rust/src/libcore/num/int-template.rs
2013-02-11 12:33:05 +11:00

461 lines
12 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
use T = self::inst::T;
use char;
use cmp::{Eq, Ord};
use cmp;
use to_str::ToStr;
use from_str::FromStr;
use num::{ToStrRadix, FromStrRadix};
use num;
use prelude::*;
use str;
use uint;
use vec;
use i8;
use i16;
use i32;
pub const bits : uint = inst::bits;
pub const bytes : uint = (inst::bits / 8);
pub const min_value: T = (-1 as T) << (bits - 1);
pub const max_value: T = min_value - 1 as T;
#[inline(always)]
pub pure fn min(x: T, y: T) -> T { if x < y { x } else { y } }
#[inline(always)]
pub pure fn max(x: T, y: T) -> T { if x > y { x } else { y } }
#[inline(always)]
pub pure fn add(x: T, y: T) -> T { x + y }
#[inline(always)]
pub pure fn sub(x: T, y: T) -> T { x - y }
#[inline(always)]
pub pure fn mul(x: T, y: T) -> T { x * y }
#[inline(always)]
pub pure fn div(x: T, y: T) -> T { x / y }
/**
* Returns the remainder of y / x.
*
* # Examples
* ~~~
* assert int::rem(5 / 2) == 1;
* ~~~
*
* When faced with negative numbers, the result copies the sign of the
* dividend.
*
* ~~~
* assert int::rem(2 / -3) == 2;
* ~~~
*
* ~~~
* assert int::rem(-2 / 3) == -2;
* ~~~
*
*/
#[inline(always)]
pub pure fn rem(x: T, y: T) -> T { x % y }
#[inline(always)]
pub pure fn lt(x: T, y: T) -> bool { x < y }
#[inline(always)]
pub pure fn le(x: T, y: T) -> bool { x <= y }
#[inline(always)]
pub pure fn eq(x: T, y: T) -> bool { x == y }
#[inline(always)]
pub pure fn ne(x: T, y: T) -> bool { x != y }
#[inline(always)]
pub pure fn ge(x: T, y: T) -> bool { x >= y }
#[inline(always)]
pub pure fn gt(x: T, y: T) -> bool { x > y }
#[inline(always)]
pub pure fn is_positive(x: T) -> bool { x > 0 as T }
#[inline(always)]
pub pure fn is_negative(x: T) -> bool { x < 0 as T }
#[inline(always)]
pub pure fn is_nonpositive(x: T) -> bool { x <= 0 as T }
#[inline(always)]
pub pure fn is_nonnegative(x: T) -> bool { x >= 0 as T }
/**
* Iterate over the range [`lo`..`hi`)
*
* # Arguments
*
* * `lo` - lower bound, inclusive
* * `hi` - higher bound, exclusive
*
* # Examples
* ~~~
* let mut sum = 0;
* for int::range(1, 5) |i| {
* sum += i;
* }
* assert sum == 10;
* ~~~
*/
#[inline(always)]
/// Iterate over the range [`start`,`start`+`step`..`stop`)
pub pure fn range_step(start: T, stop: T, step: T, it: fn(T) -> bool) {
let mut i = start;
if step == 0 {
die!(~"range_step called with step == 0");
} else if step > 0 { // ascending
while i < stop {
if !it(i) { break }
i += step;
}
} else { // descending
while i > stop {
if !it(i) { break }
i += step;
}
}
}
#[inline(always)]
/// Iterate over the range [`lo`..`hi`)
pub pure fn range(lo: T, hi: T, it: fn(T) -> bool) {
range_step(lo, hi, 1 as T, it);
}
#[inline(always)]
/// Iterate over the range [`hi`..`lo`)
pub pure fn range_rev(hi: T, lo: T, it: fn(T) -> bool) {
range_step(hi, lo, -1 as T, it);
}
/// Computes the bitwise complement
#[inline(always)]
pub pure fn compl(i: T) -> T {
-1 as T ^ i
}
/// Computes the absolute value
#[inline(always)]
pub pure fn abs(i: T) -> T {
if is_negative(i) { -i } else { i }
}
#[cfg(notest)]
impl T : Ord {
#[inline(always)]
pure fn lt(&self, other: &T) -> bool { return (*self) < (*other); }
#[inline(always)]
pure fn le(&self, other: &T) -> bool { return (*self) <= (*other); }
#[inline(always)]
pure fn ge(&self, other: &T) -> bool { return (*self) >= (*other); }
#[inline(always)]
pure fn gt(&self, other: &T) -> bool { return (*self) > (*other); }
}
#[cfg(notest)]
impl T : Eq {
#[inline(always)]
pure fn eq(&self, other: &T) -> bool { return (*self) == (*other); }
#[inline(always)]
pure fn ne(&self, other: &T) -> bool { return (*self) != (*other); }
}
impl T: num::Num {
#[inline(always)]
pure fn add(&self, other: &T) -> T { return *self + *other; }
#[inline(always)]
pure fn sub(&self, other: &T) -> T { return *self - *other; }
#[inline(always)]
pure fn mul(&self, other: &T) -> T { return *self * *other; }
#[inline(always)]
pure fn div(&self, other: &T) -> T { return *self / *other; }
#[inline(always)]
pure fn modulo(&self, other: &T) -> T { return *self % *other; }
#[inline(always)]
pure fn neg(&self) -> T { return -*self; }
}
impl T: num::Zero {
#[inline(always)]
static pure fn zero() -> T { 0 }
}
impl T: num::One {
#[inline(always)]
static pure fn one() -> T { 1 }
}
impl T: num::Round {
#[inline(always)]
pure fn round(&self, _: num::RoundMode) -> T { *self }
#[inline(always)]
pure fn floor(&self) -> T { *self }
#[inline(always)]
pure fn ceil(&self) -> T { *self }
#[inline(always)]
pure fn fract(&self) -> T { 0 }
}
// String conversion functions and impl str -> num
/// Parse a string as a number in base 10.
#[inline(always)]
pub pure fn from_str(s: &str) -> Option<T> {
num::from_str_common(s, 10u, true, false, false,
num::ExpNone, false)
}
/// Parse a string as a number in the given base.
#[inline(always)]
pub pure fn from_str_radix(s: &str, radix: uint) -> Option<T> {
num::from_str_common(s, radix, true, false, false,
num::ExpNone, false)
}
/// Parse a byte slice as a number in the given base.
#[inline(always)]
pub pure fn parse_bytes(buf: &[u8], radix: uint) -> Option<T> {
num::from_str_bytes_common(buf, radix, true, false, false,
num::ExpNone, false)
}
impl T : FromStr {
#[inline(always)]
static pure fn from_str(s: &str) -> Option<T> {
from_str(s)
}
}
impl T : FromStrRadix {
#[inline(always)]
static pure fn from_str_radix(&self, s: &str, radix: uint) -> Option<T> {
from_str_radix(s, radix)
}
}
// String conversion functions and impl num -> str
/// Convert to a string as a byte slice in a given base.
#[inline(always)]
pub pure fn to_str_bytes<U>(n: T, radix: uint, f: fn(v: &[u8]) -> U) -> U {
let (buf, _) = num::to_str_bytes_common(&n, radix, false, false,
num::SignNeg, num::DigAll);
f(buf)
}
/// Convert to a string in base 10.
#[inline(always)]
pub pure fn to_str(num: T) -> ~str {
let (buf, _) = num::to_str_common(&num, 10u, false, false,
num::SignNeg, num::DigAll);
buf
}
/// Convert to a string in a given base.
#[inline(always)]
pub pure fn to_str_radix(num: T, radix: uint) -> ~str {
let (buf, _) = num::to_str_common(&num, radix, false, false,
num::SignNeg, num::DigAll);
buf
}
/// Convert to a string.
/// *Deprecated*, use to_str() instead.
#[inline(always)]
pub pure fn str(i: T) -> ~str { to_str(i) }
impl T : ToStr {
#[inline(always)]
pure fn to_str(&self) -> ~str {
to_str(*self)
}
}
impl T : ToStrRadix {
#[inline(always)]
pure fn to_str_radix(&self, radix: uint) -> ~str {
to_str_radix(*self, radix)
}
}
#[test]
fn test_from_str() {
assert from_str(~"0") == Some(0 as T);
assert from_str(~"3") == Some(3 as T);
assert from_str(~"10") == Some(10 as T);
assert i32::from_str(~"123456789") == Some(123456789 as i32);
assert from_str(~"00100") == Some(100 as T);
assert from_str(~"-1") == Some(-1 as T);
assert from_str(~"-3") == Some(-3 as T);
assert from_str(~"-10") == Some(-10 as T);
assert i32::from_str(~"-123456789") == Some(-123456789 as i32);
assert from_str(~"-00100") == Some(-100 as T);
assert from_str(~" ").is_none();
assert from_str(~"x").is_none();
}
#[test]
fn test_parse_bytes() {
use str::to_bytes;
assert parse_bytes(to_bytes(~"123"), 10u) == Some(123 as T);
assert parse_bytes(to_bytes(~"1001"), 2u) == Some(9 as T);
assert parse_bytes(to_bytes(~"123"), 8u) == Some(83 as T);
assert i32::parse_bytes(to_bytes(~"123"), 16u) == Some(291 as i32);
assert i32::parse_bytes(to_bytes(~"ffff"), 16u) == Some(65535 as i32);
assert i32::parse_bytes(to_bytes(~"FFFF"), 16u) == Some(65535 as i32);
assert parse_bytes(to_bytes(~"z"), 36u) == Some(35 as T);
assert parse_bytes(to_bytes(~"Z"), 36u) == Some(35 as T);
assert parse_bytes(to_bytes(~"-123"), 10u) == Some(-123 as T);
assert parse_bytes(to_bytes(~"-1001"), 2u) == Some(-9 as T);
assert parse_bytes(to_bytes(~"-123"), 8u) == Some(-83 as T);
assert i32::parse_bytes(to_bytes(~"-123"), 16u) == Some(-291 as i32);
assert i32::parse_bytes(to_bytes(~"-ffff"), 16u) == Some(-65535 as i32);
assert i32::parse_bytes(to_bytes(~"-FFFF"), 16u) == Some(-65535 as i32);
assert parse_bytes(to_bytes(~"-z"), 36u) == Some(-35 as T);
assert parse_bytes(to_bytes(~"-Z"), 36u) == Some(-35 as T);
assert parse_bytes(to_bytes(~"Z"), 35u).is_none();
assert parse_bytes(to_bytes(~"-9"), 2u).is_none();
}
#[test]
fn test_to_str() {
assert (to_str_radix(0 as T, 10u) == ~"0");
assert (to_str_radix(1 as T, 10u) == ~"1");
assert (to_str_radix(-1 as T, 10u) == ~"-1");
assert (to_str_radix(127 as T, 16u) == ~"7f");
assert (to_str_radix(100 as T, 10u) == ~"100");
}
#[test]
fn test_int_to_str_overflow() {
let mut i8_val: i8 = 127_i8;
assert (i8::to_str(i8_val) == ~"127");
i8_val += 1 as i8;
assert (i8::to_str(i8_val) == ~"-128");
let mut i16_val: i16 = 32_767_i16;
assert (i16::to_str(i16_val) == ~"32767");
i16_val += 1 as i16;
assert (i16::to_str(i16_val) == ~"-32768");
let mut i32_val: i32 = 2_147_483_647_i32;
assert (i32::to_str(i32_val) == ~"2147483647");
i32_val += 1 as i32;
assert (i32::to_str(i32_val) == ~"-2147483648");
let mut i64_val: i64 = 9_223_372_036_854_775_807_i64;
assert (i64::to_str(i64_val) == ~"9223372036854775807");
i64_val += 1 as i64;
assert (i64::to_str(i64_val) == ~"-9223372036854775808");
}
#[test]
fn test_int_from_str_overflow() {
let mut i8_val: i8 = 127_i8;
assert (i8::from_str(~"127") == Some(i8_val));
assert (i8::from_str(~"128").is_none());
i8_val += 1 as i8;
assert (i8::from_str(~"-128") == Some(i8_val));
assert (i8::from_str(~"-129").is_none());
let mut i16_val: i16 = 32_767_i16;
assert (i16::from_str(~"32767") == Some(i16_val));
assert (i16::from_str(~"32768").is_none());
i16_val += 1 as i16;
assert (i16::from_str(~"-32768") == Some(i16_val));
assert (i16::from_str(~"-32769").is_none());
let mut i32_val: i32 = 2_147_483_647_i32;
assert (i32::from_str(~"2147483647") == Some(i32_val));
assert (i32::from_str(~"2147483648").is_none());
i32_val += 1 as i32;
assert (i32::from_str(~"-2147483648") == Some(i32_val));
assert (i32::from_str(~"-2147483649").is_none());
let mut i64_val: i64 = 9_223_372_036_854_775_807_i64;
assert (i64::from_str(~"9223372036854775807") == Some(i64_val));
assert (i64::from_str(~"9223372036854775808").is_none());
i64_val += 1 as i64;
assert (i64::from_str(~"-9223372036854775808") == Some(i64_val));
assert (i64::from_str(~"-9223372036854775809").is_none());
}
#[test]
pub fn test_num() {
let ten: T = num::cast(10);
let two: T = num::cast(2);
assert (ten.add(&two) == num::cast(12));
assert (ten.sub(&two) == num::cast(8));
assert (ten.mul(&two) == num::cast(20));
assert (ten.div(&two) == num::cast(5));
assert (ten.modulo(&two) == num::cast(0));
}
#[test]
pub fn test_ranges() {
let mut l = ~[];
for range(0,3) |i| {
l.push(i);
}
for range_rev(13,10) |i| {
l.push(i);
}
for range_step(20,26,2) |i| {
l.push(i);
}
for range_step(36,30,-2) |i| {
l.push(i);
}
assert l == ~[0,1,2,
13,12,11,
20,22,24,
36,34,32];
// None of the `fail`s should execute.
for range(10,0) |_i| {
die!(~"unreachable");
}
for range_rev(0,10) |_i| {
die!(~"unreachable");
}
for range_step(10,0,1) |_i| {
die!(~"unreachable");
}
for range_step(0,10,-1) |_i| {
die!(~"unreachable");
}
}
#[test]
#[should_fail]
#[ignore(cfg(windows))]
fn test_range_step_zero_step() {
for range_step(0,10,0) |_i| {}
}