3328 lines
98 KiB
Rust
3328 lines
98 KiB
Rust
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! Composable external iteration
|
|
//!
|
|
//! If you've found yourself with a collection of some kind, and needed to
|
|
//! perform an operation on the elements of said collection, you'll quickly run
|
|
//! into 'iterators'. Iterators are heavily used in idiomatic Rust code, so
|
|
//! it's worth becoming familiar with them.
|
|
//!
|
|
//! Before explaining more, let's talk about how this module is structured:
|
|
//!
|
|
//! # Organization
|
|
//!
|
|
//! This module is largely organized by type:
|
|
//!
|
|
//! * [Traits] are the core portion: these traits define what kind of iterators
|
|
//! exist and what you can do with them. The methods of these traits are worth
|
|
//! putting some extra study time into.
|
|
//! * [Functions] provide some helpful ways to create some basic iterators.
|
|
//! * [Structs] are often the return types of the various methods on this
|
|
//! module's traits. You'll usually want to look at the method that creates
|
|
//! the `struct`, rather than the `struct` itself. For more detail about why,
|
|
//! see '[Implementing Iterator](#implementing-iterator)'.
|
|
//!
|
|
//! [Traits]: #traits
|
|
//! [Functions]: #functions
|
|
//! [Structs]: #structs
|
|
//!
|
|
//! That's it! Let's dig into iterators.
|
|
//!
|
|
//! # Iterator
|
|
//!
|
|
//! The heart and soul of this module is the [`Iterator`] trait. The core of
|
|
//! [`Iterator`] looks like this:
|
|
//!
|
|
//! ```
|
|
//! trait Iterator {
|
|
//! type Item;
|
|
//! fn next(&mut self) -> Option<Self::Item>;
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! An iterator has a method, [`next()`], which when called, returns an
|
|
//! [`Option`]`<Item>`. [`next()`] will return `Some(Item)` as long as there
|
|
//! are elements, and once they've all been exhausted, will return `None` to
|
|
//! indicate that iteration is finished. Individual iterators may choose to
|
|
//! resume iteration, and so calling [`next()`] again may or may not eventually
|
|
//! start returning `Some(Item)` again at some point.
|
|
//!
|
|
//! [`Iterator`]'s full definition includes a number of other methods as well,
|
|
//! but they are default methods, built on top of [`next()`], and so you get
|
|
//! them for free.
|
|
//!
|
|
//! Iterators are also composable, and it's common to chain them together to do
|
|
//! more complex forms of processing. See the [Adapters](#adapters) section
|
|
//! below for more details.
|
|
//!
|
|
//! [`Iterator`]: trait.Iterator.html
|
|
//! [`next()`]: trait.Iterator.html#tymethod.next
|
|
//! [`Option`]: ../option/enum.Option.html
|
|
//!
|
|
//! # The three forms of iteration
|
|
//!
|
|
//! There are three common methods which can create iterators from a collection:
|
|
//!
|
|
//! * `iter()`, which iterates over `&T`.
|
|
//! * `iter_mut()`, which iterates over `&mut T`.
|
|
//! * `into_iter()`, which iterates over `T`.
|
|
//!
|
|
//! Various things in the standard library may implement one or more of the
|
|
//! three, where appropriate.
|
|
//!
|
|
//! # Implementing Iterator
|
|
//!
|
|
//! Creating an iterator of your own involves two steps: creating a `struct` to
|
|
//! hold the iterator's state, and then `impl`ementing [`Iterator`] for that
|
|
//! `struct`. This is why there are so many `struct`s in this module: there is
|
|
//! one for each iterator and iterator adapter.
|
|
//!
|
|
//! Let's make an iterator named `Counter` which counts from `1` to `5`:
|
|
//!
|
|
//! ```
|
|
//! // First, the struct:
|
|
//!
|
|
//! /// An iterator which counts from one to five
|
|
//! struct Counter {
|
|
//! count: i32,
|
|
//! }
|
|
//!
|
|
//! // we want our count to start at one, so let's add a new() method to help.
|
|
//! // This isn't strictly necessary, but is convenient. Note that we start
|
|
//! // `count` at zero, we'll see why in `next()`'s implementation below.
|
|
//! impl Counter {
|
|
//! fn new() -> Counter {
|
|
//! Counter { count: 0 }
|
|
//! }
|
|
//! }
|
|
//!
|
|
//! // Then, we implement `Iterator` for our `Counter`:
|
|
//!
|
|
//! impl Iterator for Counter {
|
|
//! // we will be counting with i32
|
|
//! type Item = i32;
|
|
//!
|
|
//! // next() is the only required method
|
|
//! fn next(&mut self) -> Option<i32> {
|
|
//! // increment our count. This is why we started at zero.
|
|
//! self.count += 1;
|
|
//!
|
|
//! // check to see if we've finished counting or not.
|
|
//! if self.count < 6 {
|
|
//! Some(self.count)
|
|
//! } else {
|
|
//! None
|
|
//! }
|
|
//! }
|
|
//! }
|
|
//!
|
|
//! // And now we can use it!
|
|
//!
|
|
//! let mut counter = Counter::new();
|
|
//!
|
|
//! let x = counter.next().unwrap();
|
|
//! println!("{}", x);
|
|
//!
|
|
//! let x = counter.next().unwrap();
|
|
//! println!("{}", x);
|
|
//!
|
|
//! let x = counter.next().unwrap();
|
|
//! println!("{}", x);
|
|
//!
|
|
//! let x = counter.next().unwrap();
|
|
//! println!("{}", x);
|
|
//!
|
|
//! let x = counter.next().unwrap();
|
|
//! println!("{}", x);
|
|
//! ```
|
|
//!
|
|
//! This will print `1` through `5`, each on their own line.
|
|
//!
|
|
//! Calling `next()` this way gets repetitive. Rust has a construct which can
|
|
//! call `next()` on your iterator, until it reaches `None`. Let's go over that
|
|
//! next.
|
|
//!
|
|
//! # for Loops and IntoIterator
|
|
//!
|
|
//! Rust's `for` loop syntax is actually sugar for iterators. Here's a basic
|
|
//! example of `for`:
|
|
//!
|
|
//! ```
|
|
//! let values = vec![1, 2, 3, 4, 5];
|
|
//!
|
|
//! for x in values {
|
|
//! println!("{}", x);
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! This will print the numbers one through five, each on their own line. But
|
|
//! you'll notice something here: we never called anything on our vector to
|
|
//! produce an iterator. What gives?
|
|
//!
|
|
//! There's a trait in the standard library for converting something into an
|
|
//! iterator: [`IntoIterator`]. This trait has one method, [`into_iter()`],
|
|
//! which converts the thing implementing [`IntoIterator`] into an iterator.
|
|
//! Let's take a look at that `for` loop again, and what the compiler converts
|
|
//! it into:
|
|
//!
|
|
//! [`IntoIterator`]: trait.IntoIterator.html
|
|
//! [`into_iter()`]: trait.IntoIterator.html#tymethod.into_iter
|
|
//!
|
|
//! ```
|
|
//! let values = vec![1, 2, 3, 4, 5];
|
|
//!
|
|
//! for x in values {
|
|
//! println!("{}", x);
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! Rust de-sugars this into:
|
|
//!
|
|
//! ```
|
|
//! let values = vec![1, 2, 3, 4, 5];
|
|
//! {
|
|
//! let result = match values.into_iter() {
|
|
//! mut iter => loop {
|
|
//! match iter.next() {
|
|
//! Some(x) => { println!("{}", x); },
|
|
//! None => break,
|
|
//! }
|
|
//! },
|
|
//! };
|
|
//! result
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! First, we call `into_iter()` on the value. Then, we match on the iterator
|
|
//! that returns, calling [`next()`] over and over until we see a `None`. At
|
|
//! that point, we `break` out of the loop, and we're done iterating.
|
|
//!
|
|
//! There's one more subtle bit here: the standard library contains an
|
|
//! interesting implementation of [`IntoIterator`]:
|
|
//!
|
|
//! ```ignore
|
|
//! impl<I> IntoIterator for I where I: Iterator
|
|
//! ```
|
|
//!
|
|
//! In other words, all [`Iterator`]s implement [`IntoIterator`], by just
|
|
//! returning themselves. This means two things:
|
|
//!
|
|
//! 1. If you're writing an [`Iterator`], you can use it with a `for` loop.
|
|
//! 2. If you're creating a collection, implementing [`IntoIterator`] for it
|
|
//! will allow your collection to be used with the `for` loop.
|
|
//!
|
|
//! # Adapters
|
|
//!
|
|
//! Functions which take an [`Iterator`] and return another [`Iterator`] are
|
|
//! often called 'iterator adapters', as they're a form of the 'adapter
|
|
//! pattern'.
|
|
//!
|
|
//! Common iterator adapters include [`map()`], [`take()`], and [`collect()`].
|
|
//! For more, see their documentation.
|
|
//!
|
|
//! [`map()`]: trait.Iterator.html#method.map
|
|
//! [`take()`]: trait.Iterator.html#method.take
|
|
//! [`collect()`]: trait.Iterator.html#method.collect
|
|
//!
|
|
//! # Laziness
|
|
//!
|
|
//! Iterators (and iterator [adapters](#adapters)) are *lazy*. This means that
|
|
//! just creating an iterator doesn't _do_ a whole lot. Nothing really happens
|
|
//! until you call [`next()`]. This is sometimes a source of confusion when
|
|
//! creating an iterator solely for its side effects. For example, the [`map()`]
|
|
//! method calls a closure on each element it iterates over:
|
|
//!
|
|
//! ```
|
|
//! let v = vec![1, 2, 3, 4, 5];
|
|
//! v.iter().map(|x| println!("{}", x));
|
|
//! ```
|
|
//!
|
|
//! This will not print any values, as we only created an iterator, rather than
|
|
//! using it. The compiler will warn us about this kind of behavior:
|
|
//!
|
|
//! ```text
|
|
//! warning: unused result which must be used: iterator adaptors are lazy and
|
|
//! do nothing unless consumed
|
|
//! ```
|
|
//!
|
|
//! The idiomatic way to write a [`map()`] for its side effects is to use a
|
|
//! `for` loop instead:
|
|
//!
|
|
//! ```
|
|
//! let v = vec![1, 2, 3, 4, 5];
|
|
//!
|
|
//! for x in &v {
|
|
//! println!("{}", x);
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! [`map()`]: trait.Iterator.html#method.map
|
|
//!
|
|
//! The two most common ways to evaluate an iterator are to use a `for` loop
|
|
//! like this, or using the [`collect()`] adapter to produce a new collection.
|
|
//!
|
|
//! [`collect()`]: trait.Iterator.html#method.collect
|
|
//!
|
|
//! # Infinity
|
|
//!
|
|
//! Iterators do not have to be finite. As an example, an open-ended range is
|
|
//! an infinite iterator:
|
|
//!
|
|
//! ```
|
|
//! let numbers = 0..;
|
|
//! ```
|
|
//!
|
|
//! It is common to use the [`take()`] iterator adapter to turn an infinite
|
|
//! iterator into a finite one:
|
|
//!
|
|
//! ```
|
|
//! let numbers = 0..;
|
|
//! let five_numbers = numbers.take(5);
|
|
//!
|
|
//! for number in five_numbers {
|
|
//! println!("{}", number);
|
|
//! }
|
|
//! ```
|
|
//!
|
|
//! This will print the numbers `0` through `4`, each on their own line.
|
|
//!
|
|
//! [`take()`]: trait.Iterator.html#method.take
|
|
|
|
#![stable(feature = "rust1", since = "1.0.0")]
|
|
|
|
use clone::Clone;
|
|
use cmp;
|
|
use cmp::{Ord, PartialOrd, PartialEq, Ordering};
|
|
use default::Default;
|
|
use marker;
|
|
use mem;
|
|
use num::{Zero, One};
|
|
use ops::{self, Add, Sub, FnMut, Mul, RangeFrom};
|
|
use option::Option::{self, Some, None};
|
|
use marker::Sized;
|
|
use usize;
|
|
|
|
fn _assert_is_object_safe(_: &Iterator<Item=()>) {}
|
|
|
|
/// An interface for dealing with "external iterators". These types of iterators
|
|
/// can be resumed at any time as all state is stored internally as opposed to
|
|
/// being located on the call stack.
|
|
///
|
|
/// The Iterator protocol states that an iterator yields a (potentially-empty,
|
|
/// potentially-infinite) sequence of values, and returns `None` to signal that
|
|
/// it's finished. The Iterator protocol does not define behavior after `None`
|
|
/// is returned. A concrete Iterator implementation may choose to behave however
|
|
/// it wishes, either by returning `None` infinitely, or by doing something
|
|
/// else.
|
|
#[lang = "iterator"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[rustc_on_unimplemented = "`{Self}` is not an iterator; maybe try calling \
|
|
`.iter()` or a similar method"]
|
|
pub trait Iterator {
|
|
/// The type of the elements being iterated
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
type Item;
|
|
|
|
/// Advances the iterator and returns the next value. Returns `None` when the
|
|
/// end is reached.
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn next(&mut self) -> Option<Self::Item>;
|
|
|
|
/// Returns a lower and upper bound on the remaining length of the iterator.
|
|
///
|
|
/// An upper bound of `None` means either there is no known upper bound, or
|
|
/// the upper bound does not fit within a `usize`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let it = (0..10).filter(|x| x % 2 == 0).chain(15..20);
|
|
/// assert_eq!((5, Some(15)), it.size_hint());
|
|
/// ```
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn size_hint(&self) -> (usize, Option<usize>) { (0, None) }
|
|
|
|
/// Counts the number of elements in this iterator.
|
|
///
|
|
/// # Overflow Behavior
|
|
///
|
|
/// The method does no guarding against overflows, so counting elements of
|
|
/// an iterator with more than `usize::MAX` elements either produces the
|
|
/// wrong result or panics. If debug assertions are enabled, a panic is
|
|
/// guaranteed.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// This functions might panic if the iterator has more than `usize::MAX`
|
|
/// elements.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let a = [1, 2, 3, 4, 5];
|
|
/// assert_eq!(a.iter().count(), 5);
|
|
/// ```
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn count(self) -> usize where Self: Sized {
|
|
// Might overflow.
|
|
self.fold(0, |cnt, _| cnt + 1)
|
|
}
|
|
|
|
/// Loops through the entire iterator, returning the last element.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let a = [1, 2, 3, 4, 5];
|
|
/// assert_eq!(a.iter().last(), Some(&5));
|
|
/// ```
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn last(self) -> Option<Self::Item> where Self: Sized {
|
|
let mut last = None;
|
|
for x in self { last = Some(x); }
|
|
last
|
|
}
|
|
|
|
/// Skips the `n` first elements of the iterator and returns the next one.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let a = [1, 2, 3, 4, 5];
|
|
/// let mut it = a.iter();
|
|
/// assert_eq!(it.nth(2), Some(&3));
|
|
/// assert_eq!(it.nth(2), None);
|
|
/// ```
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn nth(&mut self, mut n: usize) -> Option<Self::Item> where Self: Sized {
|
|
for x in self {
|
|
if n == 0 { return Some(x) }
|
|
n -= 1;
|
|
}
|
|
None
|
|
}
|
|
|
|
/// Chain this iterator with another, returning a new iterator that will
|
|
/// finish iterating over the current iterator, and then iterate
|
|
/// over the other specified iterator.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let a = [0];
|
|
/// let b = [1];
|
|
/// let mut it = a.iter().chain(&b);
|
|
/// assert_eq!(it.next(), Some(&0));
|
|
/// assert_eq!(it.next(), Some(&1));
|
|
/// assert!(it.next().is_none());
|
|
/// ```
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn chain<U>(self, other: U) -> Chain<Self, U::IntoIter> where
|
|
Self: Sized, U: IntoIterator<Item=Self::Item>,
|
|
{
|
|
Chain{a: self, b: other.into_iter(), state: ChainState::Both}
|
|
}
|
|
|
|
/// Creates an iterator that iterates over both this and the specified
|
|
/// iterators simultaneously, yielding the two elements as pairs. When
|
|
/// either iterator returns `None`, all further invocations of `next()`
|
|
/// will return `None`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let a = [0];
|
|
/// let b = [1];
|
|
/// let mut it = a.iter().zip(&b);
|
|
/// assert_eq!(it.next(), Some((&0, &1)));
|
|
/// assert!(it.next().is_none());
|
|
/// ```
|
|
///
|
|
/// `zip` can provide similar functionality to `enumerate`:
|
|
///
|
|
/// ```
|
|
/// for pair in "foo".chars().enumerate() {
|
|
/// println!("{:?}", pair);
|
|
/// }
|
|
///
|
|
/// for pair in (0..).zip("foo".chars()) {
|
|
/// println!("{:?}", pair);
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// both produce the same output.
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn zip<U>(self, other: U) -> Zip<Self, U::IntoIter> where
|
|
Self: Sized, U: IntoIterator
|
|
{
|
|
Zip{a: self, b: other.into_iter()}
|
|
}
|
|
|
|
/// Creates a new iterator that will apply the specified function to each
|
|
/// element returned by the first, yielding the mapped element instead.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let a = [1, 2];
|
|
/// let mut it = a.iter().map(|&x| 2 * x);
|
|
/// assert_eq!(it.next(), Some(2));
|
|
/// assert_eq!(it.next(), Some(4));
|
|
/// assert!(it.next().is_none());
|
|
/// ```
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn map<B, F>(self, f: F) -> Map<Self, F> where
|
|
Self: Sized, F: FnMut(Self::Item) -> B,
|
|
{
|
|
Map{iter: self, f: f}
|
|
}
|
|
|
|
/// Creates an iterator that applies the predicate to each element returned
|
|
/// by this iterator. The only elements that will be yielded are those that
|
|
/// make the predicate evaluate to `true`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let a = [1, 2];
|
|
/// let mut it = a.iter().filter(|&x| *x > 1);
|
|
/// assert_eq!(it.next(), Some(&2));
|
|
/// assert!(it.next().is_none());
|
|
/// ```
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn filter<P>(self, predicate: P) -> Filter<Self, P> where
|
|
Self: Sized, P: FnMut(&Self::Item) -> bool,
|
|
{
|
|
Filter{iter: self, predicate: predicate}
|
|
}
|
|
|
|
/// Creates an iterator that both filters and maps elements.
|
|
/// If the specified function returns `None`, the element is skipped.
|
|
/// Otherwise the option is unwrapped and the new value is yielded.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let a = [1, 2];
|
|
/// let mut it = a.iter().filter_map(|&x| if x > 1 {Some(2 * x)} else {None});
|
|
/// assert_eq!(it.next(), Some(4));
|
|
/// assert!(it.next().is_none());
|
|
/// ```
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn filter_map<B, F>(self, f: F) -> FilterMap<Self, F> where
|
|
Self: Sized, F: FnMut(Self::Item) -> Option<B>,
|
|
{
|
|
FilterMap { iter: self, f: f }
|
|
}
|
|
|
|
/// Creates an iterator that yields pairs `(i, val)` where `i` is the
|
|
/// current index of iteration and `val` is the value returned by the
|
|
/// iterator.
|
|
///
|
|
/// `enumerate` keeps its count as a `usize`. If you want to count by a
|
|
/// different sized integer, the `zip` function provides similar
|
|
/// functionality.
|
|
///
|
|
/// # Overflow Behavior
|
|
///
|
|
/// The method does no guarding against overflows, so enumerating more than
|
|
/// `usize::MAX` elements either produces the wrong result or panics. If
|
|
/// debug assertions are enabled, a panic is guaranteed.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// The returned iterator might panic if the to-be-returned index would
|
|
/// overflow a `usize`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let a = [100, 200];
|
|
/// let mut it = a.iter().enumerate();
|
|
/// assert_eq!(it.next(), Some((0, &100)));
|
|
/// assert_eq!(it.next(), Some((1, &200)));
|
|
/// assert!(it.next().is_none());
|
|
/// ```
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn enumerate(self) -> Enumerate<Self> where Self: Sized {
|
|
Enumerate { iter: self, count: 0 }
|
|
}
|
|
|
|
/// Creates an iterator that has a `.peek()` method
|
|
/// that returns an optional reference to the next element.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let xs = [100, 200, 300];
|
|
/// let mut it = xs.iter().cloned().peekable();
|
|
/// assert_eq!(*it.peek().unwrap(), 100);
|
|
/// assert_eq!(it.next().unwrap(), 100);
|
|
/// assert_eq!(it.next().unwrap(), 200);
|
|
/// assert_eq!(*it.peek().unwrap(), 300);
|
|
/// assert_eq!(*it.peek().unwrap(), 300);
|
|
/// assert_eq!(it.next().unwrap(), 300);
|
|
/// assert!(it.peek().is_none());
|
|
/// assert!(it.next().is_none());
|
|
/// ```
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn peekable(self) -> Peekable<Self> where Self: Sized {
|
|
Peekable{iter: self, peeked: None}
|
|
}
|
|
|
|
/// Creates an iterator that invokes the predicate on elements
|
|
/// until it returns false. Once the predicate returns false, that
|
|
/// element and all further elements are yielded.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let a = [1, 2, 3, 4, 5];
|
|
/// let mut it = a.iter().skip_while(|&a| *a < 3);
|
|
/// assert_eq!(it.next(), Some(&3));
|
|
/// assert_eq!(it.next(), Some(&4));
|
|
/// assert_eq!(it.next(), Some(&5));
|
|
/// assert!(it.next().is_none());
|
|
/// ```
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P> where
|
|
Self: Sized, P: FnMut(&Self::Item) -> bool,
|
|
{
|
|
SkipWhile{iter: self, flag: false, predicate: predicate}
|
|
}
|
|
|
|
/// Creates an iterator that yields elements so long as the predicate
|
|
/// returns true. After the predicate returns false for the first time, no
|
|
/// further elements will be yielded.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let a = [1, 2, 3, 4, 5];
|
|
/// let mut it = a.iter().take_while(|&a| *a < 3);
|
|
/// assert_eq!(it.next(), Some(&1));
|
|
/// assert_eq!(it.next(), Some(&2));
|
|
/// assert!(it.next().is_none());
|
|
/// ```
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P> where
|
|
Self: Sized, P: FnMut(&Self::Item) -> bool,
|
|
{
|
|
TakeWhile{iter: self, flag: false, predicate: predicate}
|
|
}
|
|
|
|
/// Creates an iterator that skips the first `n` elements of this iterator,
|
|
/// and then yields all further items.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let a = [1, 2, 3, 4, 5];
|
|
/// let mut it = a.iter().skip(3);
|
|
/// assert_eq!(it.next(), Some(&4));
|
|
/// assert_eq!(it.next(), Some(&5));
|
|
/// assert!(it.next().is_none());
|
|
/// ```
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn skip(self, n: usize) -> Skip<Self> where Self: Sized {
|
|
Skip{iter: self, n: n}
|
|
}
|
|
|
|
/// Creates an iterator that yields the first `n` elements of this
|
|
/// iterator.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let a = [1, 2, 3, 4, 5];
|
|
/// let mut it = a.iter().take(3);
|
|
/// assert_eq!(it.next(), Some(&1));
|
|
/// assert_eq!(it.next(), Some(&2));
|
|
/// assert_eq!(it.next(), Some(&3));
|
|
/// assert!(it.next().is_none());
|
|
/// ```
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn take(self, n: usize) -> Take<Self> where Self: Sized, {
|
|
Take{iter: self, n: n}
|
|
}
|
|
|
|
/// Creates a new iterator that behaves in a similar fashion to fold.
|
|
/// There is a state which is passed between each iteration and can be
|
|
/// mutated as necessary. The yielded values from the closure are yielded
|
|
/// from the Scan instance when not `None`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let a = [1, 2, 3, 4, 5];
|
|
/// let mut it = a.iter().scan(1, |fac, &x| {
|
|
/// *fac = *fac * x;
|
|
/// Some(*fac)
|
|
/// });
|
|
/// assert_eq!(it.next(), Some(1));
|
|
/// assert_eq!(it.next(), Some(2));
|
|
/// assert_eq!(it.next(), Some(6));
|
|
/// assert_eq!(it.next(), Some(24));
|
|
/// assert_eq!(it.next(), Some(120));
|
|
/// assert!(it.next().is_none());
|
|
/// ```
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn scan<St, B, F>(self, initial_state: St, f: F) -> Scan<Self, St, F>
|
|
where Self: Sized, F: FnMut(&mut St, Self::Item) -> Option<B>,
|
|
{
|
|
Scan{iter: self, f: f, state: initial_state}
|
|
}
|
|
|
|
/// Takes a function that maps each element to a new iterator and yields
|
|
/// all the elements of the produced iterators.
|
|
///
|
|
/// This is useful for unraveling nested structures.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let words = ["alpha", "beta", "gamma"];
|
|
/// let merged: String = words.iter()
|
|
/// .flat_map(|s| s.chars())
|
|
/// .collect();
|
|
/// assert_eq!(merged, "alphabetagamma");
|
|
/// ```
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F>
|
|
where Self: Sized, U: IntoIterator, F: FnMut(Self::Item) -> U,
|
|
{
|
|
FlatMap{iter: self, f: f, frontiter: None, backiter: None }
|
|
}
|
|
|
|
/// Creates an iterator that yields `None` forever after the underlying
|
|
/// iterator yields `None`. Random-access iterator behavior is not
|
|
/// affected, only single and double-ended iterator behavior.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// fn process<U: Iterator<Item=i32>>(it: U) -> i32 {
|
|
/// let mut it = it.fuse();
|
|
/// let mut sum = 0;
|
|
/// for x in it.by_ref() {
|
|
/// if x > 5 {
|
|
/// break;
|
|
/// }
|
|
/// sum += x;
|
|
/// }
|
|
/// // did we exhaust the iterator?
|
|
/// if it.next().is_none() {
|
|
/// sum += 1000;
|
|
/// }
|
|
/// sum
|
|
/// }
|
|
/// let x = vec![1, 2, 3, 7, 8, 9];
|
|
/// assert_eq!(process(x.into_iter()), 6);
|
|
/// let x = vec![1, 2, 3];
|
|
/// assert_eq!(process(x.into_iter()), 1006);
|
|
/// ```
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn fuse(self) -> Fuse<Self> where Self: Sized {
|
|
Fuse{iter: self, done: false}
|
|
}
|
|
|
|
/// Creates an iterator that calls a function with a reference to each
|
|
/// element before yielding it. This is often useful for debugging an
|
|
/// iterator pipeline.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let a = [1, 4, 2, 3, 8, 9, 6];
|
|
/// let sum: i32 = a.iter()
|
|
/// .map(|x| *x)
|
|
/// .inspect(|&x| println!("filtering {}", x))
|
|
/// .filter(|&x| x % 2 == 0)
|
|
/// .inspect(|&x| println!("{} made it through", x))
|
|
/// .fold(0, |sum, i| sum + i);
|
|
/// println!("{}", sum);
|
|
/// ```
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn inspect<F>(self, f: F) -> Inspect<Self, F> where
|
|
Self: Sized, F: FnMut(&Self::Item),
|
|
{
|
|
Inspect{iter: self, f: f}
|
|
}
|
|
|
|
/// Creates a wrapper around a mutable reference to the iterator.
|
|
///
|
|
/// This is useful to allow applying iterator adaptors while still
|
|
/// retaining ownership of the original iterator value.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let mut it = 0..10;
|
|
/// // sum the first five values
|
|
/// let partial_sum = it.by_ref().take(5).fold(0, |a, b| a + b);
|
|
/// assert_eq!(partial_sum, 10);
|
|
/// assert_eq!(it.next(), Some(5));
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn by_ref(&mut self) -> &mut Self where Self: Sized { self }
|
|
|
|
/// Loops through the entire iterator, collecting all of the elements into
|
|
/// a container implementing `FromIterator`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let expected = [1, 2, 3, 4, 5];
|
|
/// let actual: Vec<_> = expected.iter().cloned().collect();
|
|
/// assert_eq!(actual, expected);
|
|
/// ```
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn collect<B: FromIterator<Self::Item>>(self) -> B where Self: Sized {
|
|
FromIterator::from_iter(self)
|
|
}
|
|
|
|
/// Loops through the entire iterator, collecting all of the elements into
|
|
/// one of two containers, depending on a predicate. The elements of the
|
|
/// first container satisfy the predicate, while the elements of the second
|
|
/// do not.
|
|
///
|
|
/// ```
|
|
/// let vec = vec![1, 2, 3, 4];
|
|
/// let (even, odd): (Vec<_>, Vec<_>) = vec.into_iter().partition(|&n| n % 2 == 0);
|
|
/// assert_eq!(even, [2, 4]);
|
|
/// assert_eq!(odd, [1, 3]);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn partition<B, F>(self, mut f: F) -> (B, B) where
|
|
Self: Sized,
|
|
B: Default + Extend<Self::Item>,
|
|
F: FnMut(&Self::Item) -> bool
|
|
{
|
|
let mut left: B = Default::default();
|
|
let mut right: B = Default::default();
|
|
|
|
for x in self {
|
|
if f(&x) {
|
|
left.extend(Some(x))
|
|
} else {
|
|
right.extend(Some(x))
|
|
}
|
|
}
|
|
|
|
(left, right)
|
|
}
|
|
|
|
/// Performs a fold operation over the entire iterator, returning the
|
|
/// eventual state at the end of the iteration.
|
|
///
|
|
/// This operation is sometimes called 'reduce' or 'inject'.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let a = [1, 2, 3, 4, 5];
|
|
/// assert_eq!(a.iter().fold(0, |acc, &item| acc + item), 15);
|
|
/// ```
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn fold<B, F>(self, init: B, mut f: F) -> B where
|
|
Self: Sized, F: FnMut(B, Self::Item) -> B,
|
|
{
|
|
let mut accum = init;
|
|
for x in self {
|
|
accum = f(accum, x);
|
|
}
|
|
accum
|
|
}
|
|
|
|
/// Tests whether the predicate holds true for all elements in the iterator.
|
|
///
|
|
/// Does not consume the iterator past the first non-matching element.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let a = [1, 2, 3, 4, 5];
|
|
/// assert!(a.iter().all(|x| *x > 0));
|
|
/// assert!(!a.iter().all(|x| *x > 2));
|
|
/// ```
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn all<F>(&mut self, mut f: F) -> bool where
|
|
Self: Sized, F: FnMut(Self::Item) -> bool
|
|
{
|
|
for x in self {
|
|
if !f(x) {
|
|
return false;
|
|
}
|
|
}
|
|
true
|
|
}
|
|
|
|
/// Tests whether any element of an iterator satisfies the specified
|
|
/// predicate.
|
|
///
|
|
/// Does not consume the iterator past the first found element.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let a = [1, 2, 3, 4, 5];
|
|
/// let mut it = a.iter();
|
|
/// assert!(it.any(|x| *x == 3));
|
|
/// assert_eq!(it.collect::<Vec<_>>(), [&4, &5]);
|
|
/// ```
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn any<F>(&mut self, mut f: F) -> bool where
|
|
Self: Sized,
|
|
F: FnMut(Self::Item) -> bool
|
|
{
|
|
for x in self {
|
|
if f(x) {
|
|
return true;
|
|
}
|
|
}
|
|
false
|
|
}
|
|
|
|
/// Returns the first element satisfying the specified predicate.
|
|
///
|
|
/// Does not consume the iterator past the first found element.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let a = [1, 2, 3, 4, 5];
|
|
/// let mut it = a.iter();
|
|
/// assert_eq!(it.find(|&x| *x == 3), Some(&3));
|
|
/// assert_eq!(it.collect::<Vec<_>>(), [&4, &5]);
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn find<P>(&mut self, mut predicate: P) -> Option<Self::Item> where
|
|
Self: Sized,
|
|
P: FnMut(&Self::Item) -> bool,
|
|
{
|
|
for x in self {
|
|
if predicate(&x) { return Some(x) }
|
|
}
|
|
None
|
|
}
|
|
|
|
/// Returns the index of the first element satisfying the specified predicate
|
|
///
|
|
/// Does not consume the iterator past the first found element.
|
|
///
|
|
/// # Overflow Behavior
|
|
///
|
|
/// The method does no guarding against overflows, so if there are more
|
|
/// than `usize::MAX` non-matching elements, it either produces the wrong
|
|
/// result or panics. If debug assertions are enabled, a panic is
|
|
/// guaranteed.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// This functions might panic if the iterator has more than `usize::MAX`
|
|
/// non-matching elements.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let a = [1, 2, 3, 4, 5];
|
|
/// let mut it = a.iter();
|
|
/// assert_eq!(it.position(|x| *x == 3), Some(2));
|
|
/// assert_eq!(it.collect::<Vec<_>>(), [&4, &5]);
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn position<P>(&mut self, mut predicate: P) -> Option<usize> where
|
|
Self: Sized,
|
|
P: FnMut(Self::Item) -> bool,
|
|
{
|
|
// `enumerate` might overflow.
|
|
for (i, x) in self.enumerate() {
|
|
if predicate(x) {
|
|
return Some(i);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
/// Returns the index of the last element satisfying the specified predicate
|
|
///
|
|
/// If no element matches, `None` is returned.
|
|
///
|
|
/// Does not consume the iterator *before* the first found element.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let a = [1, 2, 2, 4, 5];
|
|
/// let mut it = a.iter();
|
|
/// assert_eq!(it.rposition(|x| *x == 2), Some(2));
|
|
/// assert_eq!(it.collect::<Vec<_>>(), [&1, &2]);
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn rposition<P>(&mut self, mut predicate: P) -> Option<usize> where
|
|
P: FnMut(Self::Item) -> bool,
|
|
Self: Sized + ExactSizeIterator + DoubleEndedIterator
|
|
{
|
|
let mut i = self.len();
|
|
|
|
while let Some(v) = self.next_back() {
|
|
if predicate(v) {
|
|
return Some(i - 1);
|
|
}
|
|
// No need for an overflow check here, because `ExactSizeIterator`
|
|
// implies that the number of elements fits into a `usize`.
|
|
i -= 1;
|
|
}
|
|
None
|
|
}
|
|
|
|
/// Consumes the entire iterator to return the maximum element.
|
|
///
|
|
/// Returns the rightmost element if the comparison determines two elements
|
|
/// to be equally maximum.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let a = [1, 2, 3, 4, 5];
|
|
/// assert_eq!(a.iter().max(), Some(&5));
|
|
/// ```
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn max(self) -> Option<Self::Item> where Self: Sized, Self::Item: Ord
|
|
{
|
|
select_fold1(self,
|
|
|_| (),
|
|
// switch to y even if it is only equal, to preserve
|
|
// stability.
|
|
|_, x, _, y| *x <= *y)
|
|
.map(|(_, x)| x)
|
|
}
|
|
|
|
/// Consumes the entire iterator to return the minimum element.
|
|
///
|
|
/// Returns the leftmost element if the comparison determines two elements
|
|
/// to be equally minimum.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let a = [1, 2, 3, 4, 5];
|
|
/// assert_eq!(a.iter().min(), Some(&1));
|
|
/// ```
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn min(self) -> Option<Self::Item> where Self: Sized, Self::Item: Ord
|
|
{
|
|
select_fold1(self,
|
|
|_| (),
|
|
// only switch to y if it is strictly smaller, to
|
|
// preserve stability.
|
|
|_, x, _, y| *x > *y)
|
|
.map(|(_, x)| x)
|
|
}
|
|
|
|
/// Returns the element that gives the maximum value from the
|
|
/// specified function.
|
|
///
|
|
/// Returns the rightmost element if the comparison determines two elements
|
|
/// to be equally maximum.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// #![feature(iter_cmp)]
|
|
///
|
|
/// let a = [-3_i32, 0, 1, 5, -10];
|
|
/// assert_eq!(*a.iter().max_by(|x| x.abs()).unwrap(), -10);
|
|
/// ```
|
|
#[inline]
|
|
#[unstable(feature = "iter_cmp",
|
|
reason = "may want to produce an Ordering directly; see #15311",
|
|
issue = "27724")]
|
|
fn max_by<B: Ord, F>(self, f: F) -> Option<Self::Item> where
|
|
Self: Sized,
|
|
F: FnMut(&Self::Item) -> B,
|
|
{
|
|
select_fold1(self,
|
|
f,
|
|
// switch to y even if it is only equal, to preserve
|
|
// stability.
|
|
|x_p, _, y_p, _| x_p <= y_p)
|
|
.map(|(_, x)| x)
|
|
}
|
|
|
|
/// Returns the element that gives the minimum value from the
|
|
/// specified function.
|
|
///
|
|
/// Returns the leftmost element if the comparison determines two elements
|
|
/// to be equally minimum.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// #![feature(iter_cmp)]
|
|
///
|
|
/// let a = [-3_i32, 0, 1, 5, -10];
|
|
/// assert_eq!(*a.iter().min_by(|x| x.abs()).unwrap(), 0);
|
|
/// ```
|
|
#[inline]
|
|
#[unstable(feature = "iter_cmp",
|
|
reason = "may want to produce an Ordering directly; see #15311",
|
|
issue = "27724")]
|
|
fn min_by<B: Ord, F>(self, f: F) -> Option<Self::Item> where
|
|
Self: Sized,
|
|
F: FnMut(&Self::Item) -> B,
|
|
{
|
|
select_fold1(self,
|
|
f,
|
|
// only switch to y if it is strictly smaller, to
|
|
// preserve stability.
|
|
|x_p, _, y_p, _| x_p > y_p)
|
|
.map(|(_, x)| x)
|
|
}
|
|
|
|
/// Change the direction of the iterator
|
|
///
|
|
/// The flipped iterator swaps the ends on an iterator that can already
|
|
/// be iterated from the front and from the back.
|
|
///
|
|
///
|
|
/// If the iterator also implements RandomAccessIterator, the flipped
|
|
/// iterator is also random access, with the indices starting at the back
|
|
/// of the original iterator.
|
|
///
|
|
/// Note: Random access with flipped indices still only applies to the first
|
|
/// `std::usize::MAX` elements of the original iterator.
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn rev(self) -> Rev<Self> where Self: Sized + DoubleEndedIterator {
|
|
Rev{iter: self}
|
|
}
|
|
|
|
/// Converts an iterator of pairs into a pair of containers.
|
|
///
|
|
/// Loops through the entire iterator, collecting the first component of
|
|
/// each item into one new container, and the second component into another.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let a = [(1, 2), (3, 4)];
|
|
/// let (left, right): (Vec<_>, Vec<_>) = a.iter().cloned().unzip();
|
|
/// assert_eq!(left, [1, 3]);
|
|
/// assert_eq!(right, [2, 4]);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB) where
|
|
FromA: Default + Extend<A>,
|
|
FromB: Default + Extend<B>,
|
|
Self: Sized + Iterator<Item=(A, B)>,
|
|
{
|
|
struct SizeHint<A>(usize, Option<usize>, marker::PhantomData<A>);
|
|
impl<A> Iterator for SizeHint<A> {
|
|
type Item = A;
|
|
|
|
fn next(&mut self) -> Option<A> { None }
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
(self.0, self.1)
|
|
}
|
|
}
|
|
|
|
let (lo, hi) = self.size_hint();
|
|
let mut ts: FromA = Default::default();
|
|
let mut us: FromB = Default::default();
|
|
|
|
ts.extend(SizeHint(lo, hi, marker::PhantomData));
|
|
us.extend(SizeHint(lo, hi, marker::PhantomData));
|
|
|
|
for (t, u) in self {
|
|
ts.extend(Some(t));
|
|
us.extend(Some(u));
|
|
}
|
|
|
|
(ts, us)
|
|
}
|
|
|
|
/// Creates an iterator that clones the elements it yields.
|
|
///
|
|
/// This is useful for converting an `Iterator<&T>` to an`Iterator<T>`,
|
|
/// so it's a more convenient form of `map(|&x| x)`.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let a = [0, 1, 2];
|
|
/// let v_cloned: Vec<_> = a.iter().cloned().collect();
|
|
/// let v_map: Vec<_> = a.iter().map(|&x| x).collect();
|
|
/// assert_eq!(v_cloned, v_map);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn cloned<'a, T: 'a>(self) -> Cloned<Self>
|
|
where Self: Sized + Iterator<Item=&'a T>, T: Clone
|
|
{
|
|
Cloned { it: self }
|
|
}
|
|
|
|
/// Repeats an iterator endlessly
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// let a = [1, 2];
|
|
/// let mut it = a.iter().cycle();
|
|
/// assert_eq!(it.next(), Some(&1));
|
|
/// assert_eq!(it.next(), Some(&2));
|
|
/// assert_eq!(it.next(), Some(&1));
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[inline]
|
|
fn cycle(self) -> Cycle<Self> where Self: Sized + Clone {
|
|
Cycle{orig: self.clone(), iter: self}
|
|
}
|
|
|
|
/// Iterates over the entire iterator, summing up all the elements
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// #![feature(iter_arith)]
|
|
///
|
|
/// let a = [1, 2, 3, 4, 5];
|
|
/// let it = a.iter();
|
|
/// assert_eq!(it.sum::<i32>(), 15);
|
|
/// ```
|
|
#[unstable(feature = "iter_arith", reason = "bounds recently changed",
|
|
issue = "27739")]
|
|
fn sum<S=<Self as Iterator>::Item>(self) -> S where
|
|
S: Add<Self::Item, Output=S> + Zero,
|
|
Self: Sized,
|
|
{
|
|
self.fold(Zero::zero(), |s, e| s + e)
|
|
}
|
|
|
|
/// Iterates over the entire iterator, multiplying all the elements
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// #![feature(iter_arith)]
|
|
///
|
|
/// fn factorial(n: u32) -> u32 {
|
|
/// (1..).take_while(|&i| i <= n).product()
|
|
/// }
|
|
/// assert_eq!(factorial(0), 1);
|
|
/// assert_eq!(factorial(1), 1);
|
|
/// assert_eq!(factorial(5), 120);
|
|
/// ```
|
|
#[unstable(feature="iter_arith", reason = "bounds recently changed",
|
|
issue = "27739")]
|
|
fn product<P=<Self as Iterator>::Item>(self) -> P where
|
|
P: Mul<Self::Item, Output=P> + One,
|
|
Self: Sized,
|
|
{
|
|
self.fold(One::one(), |p, e| p * e)
|
|
}
|
|
|
|
/// Lexicographically compares the elements of this `Iterator` with those
|
|
/// of another.
|
|
#[unstable(feature = "iter_order", reason = "needs review and revision", issue = "27737")]
|
|
fn cmp<I>(mut self, other: I) -> Ordering where
|
|
I: IntoIterator<Item = Self::Item>,
|
|
Self::Item: Ord,
|
|
Self: Sized,
|
|
{
|
|
let mut other = other.into_iter();
|
|
|
|
loop {
|
|
match (self.next(), other.next()) {
|
|
(None, None) => return Ordering::Equal,
|
|
(None, _ ) => return Ordering::Less,
|
|
(_ , None) => return Ordering::Greater,
|
|
(Some(x), Some(y)) => match x.cmp(&y) {
|
|
Ordering::Equal => (),
|
|
non_eq => return non_eq,
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Lexicographically compares the elements of this `Iterator` with those
|
|
/// of another.
|
|
#[unstable(feature = "iter_order", reason = "needs review and revision", issue = "27737")]
|
|
fn partial_cmp<I>(mut self, other: I) -> Option<Ordering> where
|
|
I: IntoIterator,
|
|
Self::Item: PartialOrd<I::Item>,
|
|
Self: Sized,
|
|
{
|
|
let mut other = other.into_iter();
|
|
|
|
loop {
|
|
match (self.next(), other.next()) {
|
|
(None, None) => return Some(Ordering::Equal),
|
|
(None, _ ) => return Some(Ordering::Less),
|
|
(_ , None) => return Some(Ordering::Greater),
|
|
(Some(x), Some(y)) => match x.partial_cmp(&y) {
|
|
Some(Ordering::Equal) => (),
|
|
non_eq => return non_eq,
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Determines if the elements of this `Iterator` are equal to those of
|
|
/// another.
|
|
#[unstable(feature = "iter_order", reason = "needs review and revision", issue = "27737")]
|
|
fn eq<I>(mut self, other: I) -> bool where
|
|
I: IntoIterator,
|
|
Self::Item: PartialEq<I::Item>,
|
|
Self: Sized,
|
|
{
|
|
let mut other = other.into_iter();
|
|
|
|
loop {
|
|
match (self.next(), other.next()) {
|
|
(None, None) => return true,
|
|
(None, _) | (_, None) => return false,
|
|
(Some(x), Some(y)) => if x != y { return false },
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Determines if the elements of this `Iterator` are unequal to those of
|
|
/// another.
|
|
#[unstable(feature = "iter_order", reason = "needs review and revision", issue = "27737")]
|
|
fn ne<I>(mut self, other: I) -> bool where
|
|
I: IntoIterator,
|
|
Self::Item: PartialEq<I::Item>,
|
|
Self: Sized,
|
|
{
|
|
let mut other = other.into_iter();
|
|
|
|
loop {
|
|
match (self.next(), other.next()) {
|
|
(None, None) => return false,
|
|
(None, _) | (_, None) => return true,
|
|
(Some(x), Some(y)) => if x.ne(&y) { return true },
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Determines if the elements of this `Iterator` are lexicographically
|
|
/// less than those of another.
|
|
#[unstable(feature = "iter_order", reason = "needs review and revision", issue = "27737")]
|
|
fn lt<I>(mut self, other: I) -> bool where
|
|
I: IntoIterator,
|
|
Self::Item: PartialOrd<I::Item>,
|
|
Self: Sized,
|
|
{
|
|
let mut other = other.into_iter();
|
|
|
|
loop {
|
|
match (self.next(), other.next()) {
|
|
(None, None) => return false,
|
|
(None, _ ) => return true,
|
|
(_ , None) => return false,
|
|
(Some(x), Some(y)) => {
|
|
match x.partial_cmp(&y) {
|
|
Some(Ordering::Less) => return true,
|
|
Some(Ordering::Equal) => {}
|
|
Some(Ordering::Greater) => return false,
|
|
None => return false,
|
|
}
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Determines if the elements of this `Iterator` are lexicographically
|
|
/// less or equal to those of another.
|
|
#[unstable(feature = "iter_order", reason = "needs review and revision", issue = "27737")]
|
|
fn le<I>(mut self, other: I) -> bool where
|
|
I: IntoIterator,
|
|
Self::Item: PartialOrd<I::Item>,
|
|
Self: Sized,
|
|
{
|
|
let mut other = other.into_iter();
|
|
|
|
loop {
|
|
match (self.next(), other.next()) {
|
|
(None, None) => return true,
|
|
(None, _ ) => return true,
|
|
(_ , None) => return false,
|
|
(Some(x), Some(y)) => {
|
|
match x.partial_cmp(&y) {
|
|
Some(Ordering::Less) => return true,
|
|
Some(Ordering::Equal) => {}
|
|
Some(Ordering::Greater) => return false,
|
|
None => return false,
|
|
}
|
|
},
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Determines if the elements of this `Iterator` are lexicographically
|
|
/// greater than those of another.
|
|
#[unstable(feature = "iter_order", reason = "needs review and revision", issue = "27737")]
|
|
fn gt<I>(mut self, other: I) -> bool where
|
|
I: IntoIterator,
|
|
Self::Item: PartialOrd<I::Item>,
|
|
Self: Sized,
|
|
{
|
|
let mut other = other.into_iter();
|
|
|
|
loop {
|
|
match (self.next(), other.next()) {
|
|
(None, None) => return false,
|
|
(None, _ ) => return false,
|
|
(_ , None) => return true,
|
|
(Some(x), Some(y)) => {
|
|
match x.partial_cmp(&y) {
|
|
Some(Ordering::Less) => return false,
|
|
Some(Ordering::Equal) => {}
|
|
Some(Ordering::Greater) => return true,
|
|
None => return false,
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Determines if the elements of this `Iterator` are lexicographically
|
|
/// greater than or equal to those of another.
|
|
#[unstable(feature = "iter_order", reason = "needs review and revision", issue = "27737")]
|
|
fn ge<I>(mut self, other: I) -> bool where
|
|
I: IntoIterator,
|
|
Self::Item: PartialOrd<I::Item>,
|
|
Self: Sized,
|
|
{
|
|
let mut other = other.into_iter();
|
|
|
|
loop {
|
|
match (self.next(), other.next()) {
|
|
(None, None) => return true,
|
|
(None, _ ) => return false,
|
|
(_ , None) => return true,
|
|
(Some(x), Some(y)) => {
|
|
match x.partial_cmp(&y) {
|
|
Some(Ordering::Less) => return false,
|
|
Some(Ordering::Equal) => {}
|
|
Some(Ordering::Greater) => return true,
|
|
None => return false,
|
|
}
|
|
},
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Select an element from an iterator based on the given projection
|
|
/// and "comparison" function.
|
|
///
|
|
/// This is an idiosyncratic helper to try to factor out the
|
|
/// commonalities of {max,min}{,_by}. In particular, this avoids
|
|
/// having to implement optimizations several times.
|
|
#[inline]
|
|
fn select_fold1<I,B, FProj, FCmp>(mut it: I,
|
|
mut f_proj: FProj,
|
|
mut f_cmp: FCmp) -> Option<(B, I::Item)>
|
|
where I: Iterator,
|
|
FProj: FnMut(&I::Item) -> B,
|
|
FCmp: FnMut(&B, &I::Item, &B, &I::Item) -> bool
|
|
{
|
|
// start with the first element as our selection. This avoids
|
|
// having to use `Option`s inside the loop, translating to a
|
|
// sizeable performance gain (6x in one case).
|
|
it.next().map(|mut sel| {
|
|
let mut sel_p = f_proj(&sel);
|
|
|
|
for x in it {
|
|
let x_p = f_proj(&x);
|
|
if f_cmp(&sel_p, &sel, &x_p, &x) {
|
|
sel = x;
|
|
sel_p = x_p;
|
|
}
|
|
}
|
|
(sel_p, sel)
|
|
})
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<'a, I: Iterator + ?Sized> Iterator for &'a mut I {
|
|
type Item = I::Item;
|
|
fn next(&mut self) -> Option<I::Item> { (**self).next() }
|
|
fn size_hint(&self) -> (usize, Option<usize>) { (**self).size_hint() }
|
|
}
|
|
|
|
/// Conversion from an `Iterator`
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[rustc_on_unimplemented="a collection of type `{Self}` cannot be \
|
|
built from an iterator over elements of type `{A}`"]
|
|
pub trait FromIterator<A> {
|
|
/// Builds a container with elements from something iterable.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// use std::collections::HashSet;
|
|
/// use std::iter::FromIterator;
|
|
///
|
|
/// let colors_vec = vec!["red", "red", "yellow", "blue"];
|
|
/// let colors_set = HashSet::<&str>::from_iter(colors_vec);
|
|
/// assert_eq!(colors_set.len(), 3);
|
|
/// ```
|
|
///
|
|
/// `FromIterator` is more commonly used implicitly via the
|
|
/// `Iterator::collect` method:
|
|
///
|
|
/// ```
|
|
/// use std::collections::HashSet;
|
|
///
|
|
/// let colors_vec = vec!["red", "red", "yellow", "blue"];
|
|
/// let colors_set = colors_vec.into_iter().collect::<HashSet<&str>>();
|
|
/// assert_eq!(colors_set.len(), 3);
|
|
/// ```
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn from_iter<T: IntoIterator<Item=A>>(iterator: T) -> Self;
|
|
}
|
|
|
|
/// Conversion into an `Iterator`
|
|
///
|
|
/// Implementing this trait allows you to use your type with Rust's `for` loop. See
|
|
/// the [module level documentation](index.html) for more details.
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub trait IntoIterator {
|
|
/// The type of the elements being iterated
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
type Item;
|
|
|
|
/// A container for iterating over elements of type `Item`
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
type IntoIter: Iterator<Item=Self::Item>;
|
|
|
|
/// Consumes `Self` and returns an iterator over it
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn into_iter(self) -> Self::IntoIter;
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<I: Iterator> IntoIterator for I {
|
|
type Item = I::Item;
|
|
type IntoIter = I;
|
|
|
|
fn into_iter(self) -> I {
|
|
self
|
|
}
|
|
}
|
|
|
|
/// A type growable from an `Iterator` implementation
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub trait Extend<A> {
|
|
/// Extends a container with the elements yielded by an arbitrary iterator
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn extend<T: IntoIterator<Item=A>>(&mut self, iterable: T);
|
|
}
|
|
|
|
/// A range iterator able to yield elements from both ends
|
|
///
|
|
/// A `DoubleEndedIterator` can be thought of as a deque in that `next()` and
|
|
/// `next_back()` exhaust elements from the *same* range, and do not work
|
|
/// independently of each other.
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub trait DoubleEndedIterator: Iterator {
|
|
/// Yields an element from the end of the range, returning `None` if the
|
|
/// range is empty.
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
fn next_back(&mut self) -> Option<Self::Item>;
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<'a, I: DoubleEndedIterator + ?Sized> DoubleEndedIterator for &'a mut I {
|
|
fn next_back(&mut self) -> Option<I::Item> { (**self).next_back() }
|
|
}
|
|
|
|
/// An iterator that knows its exact length
|
|
///
|
|
/// This trait is a helper for iterators like the vector iterator, so that
|
|
/// it can support double-ended enumeration.
|
|
///
|
|
/// `Iterator::size_hint` *must* return the exact size of the iterator.
|
|
/// Note that the size must fit in `usize`.
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub trait ExactSizeIterator: Iterator {
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
/// Returns the exact length of the iterator.
|
|
fn len(&self) -> usize {
|
|
let (lower, upper) = self.size_hint();
|
|
// Note: This assertion is overly defensive, but it checks the invariant
|
|
// guaranteed by the trait. If this trait were rust-internal,
|
|
// we could use debug_assert!; assert_eq! will check all Rust user
|
|
// implementations too.
|
|
assert_eq!(upper, Some(lower));
|
|
lower
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<'a, I: ExactSizeIterator + ?Sized> ExactSizeIterator for &'a mut I {}
|
|
|
|
// All adaptors that preserve the size of the wrapped iterator are fine
|
|
// Adaptors that may overflow in `size_hint` are not, i.e. `Chain`.
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<I> ExactSizeIterator for Enumerate<I> where I: ExactSizeIterator {}
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<I: ExactSizeIterator, F> ExactSizeIterator for Inspect<I, F> where
|
|
F: FnMut(&I::Item),
|
|
{}
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<I> ExactSizeIterator for Rev<I>
|
|
where I: ExactSizeIterator + DoubleEndedIterator {}
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<B, I: ExactSizeIterator, F> ExactSizeIterator for Map<I, F> where
|
|
F: FnMut(I::Item) -> B,
|
|
{}
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<A, B> ExactSizeIterator for Zip<A, B>
|
|
where A: ExactSizeIterator, B: ExactSizeIterator {}
|
|
|
|
/// An double-ended iterator with the direction inverted
|
|
#[derive(Clone)]
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub struct Rev<T> {
|
|
iter: T
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<I> Iterator for Rev<I> where I: DoubleEndedIterator {
|
|
type Item = <I as Iterator>::Item;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<<I as Iterator>::Item> { self.iter.next_back() }
|
|
#[inline]
|
|
fn size_hint(&self) -> (usize, Option<usize>) { self.iter.size_hint() }
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<I> DoubleEndedIterator for Rev<I> where I: DoubleEndedIterator {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<<I as Iterator>::Item> { self.iter.next() }
|
|
}
|
|
|
|
/// An iterator that clones the elements of an underlying iterator
|
|
#[stable(feature = "iter_cloned", since = "1.1.0")]
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
#[derive(Clone)]
|
|
pub struct Cloned<I> {
|
|
it: I,
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<'a, I, T: 'a> Iterator for Cloned<I>
|
|
where I: Iterator<Item=&'a T>, T: Clone
|
|
{
|
|
type Item = T;
|
|
|
|
fn next(&mut self) -> Option<T> {
|
|
self.it.next().cloned()
|
|
}
|
|
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
self.it.size_hint()
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<'a, I, T: 'a> DoubleEndedIterator for Cloned<I>
|
|
where I: DoubleEndedIterator<Item=&'a T>, T: Clone
|
|
{
|
|
fn next_back(&mut self) -> Option<T> {
|
|
self.it.next_back().cloned()
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<'a, I, T: 'a> ExactSizeIterator for Cloned<I>
|
|
where I: ExactSizeIterator<Item=&'a T>, T: Clone
|
|
{}
|
|
|
|
/// An iterator that repeats endlessly
|
|
#[derive(Clone)]
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub struct Cycle<I> {
|
|
orig: I,
|
|
iter: I,
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<I> Iterator for Cycle<I> where I: Clone + Iterator {
|
|
type Item = <I as Iterator>::Item;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<<I as Iterator>::Item> {
|
|
match self.iter.next() {
|
|
None => { self.iter = self.orig.clone(); self.iter.next() }
|
|
y => y
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
// the cycle iterator is either empty or infinite
|
|
match self.orig.size_hint() {
|
|
sz @ (0, Some(0)) => sz,
|
|
(0, _) => (0, None),
|
|
_ => (usize::MAX, None)
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An iterator that strings two iterators together
|
|
#[derive(Clone)]
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub struct Chain<A, B> {
|
|
a: A,
|
|
b: B,
|
|
state: ChainState,
|
|
}
|
|
|
|
// The iterator protocol specifies that iteration ends with the return value
|
|
// `None` from `.next()` (or `.next_back()`) and it is unspecified what
|
|
// further calls return. The chain adaptor must account for this since it uses
|
|
// two subiterators.
|
|
//
|
|
// It uses three states:
|
|
//
|
|
// - Both: `a` and `b` are remaining
|
|
// - Front: `a` remaining
|
|
// - Back: `b` remaining
|
|
//
|
|
// The fourth state (neither iterator is remaining) only occurs after Chain has
|
|
// returned None once, so we don't need to store this state.
|
|
#[derive(Clone)]
|
|
enum ChainState {
|
|
// both front and back iterator are remaining
|
|
Both,
|
|
// only front is remaining
|
|
Front,
|
|
// only back is remaining
|
|
Back,
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<A, B> Iterator for Chain<A, B> where
|
|
A: Iterator,
|
|
B: Iterator<Item = A::Item>
|
|
{
|
|
type Item = A::Item;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A::Item> {
|
|
match self.state {
|
|
ChainState::Both => match self.a.next() {
|
|
elt @ Some(..) => elt,
|
|
None => {
|
|
self.state = ChainState::Back;
|
|
self.b.next()
|
|
}
|
|
},
|
|
ChainState::Front => self.a.next(),
|
|
ChainState::Back => self.b.next(),
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn count(self) -> usize {
|
|
match self.state {
|
|
ChainState::Both => self.a.count() + self.b.count(),
|
|
ChainState::Front => self.a.count(),
|
|
ChainState::Back => self.b.count(),
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn nth(&mut self, mut n: usize) -> Option<A::Item> {
|
|
match self.state {
|
|
ChainState::Both | ChainState::Front => {
|
|
for x in self.a.by_ref() {
|
|
if n == 0 {
|
|
return Some(x)
|
|
}
|
|
n -= 1;
|
|
}
|
|
if let ChainState::Both = self.state {
|
|
self.state = ChainState::Back;
|
|
}
|
|
}
|
|
ChainState::Back => {}
|
|
}
|
|
if let ChainState::Back = self.state {
|
|
self.b.nth(n)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn last(self) -> Option<A::Item> {
|
|
match self.state {
|
|
ChainState::Both => {
|
|
// Must exhaust a before b.
|
|
let a_last = self.a.last();
|
|
let b_last = self.b.last();
|
|
b_last.or(a_last)
|
|
},
|
|
ChainState::Front => self.a.last(),
|
|
ChainState::Back => self.b.last()
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
let (a_lower, a_upper) = self.a.size_hint();
|
|
let (b_lower, b_upper) = self.b.size_hint();
|
|
|
|
let lower = a_lower.saturating_add(b_lower);
|
|
|
|
let upper = match (a_upper, b_upper) {
|
|
(Some(x), Some(y)) => x.checked_add(y),
|
|
_ => None
|
|
};
|
|
|
|
(lower, upper)
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<A, B> DoubleEndedIterator for Chain<A, B> where
|
|
A: DoubleEndedIterator,
|
|
B: DoubleEndedIterator<Item=A::Item>,
|
|
{
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<A::Item> {
|
|
match self.state {
|
|
ChainState::Both => match self.b.next_back() {
|
|
elt @ Some(..) => elt,
|
|
None => {
|
|
self.state = ChainState::Front;
|
|
self.a.next_back()
|
|
}
|
|
},
|
|
ChainState::Front => self.a.next_back(),
|
|
ChainState::Back => self.b.next_back(),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An iterator that iterates two other iterators simultaneously
|
|
#[derive(Clone)]
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub struct Zip<A, B> {
|
|
a: A,
|
|
b: B
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<A, B> Iterator for Zip<A, B> where A: Iterator, B: Iterator
|
|
{
|
|
type Item = (A::Item, B::Item);
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<(A::Item, B::Item)> {
|
|
self.a.next().and_then(|x| {
|
|
self.b.next().and_then(|y| {
|
|
Some((x, y))
|
|
})
|
|
})
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
let (a_lower, a_upper) = self.a.size_hint();
|
|
let (b_lower, b_upper) = self.b.size_hint();
|
|
|
|
let lower = cmp::min(a_lower, b_lower);
|
|
|
|
let upper = match (a_upper, b_upper) {
|
|
(Some(x), Some(y)) => Some(cmp::min(x,y)),
|
|
(Some(x), None) => Some(x),
|
|
(None, Some(y)) => Some(y),
|
|
(None, None) => None
|
|
};
|
|
|
|
(lower, upper)
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<A, B> DoubleEndedIterator for Zip<A, B> where
|
|
A: DoubleEndedIterator + ExactSizeIterator,
|
|
B: DoubleEndedIterator + ExactSizeIterator,
|
|
{
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<(A::Item, B::Item)> {
|
|
let a_sz = self.a.len();
|
|
let b_sz = self.b.len();
|
|
if a_sz != b_sz {
|
|
// Adjust a, b to equal length
|
|
if a_sz > b_sz {
|
|
for _ in 0..a_sz - b_sz { self.a.next_back(); }
|
|
} else {
|
|
for _ in 0..b_sz - a_sz { self.b.next_back(); }
|
|
}
|
|
}
|
|
match (self.a.next_back(), self.b.next_back()) {
|
|
(Some(x), Some(y)) => Some((x, y)),
|
|
(None, None) => None,
|
|
_ => unreachable!(),
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An iterator that maps the values of `iter` with `f`
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[derive(Clone)]
|
|
pub struct Map<I, F> {
|
|
iter: I,
|
|
f: F,
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<B, I: Iterator, F> Iterator for Map<I, F> where F: FnMut(I::Item) -> B {
|
|
type Item = B;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<B> {
|
|
self.iter.next().map(&mut self.f)
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
self.iter.size_hint()
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<B, I: DoubleEndedIterator, F> DoubleEndedIterator for Map<I, F> where
|
|
F: FnMut(I::Item) -> B,
|
|
{
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<B> {
|
|
self.iter.next_back().map(&mut self.f)
|
|
}
|
|
}
|
|
|
|
/// An iterator that filters the elements of `iter` with `predicate`
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[derive(Clone)]
|
|
pub struct Filter<I, P> {
|
|
iter: I,
|
|
predicate: P,
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<I: Iterator, P> Iterator for Filter<I, P> where P: FnMut(&I::Item) -> bool {
|
|
type Item = I::Item;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<I::Item> {
|
|
for x in self.iter.by_ref() {
|
|
if (self.predicate)(&x) {
|
|
return Some(x);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
let (_, upper) = self.iter.size_hint();
|
|
(0, upper) // can't know a lower bound, due to the predicate
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<I: DoubleEndedIterator, P> DoubleEndedIterator for Filter<I, P>
|
|
where P: FnMut(&I::Item) -> bool,
|
|
{
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<I::Item> {
|
|
for x in self.iter.by_ref().rev() {
|
|
if (self.predicate)(&x) {
|
|
return Some(x);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
}
|
|
|
|
/// An iterator that uses `f` to both filter and map elements from `iter`
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[derive(Clone)]
|
|
pub struct FilterMap<I, F> {
|
|
iter: I,
|
|
f: F,
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<B, I: Iterator, F> Iterator for FilterMap<I, F>
|
|
where F: FnMut(I::Item) -> Option<B>,
|
|
{
|
|
type Item = B;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<B> {
|
|
for x in self.iter.by_ref() {
|
|
if let Some(y) = (self.f)(x) {
|
|
return Some(y);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
let (_, upper) = self.iter.size_hint();
|
|
(0, upper) // can't know a lower bound, due to the predicate
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<B, I: DoubleEndedIterator, F> DoubleEndedIterator for FilterMap<I, F>
|
|
where F: FnMut(I::Item) -> Option<B>,
|
|
{
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<B> {
|
|
for x in self.iter.by_ref().rev() {
|
|
if let Some(y) = (self.f)(x) {
|
|
return Some(y);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
}
|
|
|
|
/// An iterator that yields the current count and the element during iteration
|
|
#[derive(Clone)]
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub struct Enumerate<I> {
|
|
iter: I,
|
|
count: usize,
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<I> Iterator for Enumerate<I> where I: Iterator {
|
|
type Item = (usize, <I as Iterator>::Item);
|
|
|
|
/// # Overflow Behavior
|
|
///
|
|
/// The method does no guarding against overflows, so enumerating more than
|
|
/// `usize::MAX` elements either produces the wrong result or panics. If
|
|
/// debug assertions are enabled, a panic is guaranteed.
|
|
///
|
|
/// # Panics
|
|
///
|
|
/// Might panic if the index of the element overflows a `usize`.
|
|
#[inline]
|
|
fn next(&mut self) -> Option<(usize, <I as Iterator>::Item)> {
|
|
self.iter.next().map(|a| {
|
|
let ret = (self.count, a);
|
|
// Possible undefined overflow.
|
|
self.count += 1;
|
|
ret
|
|
})
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
self.iter.size_hint()
|
|
}
|
|
|
|
#[inline]
|
|
fn nth(&mut self, n: usize) -> Option<(usize, I::Item)> {
|
|
self.iter.nth(n).map(|a| {
|
|
let i = self.count + n;
|
|
self.count = i + 1;
|
|
(i, a)
|
|
})
|
|
}
|
|
|
|
#[inline]
|
|
fn count(self) -> usize {
|
|
self.iter.count()
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<I> DoubleEndedIterator for Enumerate<I> where
|
|
I: ExactSizeIterator + DoubleEndedIterator
|
|
{
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<(usize, <I as Iterator>::Item)> {
|
|
self.iter.next_back().map(|a| {
|
|
let len = self.iter.len();
|
|
// Can safely add, `ExactSizeIterator` promises that the number of
|
|
// elements fits into a `usize`.
|
|
(self.count + len, a)
|
|
})
|
|
}
|
|
}
|
|
|
|
/// An iterator with a `peek()` that returns an optional reference to the next element.
|
|
#[derive(Clone)]
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub struct Peekable<I: Iterator> {
|
|
iter: I,
|
|
peeked: Option<I::Item>,
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<I: Iterator> Iterator for Peekable<I> {
|
|
type Item = I::Item;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<I::Item> {
|
|
match self.peeked {
|
|
Some(_) => self.peeked.take(),
|
|
None => self.iter.next(),
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn count(self) -> usize {
|
|
(if self.peeked.is_some() { 1 } else { 0 }) + self.iter.count()
|
|
}
|
|
|
|
#[inline]
|
|
fn nth(&mut self, n: usize) -> Option<I::Item> {
|
|
match self.peeked {
|
|
Some(_) if n == 0 => self.peeked.take(),
|
|
Some(_) => {
|
|
self.peeked = None;
|
|
self.iter.nth(n-1)
|
|
},
|
|
None => self.iter.nth(n)
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn last(self) -> Option<I::Item> {
|
|
self.iter.last().or(self.peeked)
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
let (lo, hi) = self.iter.size_hint();
|
|
if self.peeked.is_some() {
|
|
let lo = lo.saturating_add(1);
|
|
let hi = hi.and_then(|x| x.checked_add(1));
|
|
(lo, hi)
|
|
} else {
|
|
(lo, hi)
|
|
}
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<I: ExactSizeIterator> ExactSizeIterator for Peekable<I> {}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<I: Iterator> Peekable<I> {
|
|
/// Returns a reference to the next element of the iterator with out
|
|
/// advancing it, or None if the iterator is exhausted.
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub fn peek(&mut self) -> Option<&I::Item> {
|
|
if self.peeked.is_none() {
|
|
self.peeked = self.iter.next();
|
|
}
|
|
match self.peeked {
|
|
Some(ref value) => Some(value),
|
|
None => None,
|
|
}
|
|
}
|
|
|
|
/// Checks whether peekable iterator is empty or not.
|
|
#[inline]
|
|
pub fn is_empty(&mut self) -> bool {
|
|
self.peek().is_none()
|
|
}
|
|
}
|
|
|
|
/// An iterator that rejects elements while `predicate` is true
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[derive(Clone)]
|
|
pub struct SkipWhile<I, P> {
|
|
iter: I,
|
|
flag: bool,
|
|
predicate: P,
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<I: Iterator, P> Iterator for SkipWhile<I, P>
|
|
where P: FnMut(&I::Item) -> bool
|
|
{
|
|
type Item = I::Item;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<I::Item> {
|
|
for x in self.iter.by_ref() {
|
|
if self.flag || !(self.predicate)(&x) {
|
|
self.flag = true;
|
|
return Some(x);
|
|
}
|
|
}
|
|
None
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
let (_, upper) = self.iter.size_hint();
|
|
(0, upper) // can't know a lower bound, due to the predicate
|
|
}
|
|
}
|
|
|
|
/// An iterator that only accepts elements while `predicate` is true
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[derive(Clone)]
|
|
pub struct TakeWhile<I, P> {
|
|
iter: I,
|
|
flag: bool,
|
|
predicate: P,
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<I: Iterator, P> Iterator for TakeWhile<I, P>
|
|
where P: FnMut(&I::Item) -> bool
|
|
{
|
|
type Item = I::Item;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<I::Item> {
|
|
if self.flag {
|
|
None
|
|
} else {
|
|
self.iter.next().and_then(|x| {
|
|
if (self.predicate)(&x) {
|
|
Some(x)
|
|
} else {
|
|
self.flag = true;
|
|
None
|
|
}
|
|
})
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
let (_, upper) = self.iter.size_hint();
|
|
(0, upper) // can't know a lower bound, due to the predicate
|
|
}
|
|
}
|
|
|
|
/// An iterator that skips over `n` elements of `iter`.
|
|
#[derive(Clone)]
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub struct Skip<I> {
|
|
iter: I,
|
|
n: usize
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<I> Iterator for Skip<I> where I: Iterator {
|
|
type Item = <I as Iterator>::Item;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<I::Item> {
|
|
if self.n == 0 {
|
|
self.iter.next()
|
|
} else {
|
|
let old_n = self.n;
|
|
self.n = 0;
|
|
self.iter.nth(old_n)
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn nth(&mut self, n: usize) -> Option<I::Item> {
|
|
// Can't just add n + self.n due to overflow.
|
|
if self.n == 0 {
|
|
self.iter.nth(n)
|
|
} else {
|
|
let to_skip = self.n;
|
|
self.n = 0;
|
|
// nth(n) skips n+1
|
|
if self.iter.nth(to_skip-1).is_none() {
|
|
return None;
|
|
}
|
|
self.iter.nth(n)
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn count(self) -> usize {
|
|
self.iter.count().saturating_sub(self.n)
|
|
}
|
|
|
|
#[inline]
|
|
fn last(mut self) -> Option<I::Item> {
|
|
if self.n == 0 {
|
|
self.iter.last()
|
|
} else {
|
|
let next = self.next();
|
|
if next.is_some() {
|
|
// recurse. n should be 0.
|
|
self.last().or(next)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
let (lower, upper) = self.iter.size_hint();
|
|
|
|
let lower = lower.saturating_sub(self.n);
|
|
let upper = upper.map(|x| x.saturating_sub(self.n));
|
|
|
|
(lower, upper)
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<I> ExactSizeIterator for Skip<I> where I: ExactSizeIterator {}
|
|
|
|
/// An iterator that only iterates over the first `n` iterations of `iter`.
|
|
#[derive(Clone)]
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub struct Take<I> {
|
|
iter: I,
|
|
n: usize
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<I> Iterator for Take<I> where I: Iterator{
|
|
type Item = <I as Iterator>::Item;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<<I as Iterator>::Item> {
|
|
if self.n != 0 {
|
|
self.n -= 1;
|
|
self.iter.next()
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn nth(&mut self, n: usize) -> Option<I::Item> {
|
|
if self.n > n {
|
|
self.n -= n + 1;
|
|
self.iter.nth(n)
|
|
} else {
|
|
if self.n > 0 {
|
|
self.iter.nth(self.n - 1);
|
|
self.n = 0;
|
|
}
|
|
None
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
let (lower, upper) = self.iter.size_hint();
|
|
|
|
let lower = cmp::min(lower, self.n);
|
|
|
|
let upper = match upper {
|
|
Some(x) if x < self.n => Some(x),
|
|
_ => Some(self.n)
|
|
};
|
|
|
|
(lower, upper)
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<I> ExactSizeIterator for Take<I> where I: ExactSizeIterator {}
|
|
|
|
|
|
/// An iterator to maintain state while iterating another iterator
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[derive(Clone)]
|
|
pub struct Scan<I, St, F> {
|
|
iter: I,
|
|
f: F,
|
|
state: St,
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<B, I, St, F> Iterator for Scan<I, St, F> where
|
|
I: Iterator,
|
|
F: FnMut(&mut St, I::Item) -> Option<B>,
|
|
{
|
|
type Item = B;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<B> {
|
|
self.iter.next().and_then(|a| (self.f)(&mut self.state, a))
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
let (_, upper) = self.iter.size_hint();
|
|
(0, upper) // can't know a lower bound, due to the scan function
|
|
}
|
|
}
|
|
|
|
/// An iterator that maps each element to an iterator,
|
|
/// and yields the elements of the produced iterators
|
|
///
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[derive(Clone)]
|
|
pub struct FlatMap<I, U: IntoIterator, F> {
|
|
iter: I,
|
|
f: F,
|
|
frontiter: Option<U::IntoIter>,
|
|
backiter: Option<U::IntoIter>,
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<I: Iterator, U: IntoIterator, F> Iterator for FlatMap<I, U, F>
|
|
where F: FnMut(I::Item) -> U,
|
|
{
|
|
type Item = U::Item;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<U::Item> {
|
|
loop {
|
|
if let Some(ref mut inner) = self.frontiter {
|
|
if let Some(x) = inner.by_ref().next() {
|
|
return Some(x)
|
|
}
|
|
}
|
|
match self.iter.next().map(&mut self.f) {
|
|
None => return self.backiter.as_mut().and_then(|it| it.next()),
|
|
next => self.frontiter = next.map(IntoIterator::into_iter),
|
|
}
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
let (flo, fhi) = self.frontiter.as_ref().map_or((0, Some(0)), |it| it.size_hint());
|
|
let (blo, bhi) = self.backiter.as_ref().map_or((0, Some(0)), |it| it.size_hint());
|
|
let lo = flo.saturating_add(blo);
|
|
match (self.iter.size_hint(), fhi, bhi) {
|
|
((0, Some(0)), Some(a), Some(b)) => (lo, a.checked_add(b)),
|
|
_ => (lo, None)
|
|
}
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<I: DoubleEndedIterator, U, F> DoubleEndedIterator for FlatMap<I, U, F> where
|
|
F: FnMut(I::Item) -> U,
|
|
U: IntoIterator,
|
|
U::IntoIter: DoubleEndedIterator
|
|
{
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<U::Item> {
|
|
loop {
|
|
if let Some(ref mut inner) = self.backiter {
|
|
if let Some(y) = inner.next_back() {
|
|
return Some(y)
|
|
}
|
|
}
|
|
match self.iter.next_back().map(&mut self.f) {
|
|
None => return self.frontiter.as_mut().and_then(|it| it.next_back()),
|
|
next => self.backiter = next.map(IntoIterator::into_iter),
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// An iterator that yields `None` forever after the underlying iterator
|
|
/// yields `None` once.
|
|
///
|
|
/// These can be created through
|
|
/// [`iter.fuse()`](trait.Iterator.html#method.fuse).
|
|
#[derive(Clone)]
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub struct Fuse<I> {
|
|
iter: I,
|
|
done: bool
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<I> Iterator for Fuse<I> where I: Iterator {
|
|
type Item = <I as Iterator>::Item;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<<I as Iterator>::Item> {
|
|
if self.done {
|
|
None
|
|
} else {
|
|
let next = self.iter.next();
|
|
self.done = next.is_none();
|
|
next
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn nth(&mut self, n: usize) -> Option<I::Item> {
|
|
if self.done {
|
|
None
|
|
} else {
|
|
let nth = self.iter.nth(n);
|
|
self.done = nth.is_none();
|
|
nth
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn last(self) -> Option<I::Item> {
|
|
if self.done {
|
|
None
|
|
} else {
|
|
self.iter.last()
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn count(self) -> usize {
|
|
if self.done {
|
|
0
|
|
} else {
|
|
self.iter.count()
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
if self.done {
|
|
(0, Some(0))
|
|
} else {
|
|
self.iter.size_hint()
|
|
}
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<I> DoubleEndedIterator for Fuse<I> where I: DoubleEndedIterator {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<<I as Iterator>::Item> {
|
|
if self.done {
|
|
None
|
|
} else {
|
|
let next = self.iter.next_back();
|
|
self.done = next.is_none();
|
|
next
|
|
}
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<I> ExactSizeIterator for Fuse<I> where I: ExactSizeIterator {}
|
|
|
|
/// An iterator that calls a function with a reference to each
|
|
/// element before yielding it.
|
|
#[must_use = "iterator adaptors are lazy and do nothing unless consumed"]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
#[derive(Clone)]
|
|
pub struct Inspect<I, F> {
|
|
iter: I,
|
|
f: F,
|
|
}
|
|
|
|
impl<I: Iterator, F> Inspect<I, F> where F: FnMut(&I::Item) {
|
|
#[inline]
|
|
fn do_inspect(&mut self, elt: Option<I::Item>) -> Option<I::Item> {
|
|
if let Some(ref a) = elt {
|
|
(self.f)(a);
|
|
}
|
|
|
|
elt
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<I: Iterator, F> Iterator for Inspect<I, F> where F: FnMut(&I::Item) {
|
|
type Item = I::Item;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<I::Item> {
|
|
let next = self.iter.next();
|
|
self.do_inspect(next)
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
self.iter.size_hint()
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<I: DoubleEndedIterator, F> DoubleEndedIterator for Inspect<I, F>
|
|
where F: FnMut(&I::Item),
|
|
{
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<I::Item> {
|
|
let next = self.iter.next_back();
|
|
self.do_inspect(next)
|
|
}
|
|
}
|
|
|
|
/// Objects that can be stepped over in both directions.
|
|
///
|
|
/// The `steps_between` function provides a way to efficiently compare
|
|
/// two `Step` objects.
|
|
#[unstable(feature = "step_trait",
|
|
reason = "likely to be replaced by finer-grained traits",
|
|
issue = "27741")]
|
|
pub trait Step: PartialOrd + Sized {
|
|
/// Steps `self` if possible.
|
|
fn step(&self, by: &Self) -> Option<Self>;
|
|
|
|
/// Returns the number of steps between two step objects. The count is
|
|
/// inclusive of `start` and exclusive of `end`.
|
|
///
|
|
/// Returns `None` if it is not possible to calculate `steps_between`
|
|
/// without overflow.
|
|
fn steps_between(start: &Self, end: &Self, by: &Self) -> Option<usize>;
|
|
}
|
|
|
|
macro_rules! step_impl_unsigned {
|
|
($($t:ty)*) => ($(
|
|
impl Step for $t {
|
|
#[inline]
|
|
fn step(&self, by: &$t) -> Option<$t> {
|
|
(*self).checked_add(*by)
|
|
}
|
|
#[inline]
|
|
#[allow(trivial_numeric_casts)]
|
|
fn steps_between(start: &$t, end: &$t, by: &$t) -> Option<usize> {
|
|
if *by == 0 { return None; }
|
|
if *start < *end {
|
|
// Note: We assume $t <= usize here
|
|
let diff = (*end - *start) as usize;
|
|
let by = *by as usize;
|
|
if diff % by > 0 {
|
|
Some(diff / by + 1)
|
|
} else {
|
|
Some(diff / by)
|
|
}
|
|
} else {
|
|
Some(0)
|
|
}
|
|
}
|
|
}
|
|
)*)
|
|
}
|
|
macro_rules! step_impl_signed {
|
|
($($t:ty)*) => ($(
|
|
impl Step for $t {
|
|
#[inline]
|
|
fn step(&self, by: &$t) -> Option<$t> {
|
|
(*self).checked_add(*by)
|
|
}
|
|
#[inline]
|
|
#[allow(trivial_numeric_casts)]
|
|
fn steps_between(start: &$t, end: &$t, by: &$t) -> Option<usize> {
|
|
if *by == 0 { return None; }
|
|
let diff: usize;
|
|
let by_u: usize;
|
|
if *by > 0 {
|
|
if *start >= *end {
|
|
return Some(0);
|
|
}
|
|
// Note: We assume $t <= isize here
|
|
// Use .wrapping_sub and cast to usize to compute the
|
|
// difference that may not fit inside the range of isize.
|
|
diff = (*end as isize).wrapping_sub(*start as isize) as usize;
|
|
by_u = *by as usize;
|
|
} else {
|
|
if *start <= *end {
|
|
return Some(0);
|
|
}
|
|
diff = (*start as isize).wrapping_sub(*end as isize) as usize;
|
|
by_u = (*by as isize).wrapping_mul(-1) as usize;
|
|
}
|
|
if diff % by_u > 0 {
|
|
Some(diff / by_u + 1)
|
|
} else {
|
|
Some(diff / by_u)
|
|
}
|
|
}
|
|
}
|
|
)*)
|
|
}
|
|
|
|
macro_rules! step_impl_no_between {
|
|
($($t:ty)*) => ($(
|
|
impl Step for $t {
|
|
#[inline]
|
|
fn step(&self, by: &$t) -> Option<$t> {
|
|
(*self).checked_add(*by)
|
|
}
|
|
#[inline]
|
|
fn steps_between(_a: &$t, _b: &$t, _by: &$t) -> Option<usize> {
|
|
None
|
|
}
|
|
}
|
|
)*)
|
|
}
|
|
|
|
step_impl_unsigned!(usize u8 u16 u32);
|
|
step_impl_signed!(isize i8 i16 i32);
|
|
#[cfg(target_pointer_width = "64")]
|
|
step_impl_unsigned!(u64);
|
|
#[cfg(target_pointer_width = "64")]
|
|
step_impl_signed!(i64);
|
|
// If the target pointer width is not 64-bits, we
|
|
// assume here that it is less than 64-bits.
|
|
#[cfg(not(target_pointer_width = "64"))]
|
|
step_impl_no_between!(u64 i64);
|
|
|
|
/// An adapter for stepping range iterators by a custom amount.
|
|
///
|
|
/// The resulting iterator handles overflow by stopping. The `A`
|
|
/// parameter is the type being iterated over, while `R` is the range
|
|
/// type (usually one of `std::ops::{Range, RangeFrom}`.
|
|
#[derive(Clone)]
|
|
#[unstable(feature = "step_by", reason = "recent addition",
|
|
issue = "27741")]
|
|
pub struct StepBy<A, R> {
|
|
step_by: A,
|
|
range: R,
|
|
}
|
|
|
|
impl<A: Step> RangeFrom<A> {
|
|
/// Creates an iterator starting at the same point, but stepping by
|
|
/// the given amount at each iteration.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```ignore
|
|
/// for i in (0u8..).step_by(2) {
|
|
/// println!("{}", i);
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// This prints all even `u8` values.
|
|
#[unstable(feature = "step_by", reason = "recent addition",
|
|
issue = "27741")]
|
|
pub fn step_by(self, by: A) -> StepBy<A, Self> {
|
|
StepBy {
|
|
step_by: by,
|
|
range: self
|
|
}
|
|
}
|
|
}
|
|
|
|
impl<A: Step> ops::Range<A> {
|
|
/// Creates an iterator with the same range, but stepping by the
|
|
/// given amount at each iteration.
|
|
///
|
|
/// The resulting iterator handles overflow by stopping.
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// ```
|
|
/// #![feature(step_by)]
|
|
///
|
|
/// for i in (0..10).step_by(2) {
|
|
/// println!("{}", i);
|
|
/// }
|
|
/// ```
|
|
///
|
|
/// This prints:
|
|
///
|
|
/// ```text
|
|
/// 0
|
|
/// 2
|
|
/// 4
|
|
/// 6
|
|
/// 8
|
|
/// ```
|
|
#[unstable(feature = "step_by", reason = "recent addition",
|
|
issue = "27741")]
|
|
pub fn step_by(self, by: A) -> StepBy<A, Self> {
|
|
StepBy {
|
|
step_by: by,
|
|
range: self
|
|
}
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<A> Iterator for StepBy<A, RangeFrom<A>> where
|
|
A: Clone,
|
|
for<'a> &'a A: Add<&'a A, Output = A>
|
|
{
|
|
type Item = A;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A> {
|
|
let mut n = &self.range.start + &self.step_by;
|
|
mem::swap(&mut n, &mut self.range.start);
|
|
Some(n)
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
(usize::MAX, None) // Too bad we can't specify an infinite lower bound
|
|
}
|
|
}
|
|
|
|
/// An iterator over the range [start, stop]
|
|
#[derive(Clone)]
|
|
#[unstable(feature = "range_inclusive",
|
|
reason = "likely to be replaced by range notation and adapters",
|
|
issue = "27777")]
|
|
pub struct RangeInclusive<A> {
|
|
range: ops::Range<A>,
|
|
done: bool,
|
|
}
|
|
|
|
/// Returns an iterator over the range [start, stop].
|
|
#[inline]
|
|
#[unstable(feature = "range_inclusive",
|
|
reason = "likely to be replaced by range notation and adapters",
|
|
issue = "27777")]
|
|
pub fn range_inclusive<A>(start: A, stop: A) -> RangeInclusive<A>
|
|
where A: Step + One + Clone
|
|
{
|
|
RangeInclusive {
|
|
range: start..stop,
|
|
done: false,
|
|
}
|
|
}
|
|
|
|
#[unstable(feature = "range_inclusive",
|
|
reason = "likely to be replaced by range notation and adapters",
|
|
issue = "27777")]
|
|
impl<A> Iterator for RangeInclusive<A> where
|
|
A: PartialEq + Step + One + Clone,
|
|
for<'a> &'a A: Add<&'a A, Output = A>
|
|
{
|
|
type Item = A;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A> {
|
|
self.range.next().or_else(|| {
|
|
if !self.done && self.range.start == self.range.end {
|
|
self.done = true;
|
|
Some(self.range.end.clone())
|
|
} else {
|
|
None
|
|
}
|
|
})
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
let (lo, hi) = self.range.size_hint();
|
|
if self.done {
|
|
(lo, hi)
|
|
} else {
|
|
let lo = lo.saturating_add(1);
|
|
let hi = hi.and_then(|x| x.checked_add(1));
|
|
(lo, hi)
|
|
}
|
|
}
|
|
}
|
|
|
|
#[unstable(feature = "range_inclusive",
|
|
reason = "likely to be replaced by range notation and adapters",
|
|
issue = "27777")]
|
|
impl<A> DoubleEndedIterator for RangeInclusive<A> where
|
|
A: PartialEq + Step + One + Clone,
|
|
for<'a> &'a A: Add<&'a A, Output = A>,
|
|
for<'a> &'a A: Sub<Output=A>
|
|
{
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<A> {
|
|
if self.range.end > self.range.start {
|
|
let result = self.range.end.clone();
|
|
self.range.end = &self.range.end - &A::one();
|
|
Some(result)
|
|
} else if !self.done && self.range.start == self.range.end {
|
|
self.done = true;
|
|
Some(self.range.end.clone())
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<A: Step + Zero + Clone> Iterator for StepBy<A, ops::Range<A>> {
|
|
type Item = A;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A> {
|
|
let rev = self.step_by < A::zero();
|
|
if (rev && self.range.start > self.range.end) ||
|
|
(!rev && self.range.start < self.range.end)
|
|
{
|
|
match self.range.start.step(&self.step_by) {
|
|
Some(mut n) => {
|
|
mem::swap(&mut self.range.start, &mut n);
|
|
Some(n)
|
|
},
|
|
None => {
|
|
let mut n = self.range.end.clone();
|
|
mem::swap(&mut self.range.start, &mut n);
|
|
Some(n)
|
|
}
|
|
}
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
match Step::steps_between(&self.range.start,
|
|
&self.range.end,
|
|
&self.step_by) {
|
|
Some(hint) => (hint, Some(hint)),
|
|
None => (0, None)
|
|
}
|
|
}
|
|
}
|
|
|
|
macro_rules! range_exact_iter_impl {
|
|
($($t:ty)*) => ($(
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl ExactSizeIterator for ops::Range<$t> { }
|
|
)*)
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<A: Step + One> Iterator for ops::Range<A> where
|
|
for<'a> &'a A: Add<&'a A, Output = A>
|
|
{
|
|
type Item = A;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A> {
|
|
if self.start < self.end {
|
|
let mut n = &self.start + &A::one();
|
|
mem::swap(&mut n, &mut self.start);
|
|
Some(n)
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
|
|
#[inline]
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
match Step::steps_between(&self.start, &self.end, &A::one()) {
|
|
Some(hint) => (hint, Some(hint)),
|
|
None => (0, None)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Ranges of u64 and i64 are excluded because they cannot guarantee having
|
|
// a length <= usize::MAX, which is required by ExactSizeIterator.
|
|
range_exact_iter_impl!(usize u8 u16 u32 isize i8 i16 i32);
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<A: Step + One + Clone> DoubleEndedIterator for ops::Range<A> where
|
|
for<'a> &'a A: Add<&'a A, Output = A>,
|
|
for<'a> &'a A: Sub<&'a A, Output = A>
|
|
{
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<A> {
|
|
if self.start < self.end {
|
|
self.end = &self.end - &A::one();
|
|
Some(self.end.clone())
|
|
} else {
|
|
None
|
|
}
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<A: Step + One> Iterator for ops::RangeFrom<A> where
|
|
for<'a> &'a A: Add<&'a A, Output = A>
|
|
{
|
|
type Item = A;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A> {
|
|
let mut n = &self.start + &A::one();
|
|
mem::swap(&mut n, &mut self.start);
|
|
Some(n)
|
|
}
|
|
}
|
|
|
|
/// An iterator that repeats an element endlessly
|
|
#[derive(Clone)]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub struct Repeat<A> {
|
|
element: A
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<A: Clone> Iterator for Repeat<A> {
|
|
type Item = A;
|
|
|
|
#[inline]
|
|
fn next(&mut self) -> Option<A> { Some(self.element.clone()) }
|
|
#[inline]
|
|
fn size_hint(&self) -> (usize, Option<usize>) { (usize::MAX, None) }
|
|
}
|
|
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
impl<A: Clone> DoubleEndedIterator for Repeat<A> {
|
|
#[inline]
|
|
fn next_back(&mut self) -> Option<A> { Some(self.element.clone()) }
|
|
}
|
|
|
|
/// Creates a new iterator that endlessly repeats a single element.
|
|
///
|
|
/// The `repeat()` function repeats a single value over and over and over and
|
|
/// over and over and 🔁.
|
|
///
|
|
/// Infinite iterators like `repeat()` are often used with adapters like
|
|
/// [`take()`], in order to make them finite.
|
|
///
|
|
/// [`take()`]: trait.Iterator.html#method.take
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// use std::iter;
|
|
///
|
|
/// // the number four 4ever:
|
|
/// let mut fours = iter::repeat(4);
|
|
///
|
|
/// assert_eq!(Some(4), fours.next());
|
|
/// assert_eq!(Some(4), fours.next());
|
|
/// assert_eq!(Some(4), fours.next());
|
|
/// assert_eq!(Some(4), fours.next());
|
|
/// assert_eq!(Some(4), fours.next());
|
|
///
|
|
/// // yup, still four
|
|
/// assert_eq!(Some(4), fours.next());
|
|
/// ```
|
|
///
|
|
/// Going finite with [`take()`]:
|
|
///
|
|
/// ```
|
|
/// use std::iter;
|
|
///
|
|
/// // that last example was too many fours. Let's only have four fours.
|
|
/// let mut four_fours = iter::repeat(4).take(4);
|
|
///
|
|
/// assert_eq!(Some(4), four_fours.next());
|
|
/// assert_eq!(Some(4), four_fours.next());
|
|
/// assert_eq!(Some(4), four_fours.next());
|
|
/// assert_eq!(Some(4), four_fours.next());
|
|
///
|
|
/// // ... and now we're done
|
|
/// assert_eq!(None, four_fours.next());
|
|
/// ```
|
|
#[inline]
|
|
#[stable(feature = "rust1", since = "1.0.0")]
|
|
pub fn repeat<T: Clone>(elt: T) -> Repeat<T> {
|
|
Repeat{element: elt}
|
|
}
|
|
|
|
/// An iterator that yields nothing.
|
|
#[stable(feature = "iter_empty", since = "1.2.0")]
|
|
pub struct Empty<T>(marker::PhantomData<T>);
|
|
|
|
#[stable(feature = "iter_empty", since = "1.2.0")]
|
|
impl<T> Iterator for Empty<T> {
|
|
type Item = T;
|
|
|
|
fn next(&mut self) -> Option<T> {
|
|
None
|
|
}
|
|
|
|
fn size_hint(&self) -> (usize, Option<usize>){
|
|
(0, Some(0))
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "iter_empty", since = "1.2.0")]
|
|
impl<T> DoubleEndedIterator for Empty<T> {
|
|
fn next_back(&mut self) -> Option<T> {
|
|
None
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "iter_empty", since = "1.2.0")]
|
|
impl<T> ExactSizeIterator for Empty<T> {
|
|
fn len(&self) -> usize {
|
|
0
|
|
}
|
|
}
|
|
|
|
// not #[derive] because that adds a Clone bound on T,
|
|
// which isn't necessary.
|
|
#[stable(feature = "iter_empty", since = "1.2.0")]
|
|
impl<T> Clone for Empty<T> {
|
|
fn clone(&self) -> Empty<T> {
|
|
Empty(marker::PhantomData)
|
|
}
|
|
}
|
|
|
|
// not #[derive] because that adds a Default bound on T,
|
|
// which isn't necessary.
|
|
#[stable(feature = "iter_empty", since = "1.2.0")]
|
|
impl<T> Default for Empty<T> {
|
|
fn default() -> Empty<T> {
|
|
Empty(marker::PhantomData)
|
|
}
|
|
}
|
|
|
|
/// Creates an iterator that yields nothing.
|
|
///
|
|
/// # Exampes
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// use std::iter;
|
|
///
|
|
/// // this could have been an iterator over i32, but alas, it's just not.
|
|
/// let mut nope = iter::empty::<i32>();
|
|
///
|
|
/// assert_eq!(None, nope.next());
|
|
/// ```
|
|
#[stable(feature = "iter_empty", since = "1.2.0")]
|
|
pub fn empty<T>() -> Empty<T> {
|
|
Empty(marker::PhantomData)
|
|
}
|
|
|
|
/// An iterator that yields an element exactly once.
|
|
#[derive(Clone)]
|
|
#[stable(feature = "iter_once", since = "1.2.0")]
|
|
pub struct Once<T> {
|
|
inner: ::option::IntoIter<T>
|
|
}
|
|
|
|
#[stable(feature = "iter_once", since = "1.2.0")]
|
|
impl<T> Iterator for Once<T> {
|
|
type Item = T;
|
|
|
|
fn next(&mut self) -> Option<T> {
|
|
self.inner.next()
|
|
}
|
|
|
|
fn size_hint(&self) -> (usize, Option<usize>) {
|
|
self.inner.size_hint()
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "iter_once", since = "1.2.0")]
|
|
impl<T> DoubleEndedIterator for Once<T> {
|
|
fn next_back(&mut self) -> Option<T> {
|
|
self.inner.next_back()
|
|
}
|
|
}
|
|
|
|
#[stable(feature = "iter_once", since = "1.2.0")]
|
|
impl<T> ExactSizeIterator for Once<T> {
|
|
fn len(&self) -> usize {
|
|
self.inner.len()
|
|
}
|
|
}
|
|
|
|
/// Creates an iterator that yields an element exactly once.
|
|
///
|
|
/// This is commonly used to adapt a single value into a [`chain()`] of other
|
|
/// kinds of iteration. Maybe you have an iterator that covers almost
|
|
/// everything, but you need an extra special case. Maybe you have a function
|
|
/// which works on iterators, but you only need to process one value.
|
|
///
|
|
/// [`chain()`]: trait.Iterator.html#method.chain
|
|
///
|
|
/// # Examples
|
|
///
|
|
/// Basic usage:
|
|
///
|
|
/// ```
|
|
/// use std::iter;
|
|
///
|
|
/// // one is the loneliest number
|
|
/// let mut one = iter::once(1);
|
|
///
|
|
/// assert_eq!(Some(1), one.next());
|
|
///
|
|
/// // just one, that's all we get
|
|
/// assert_eq!(None, one.next());
|
|
/// ```
|
|
///
|
|
/// Chaining together with another iterator. Let's say that we want to iterate
|
|
/// over each file of the `.foo` directory, but also a configuration file,
|
|
/// `.foorc`:
|
|
///
|
|
/// ```no_run
|
|
/// use std::iter;
|
|
/// use std::fs;
|
|
/// use std::path::PathBuf;
|
|
///
|
|
/// let dirs = fs::read_dir(".foo").unwrap();
|
|
///
|
|
/// // we need to convert from an iterator of DirEntry-s to an iterator of
|
|
/// // PathBufs, so we use map
|
|
/// let dirs = dirs.map(|file| file.unwrap().path());
|
|
///
|
|
/// // now, our iterator just for our config file
|
|
/// let config = iter::once(PathBuf::from(".foorc"));
|
|
///
|
|
/// // chain the two iterators together into one big iterator
|
|
/// let files = dirs.chain(config);
|
|
///
|
|
/// // this will give us all of the files in .foo as well as .foorc
|
|
/// for f in files {
|
|
/// println!("{:?}", f);
|
|
/// }
|
|
/// ```
|
|
#[stable(feature = "iter_once", since = "1.2.0")]
|
|
pub fn once<T>(value: T) -> Once<T> {
|
|
Once { inner: Some(value).into_iter() }
|
|
}
|
|
|
|
/// Functions for lexicographical ordering of sequences.
|
|
///
|
|
/// Lexicographical ordering through `<`, `<=`, `>=`, `>` requires
|
|
/// that the elements implement both `PartialEq` and `PartialOrd`.
|
|
///
|
|
/// If two sequences are equal up until the point where one ends,
|
|
/// the shorter sequence compares less.
|
|
#[deprecated(since = "1.4.0", reason = "use the equivalent methods on `Iterator` instead")]
|
|
#[unstable(feature = "iter_order", reason = "needs review and revision",
|
|
issue = "27737")]
|
|
pub mod order {
|
|
use cmp;
|
|
use cmp::{Eq, Ord, PartialOrd, PartialEq};
|
|
use option::Option;
|
|
use super::Iterator;
|
|
|
|
/// Compare `a` and `b` for equality using `Eq`
|
|
pub fn equals<A, L, R>(a: L, b: R) -> bool where
|
|
A: Eq,
|
|
L: Iterator<Item=A>,
|
|
R: Iterator<Item=A>,
|
|
{
|
|
a.eq(b)
|
|
}
|
|
|
|
/// Order `a` and `b` lexicographically using `Ord`
|
|
pub fn cmp<A, L, R>(a: L, b: R) -> cmp::Ordering where
|
|
A: Ord,
|
|
L: Iterator<Item=A>,
|
|
R: Iterator<Item=A>,
|
|
{
|
|
a.cmp(b)
|
|
}
|
|
|
|
/// Order `a` and `b` lexicographically using `PartialOrd`
|
|
pub fn partial_cmp<L: Iterator, R: Iterator>(a: L, b: R) -> Option<cmp::Ordering> where
|
|
L::Item: PartialOrd<R::Item>
|
|
{
|
|
a.partial_cmp(b)
|
|
}
|
|
|
|
/// Compare `a` and `b` for equality (Using partial equality, `PartialEq`)
|
|
pub fn eq<L: Iterator, R: Iterator>(a: L, b: R) -> bool where
|
|
L::Item: PartialEq<R::Item>,
|
|
{
|
|
a.eq(b)
|
|
}
|
|
|
|
/// Compares `a` and `b` for nonequality (Using partial equality, `PartialEq`)
|
|
pub fn ne<L: Iterator, R: Iterator>(a: L, b: R) -> bool where
|
|
L::Item: PartialEq<R::Item>,
|
|
{
|
|
a.ne(b)
|
|
}
|
|
|
|
/// Returns `a` < `b` lexicographically (Using partial order, `PartialOrd`)
|
|
pub fn lt<L: Iterator, R: Iterator>(a: L, b: R) -> bool where
|
|
L::Item: PartialOrd<R::Item>,
|
|
{
|
|
a.lt(b)
|
|
}
|
|
|
|
/// Returns `a` <= `b` lexicographically (Using partial order, `PartialOrd`)
|
|
pub fn le<L: Iterator, R: Iterator>(a: L, b: R) -> bool where
|
|
L::Item: PartialOrd<R::Item>,
|
|
{
|
|
a.le(b)
|
|
}
|
|
|
|
/// Returns `a` > `b` lexicographically (Using partial order, `PartialOrd`)
|
|
pub fn gt<L: Iterator, R: Iterator>(a: L, b: R) -> bool where
|
|
L::Item: PartialOrd<R::Item>,
|
|
{
|
|
a.gt(b)
|
|
}
|
|
|
|
/// Returns `a` >= `b` lexicographically (Using partial order, `PartialOrd`)
|
|
pub fn ge<L: Iterator, R: Iterator>(a: L, b: R) -> bool where
|
|
L::Item: PartialOrd<R::Item>,
|
|
{
|
|
a.ge(b)
|
|
}
|
|
}
|