a, T> { Iter { inner: self.inner } }
}
/// An iterator over a mutable reference to the `Ok` variant of a `Result`.
#[stable(feature = "rust1", since = "1.0.0")]
pub struct IterMut<'a, T: 'a> { inner: Option<&'a mut T> }
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> Iterator for IterMut<'a, T> {
type Item = &'a mut T;
#[inline]
fn next(&mut self) -> Option<&'a mut T> { self.inner.take() }
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
let n = if self.inner.is_some() {1} else {0};
(n, Some(n))
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<&'a mut T> { self.inner.take() }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<'a, T> ExactSizeIterator for IterMut<'a, T> {}
/// An iterator over the value in a `Ok` variant of a `Result`.
#[stable(feature = "rust1", since = "1.0.0")]
pub struct IntoIter<T> { inner: Option<T> }
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> Iterator for IntoIter<T> {
type Item = T;
#[inline]
fn next(&mut self) -> Option<T> { self.inner.take() }
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
let n = if self.inner.is_some() {1} else {0};
(n, Some(n))
}
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> DoubleEndedIterator for IntoIter<T> {
#[inline]
fn next_back(&mut self) -> Option<T> { self.inner.take() }
}
#[stable(feature = "rust1", since = "1.0.0")]
impl<T> ExactSizeIterator for IntoIter<T> {}
/////////////////////////////////////////////////////////////////////////////
// FromIterator
/////////////////////////////////////////////////////////////////////////////
#[stable(feature = "rust1", since = "1.0.0")]
impl<A, E, V: FromIterator<A>> FromIterator<Result<A, E>> for Result<V, E> {
/// Takes each element in the `Iterator`: if it is an `Err`, no further
/// elements are taken, and the `Err` is returned. Should no `Err` occur, a
/// container with the values of each `Result` is returned.
///
/// Here is an example which increments every integer in a vector,
/// checking for overflow:
///
/// ```rust
/// use std::uint;
///
/// let v = vec!(1, 2);
/// let res: Result<Vec<uint>, &'static str> = v.iter().map(|&x: &uint|
/// if x == uint::MAX { Err("Overflow!") }
/// else { Ok(x + 1) }
/// ).collect();
/// assert!(res == Ok(vec!(2, 3)));
/// ```
#[inline]
fn from_iter<I: Iterator<Item=Result<A, E>>>(iter: I) -> Result<V, E> {
// FIXME(#11084): This could be replaced with Iterator::scan when this
// performance bug is closed.
struct Adapter<Iter, E> {
iter: Iter,
err: Option<E>,
}
impl<T, E, Iter: Iterator<Item=Result<T, E>>> Iterator for Adapter<Iter, E> {
type Item = T;
#[inline]
fn next(&mut self) -> Option<T> {
match self.iter.next() {
Some(Ok(value)) => Some(value),
Some(Err(err)) => {
self.err = Some(err);
None
}
None => None,
}
}
}
let mut adapter = Adapter { iter: iter, err: None };
let v: V = FromIterator::from_iter(adapter.by_ref());
match adapter.err {
Some(err) => Err(err),
None => Ok(v),
}
}
}
/////////////////////////////////////////////////////////////////////////////
// FromIterator
/////////////////////////////////////////////////////////////////////////////
/// Perform a fold operation over the result values from an iterator.
///
/// If an `Err` is encountered, it is immediately returned.
/// Otherwise, the folded value is returned.
#[inline]
#[unstable(feature = "core")]
pub fn fold<T,
V,
E,
F: FnMut(V, T) -> V,
Iter: Iterator<Item=Result<T, E>>>(
iterator: Iter,
mut init: V,
mut f: F)
-> Result<V, E> {
for t in iterator {
match t {
Ok(v) => init = f(init, v),
Err(u) => return Err(u)
}
}
Ok(init)
}