888 lines
27 KiB
Rust
888 lines
27 KiB
Rust
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
#![allow(non_camel_case_types, non_snake_case)]
|
|
|
|
//! Code that is useful in various trans modules.
|
|
|
|
use driver::session::Session;
|
|
use llvm;
|
|
use llvm::{ValueRef, BasicBlockRef, BuilderRef};
|
|
use llvm::{True, False, Bool};
|
|
use middle::def;
|
|
use middle::freevars;
|
|
use middle::lang_items::LangItem;
|
|
use middle::mem_categorization as mc;
|
|
use middle::subst;
|
|
use middle::subst::Subst;
|
|
use middle::trans::base;
|
|
use middle::trans::build;
|
|
use middle::trans::cleanup;
|
|
use middle::trans::datum;
|
|
use middle::trans::debuginfo;
|
|
use middle::trans::type_::Type;
|
|
use middle::trans::type_of;
|
|
use middle::ty;
|
|
use middle::typeck;
|
|
use util::ppaux::Repr;
|
|
use util::nodemap::{DefIdMap, NodeMap};
|
|
|
|
use arena::TypedArena;
|
|
use std::collections::HashMap;
|
|
use libc::{c_uint, c_longlong, c_ulonglong, c_char};
|
|
use std::c_str::ToCStr;
|
|
use std::cell::{Cell, RefCell};
|
|
use std::vec::Vec;
|
|
use syntax::ast::Ident;
|
|
use syntax::ast;
|
|
use syntax::ast_map::{PathElem, PathName};
|
|
use syntax::codemap::Span;
|
|
use syntax::parse::token::InternedString;
|
|
use syntax::parse::token;
|
|
|
|
pub use middle::trans::context::CrateContext;
|
|
|
|
fn type_is_newtype_immediate(ccx: &CrateContext, ty: ty::t) -> bool {
|
|
match ty::get(ty).sty {
|
|
ty::ty_struct(def_id, ref substs) => {
|
|
let fields = ty::struct_fields(ccx.tcx(), def_id, substs);
|
|
fields.len() == 1 &&
|
|
fields.get(0).ident.name ==
|
|
token::special_idents::unnamed_field.name &&
|
|
type_is_immediate(ccx, fields.get(0).mt.ty)
|
|
}
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
pub fn type_is_immediate(ccx: &CrateContext, ty: ty::t) -> bool {
|
|
use middle::trans::machine::llsize_of_alloc;
|
|
use middle::trans::type_of::sizing_type_of;
|
|
|
|
let tcx = ccx.tcx();
|
|
let simple = ty::type_is_scalar(ty) || ty::type_is_boxed(ty) ||
|
|
ty::type_is_unique(ty) || ty::type_is_region_ptr(ty) ||
|
|
type_is_newtype_immediate(ccx, ty) || ty::type_is_bot(ty) ||
|
|
ty::type_is_simd(tcx, ty);
|
|
if simple && !ty::type_is_fat_ptr(tcx, ty) {
|
|
return true;
|
|
}
|
|
if !ty::type_is_sized(tcx, ty) {
|
|
return false;
|
|
}
|
|
match ty::get(ty).sty {
|
|
ty::ty_bot => true,
|
|
ty::ty_struct(..) | ty::ty_enum(..) | ty::ty_tup(..) |
|
|
ty::ty_unboxed_closure(..) => {
|
|
let llty = sizing_type_of(ccx, ty);
|
|
llsize_of_alloc(ccx, llty) <= llsize_of_alloc(ccx, ccx.int_type())
|
|
}
|
|
_ => type_is_zero_size(ccx, ty)
|
|
}
|
|
}
|
|
|
|
pub fn type_is_zero_size(ccx: &CrateContext, ty: ty::t) -> bool {
|
|
/*!
|
|
* Identify types which have size zero at runtime.
|
|
*/
|
|
|
|
use middle::trans::machine::llsize_of_alloc;
|
|
use middle::trans::type_of::sizing_type_of;
|
|
let llty = sizing_type_of(ccx, ty);
|
|
llsize_of_alloc(ccx, llty) == 0
|
|
}
|
|
|
|
pub fn return_type_is_void(ccx: &CrateContext, ty: ty::t) -> bool {
|
|
/*!
|
|
* Identifies types which we declare to be equivalent to `void`
|
|
* in C for the purpose of function return types. These are
|
|
* `()`, bot, and uninhabited enums. Note that all such types
|
|
* are also zero-size, but not all zero-size types use a `void`
|
|
* return type (in order to aid with C ABI compatibility).
|
|
*/
|
|
|
|
ty::type_is_nil(ty) || ty::type_is_bot(ty) || ty::type_is_empty(ccx.tcx(), ty)
|
|
}
|
|
|
|
/// Generates a unique symbol based off the name given. This is used to create
|
|
/// unique symbols for things like closures.
|
|
pub fn gensym_name(name: &str) -> PathElem {
|
|
let num = token::gensym(name).uint();
|
|
// use one colon which will get translated to a period by the mangler, and
|
|
// we're guaranteed that `num` is globally unique for this crate.
|
|
PathName(token::gensym(format!("{}:{}", name, num).as_slice()))
|
|
}
|
|
|
|
pub struct tydesc_info {
|
|
pub ty: ty::t,
|
|
pub tydesc: ValueRef,
|
|
pub size: ValueRef,
|
|
pub align: ValueRef,
|
|
pub name: ValueRef,
|
|
pub visit_glue: Cell<Option<ValueRef>>,
|
|
}
|
|
|
|
/*
|
|
* A note on nomenclature of linking: "extern", "foreign", and "upcall".
|
|
*
|
|
* An "extern" is an LLVM symbol we wind up emitting an undefined external
|
|
* reference to. This means "we don't have the thing in this compilation unit,
|
|
* please make sure you link it in at runtime". This could be a reference to
|
|
* C code found in a C library, or rust code found in a rust crate.
|
|
*
|
|
* Most "externs" are implicitly declared (automatically) as a result of a
|
|
* user declaring an extern _module_ dependency; this causes the rust driver
|
|
* to locate an extern crate, scan its compilation metadata, and emit extern
|
|
* declarations for any symbols used by the declaring crate.
|
|
*
|
|
* A "foreign" is an extern that references C (or other non-rust ABI) code.
|
|
* There is no metadata to scan for extern references so in these cases either
|
|
* a header-digester like bindgen, or manual function prototypes, have to
|
|
* serve as declarators. So these are usually given explicitly as prototype
|
|
* declarations, in rust code, with ABI attributes on them noting which ABI to
|
|
* link via.
|
|
*
|
|
* An "upcall" is a foreign call generated by the compiler (not corresponding
|
|
* to any user-written call in the code) into the runtime library, to perform
|
|
* some helper task such as bringing a task to life, allocating memory, etc.
|
|
*
|
|
*/
|
|
|
|
pub struct NodeInfo {
|
|
pub id: ast::NodeId,
|
|
pub span: Span,
|
|
}
|
|
|
|
pub fn expr_info(expr: &ast::Expr) -> NodeInfo {
|
|
NodeInfo { id: expr.id, span: expr.span }
|
|
}
|
|
|
|
pub struct BuilderRef_res {
|
|
pub b: BuilderRef,
|
|
}
|
|
|
|
impl Drop for BuilderRef_res {
|
|
fn drop(&mut self) {
|
|
unsafe {
|
|
llvm::LLVMDisposeBuilder(self.b);
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn BuilderRef_res(b: BuilderRef) -> BuilderRef_res {
|
|
BuilderRef_res {
|
|
b: b
|
|
}
|
|
}
|
|
|
|
pub type ExternMap = HashMap<String, ValueRef>;
|
|
|
|
// Here `self_ty` is the real type of the self parameter to this method. It
|
|
// will only be set in the case of default methods.
|
|
pub struct param_substs {
|
|
pub substs: subst::Substs,
|
|
pub vtables: typeck::vtable_res,
|
|
}
|
|
|
|
impl param_substs {
|
|
pub fn empty() -> param_substs {
|
|
param_substs {
|
|
substs: subst::Substs::trans_empty(),
|
|
vtables: subst::VecPerParamSpace::empty(),
|
|
}
|
|
}
|
|
|
|
pub fn validate(&self) {
|
|
assert!(self.substs.types.all(|t| !ty::type_needs_infer(*t)));
|
|
}
|
|
}
|
|
|
|
fn param_substs_to_string(this: ¶m_substs, tcx: &ty::ctxt) -> String {
|
|
format!("param_substs(substs={},vtables={})",
|
|
this.substs.repr(tcx),
|
|
this.vtables.repr(tcx))
|
|
}
|
|
|
|
impl Repr for param_substs {
|
|
fn repr(&self, tcx: &ty::ctxt) -> String {
|
|
param_substs_to_string(self, tcx)
|
|
}
|
|
}
|
|
|
|
pub trait SubstP {
|
|
fn substp(&self, tcx: &ty::ctxt, param_substs: ¶m_substs)
|
|
-> Self;
|
|
}
|
|
|
|
impl<T:Subst+Clone> SubstP for T {
|
|
fn substp(&self, tcx: &ty::ctxt, substs: ¶m_substs) -> T {
|
|
self.subst(tcx, &substs.substs)
|
|
}
|
|
}
|
|
|
|
// work around bizarre resolve errors
|
|
pub type RvalueDatum = datum::Datum<datum::Rvalue>;
|
|
pub type LvalueDatum = datum::Datum<datum::Lvalue>;
|
|
|
|
// Function context. Every LLVM function we create will have one of
|
|
// these.
|
|
pub struct FunctionContext<'a> {
|
|
// The ValueRef returned from a call to llvm::LLVMAddFunction; the
|
|
// address of the first instruction in the sequence of
|
|
// instructions for this function that will go in the .text
|
|
// section of the executable we're generating.
|
|
pub llfn: ValueRef,
|
|
|
|
// The environment argument in a closure.
|
|
pub llenv: Option<ValueRef>,
|
|
|
|
// A pointer to where to store the return value. If the return type is
|
|
// immediate, this points to an alloca in the function. Otherwise, it's a
|
|
// pointer to the hidden first parameter of the function. After function
|
|
// construction, this should always be Some.
|
|
pub llretslotptr: Cell<Option<ValueRef>>,
|
|
|
|
// These pub elements: "hoisted basic blocks" containing
|
|
// administrative activities that have to happen in only one place in
|
|
// the function, due to LLVM's quirks.
|
|
// A marker for the place where we want to insert the function's static
|
|
// allocas, so that LLVM will coalesce them into a single alloca call.
|
|
pub alloca_insert_pt: Cell<Option<ValueRef>>,
|
|
pub llreturn: Cell<Option<BasicBlockRef>>,
|
|
|
|
// If the function has any nested return's, including something like:
|
|
// fn foo() -> Option<Foo> { Some(Foo { x: return None }) }, then
|
|
// we use a separate alloca for each return
|
|
pub needs_ret_allocas: bool,
|
|
|
|
// The a value alloca'd for calls to upcalls.rust_personality. Used when
|
|
// outputting the resume instruction.
|
|
pub personality: Cell<Option<ValueRef>>,
|
|
|
|
// True if the caller expects this fn to use the out pointer to
|
|
// return. Either way, your code should write into the slot llretslotptr
|
|
// points to, but if this value is false, that slot will be a local alloca.
|
|
pub caller_expects_out_pointer: bool,
|
|
|
|
// Maps arguments to allocas created for them in llallocas.
|
|
pub llargs: RefCell<NodeMap<LvalueDatum>>,
|
|
|
|
// Maps the def_ids for local variables to the allocas created for
|
|
// them in llallocas.
|
|
pub lllocals: RefCell<NodeMap<LvalueDatum>>,
|
|
|
|
// Same as above, but for closure upvars
|
|
pub llupvars: RefCell<NodeMap<ValueRef>>,
|
|
|
|
// The NodeId of the function, or -1 if it doesn't correspond to
|
|
// a user-defined function.
|
|
pub id: ast::NodeId,
|
|
|
|
// If this function is being monomorphized, this contains the type
|
|
// substitutions used.
|
|
pub param_substs: &'a param_substs,
|
|
|
|
// The source span and nesting context where this function comes from, for
|
|
// error reporting and symbol generation.
|
|
pub span: Option<Span>,
|
|
|
|
// The arena that blocks are allocated from.
|
|
pub block_arena: &'a TypedArena<Block<'a>>,
|
|
|
|
// This function's enclosing crate context.
|
|
pub ccx: &'a CrateContext,
|
|
|
|
// Used and maintained by the debuginfo module.
|
|
pub debug_context: debuginfo::FunctionDebugContext,
|
|
|
|
// Cleanup scopes.
|
|
pub scopes: RefCell<Vec<cleanup::CleanupScope<'a>> >,
|
|
}
|
|
|
|
impl<'a> FunctionContext<'a> {
|
|
pub fn arg_pos(&self, arg: uint) -> uint {
|
|
let arg = self.env_arg_pos() + arg;
|
|
if self.llenv.is_some() {
|
|
arg + 1
|
|
} else {
|
|
arg
|
|
}
|
|
}
|
|
|
|
pub fn out_arg_pos(&self) -> uint {
|
|
assert!(self.caller_expects_out_pointer);
|
|
0u
|
|
}
|
|
|
|
pub fn env_arg_pos(&self) -> uint {
|
|
if self.caller_expects_out_pointer {
|
|
1u
|
|
} else {
|
|
0u
|
|
}
|
|
}
|
|
|
|
pub fn cleanup(&self) {
|
|
unsafe {
|
|
llvm::LLVMInstructionEraseFromParent(self.alloca_insert_pt
|
|
.get()
|
|
.unwrap());
|
|
}
|
|
}
|
|
|
|
pub fn get_llreturn(&self) -> BasicBlockRef {
|
|
if self.llreturn.get().is_none() {
|
|
|
|
self.llreturn.set(Some(unsafe {
|
|
"return".with_c_str(|buf| {
|
|
llvm::LLVMAppendBasicBlockInContext(self.ccx.llcx(), self.llfn, buf)
|
|
})
|
|
}))
|
|
}
|
|
|
|
self.llreturn.get().unwrap()
|
|
}
|
|
|
|
pub fn get_ret_slot(&self, bcx: &Block, ty: ty::t, name: &str) -> ValueRef {
|
|
if self.needs_ret_allocas {
|
|
base::alloca_no_lifetime(bcx, type_of::type_of(bcx.ccx(), ty), name)
|
|
} else {
|
|
self.llretslotptr.get().unwrap()
|
|
}
|
|
}
|
|
|
|
pub fn new_block(&'a self,
|
|
is_lpad: bool,
|
|
name: &str,
|
|
opt_node_id: Option<ast::NodeId>)
|
|
-> &'a Block<'a> {
|
|
unsafe {
|
|
let llbb = name.with_c_str(|buf| {
|
|
llvm::LLVMAppendBasicBlockInContext(self.ccx.llcx(),
|
|
self.llfn,
|
|
buf)
|
|
});
|
|
Block::new(llbb, is_lpad, opt_node_id, self)
|
|
}
|
|
}
|
|
|
|
pub fn new_id_block(&'a self,
|
|
name: &str,
|
|
node_id: ast::NodeId)
|
|
-> &'a Block<'a> {
|
|
self.new_block(false, name, Some(node_id))
|
|
}
|
|
|
|
pub fn new_temp_block(&'a self,
|
|
name: &str)
|
|
-> &'a Block<'a> {
|
|
self.new_block(false, name, None)
|
|
}
|
|
|
|
pub fn join_blocks(&'a self,
|
|
id: ast::NodeId,
|
|
in_cxs: &[&'a Block<'a>])
|
|
-> &'a Block<'a> {
|
|
let out = self.new_id_block("join", id);
|
|
let mut reachable = false;
|
|
for bcx in in_cxs.iter() {
|
|
if !bcx.unreachable.get() {
|
|
build::Br(*bcx, out.llbb);
|
|
reachable = true;
|
|
}
|
|
}
|
|
if !reachable {
|
|
build::Unreachable(out);
|
|
}
|
|
return out;
|
|
}
|
|
}
|
|
|
|
// Basic block context. We create a block context for each basic block
|
|
// (single-entry, single-exit sequence of instructions) we generate from Rust
|
|
// code. Each basic block we generate is attached to a function, typically
|
|
// with many basic blocks per function. All the basic blocks attached to a
|
|
// function are organized as a directed graph.
|
|
pub struct Block<'a> {
|
|
// The BasicBlockRef returned from a call to
|
|
// llvm::LLVMAppendBasicBlock(llfn, name), which adds a basic
|
|
// block to the function pointed to by llfn. We insert
|
|
// instructions into that block by way of this block context.
|
|
// The block pointing to this one in the function's digraph.
|
|
pub llbb: BasicBlockRef,
|
|
pub terminated: Cell<bool>,
|
|
pub unreachable: Cell<bool>,
|
|
|
|
// Is this block part of a landing pad?
|
|
pub is_lpad: bool,
|
|
|
|
// AST node-id associated with this block, if any. Used for
|
|
// debugging purposes only.
|
|
pub opt_node_id: Option<ast::NodeId>,
|
|
|
|
// The function context for the function to which this block is
|
|
// attached.
|
|
pub fcx: &'a FunctionContext<'a>,
|
|
}
|
|
|
|
impl<'a> Block<'a> {
|
|
pub fn new<'a>(
|
|
llbb: BasicBlockRef,
|
|
is_lpad: bool,
|
|
opt_node_id: Option<ast::NodeId>,
|
|
fcx: &'a FunctionContext<'a>)
|
|
-> &'a Block<'a> {
|
|
fcx.block_arena.alloc(Block {
|
|
llbb: llbb,
|
|
terminated: Cell::new(false),
|
|
unreachable: Cell::new(false),
|
|
is_lpad: is_lpad,
|
|
opt_node_id: opt_node_id,
|
|
fcx: fcx
|
|
})
|
|
}
|
|
|
|
pub fn ccx(&self) -> &'a CrateContext { self.fcx.ccx }
|
|
pub fn tcx(&self) -> &'a ty::ctxt {
|
|
self.fcx.ccx.tcx()
|
|
}
|
|
pub fn sess(&self) -> &'a Session { self.fcx.ccx.sess() }
|
|
|
|
pub fn ident(&self, ident: Ident) -> String {
|
|
token::get_ident(ident).get().to_string()
|
|
}
|
|
|
|
pub fn node_id_to_string(&self, id: ast::NodeId) -> String {
|
|
self.tcx().map.node_to_string(id).to_string()
|
|
}
|
|
|
|
pub fn expr_to_string(&self, e: &ast::Expr) -> String {
|
|
e.repr(self.tcx())
|
|
}
|
|
|
|
pub fn def(&self, nid: ast::NodeId) -> def::Def {
|
|
match self.tcx().def_map.borrow().find(&nid) {
|
|
Some(&v) => v,
|
|
None => {
|
|
self.tcx().sess.bug(format!(
|
|
"no def associated with node id {:?}", nid).as_slice());
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn val_to_string(&self, val: ValueRef) -> String {
|
|
self.ccx().tn().val_to_string(val)
|
|
}
|
|
|
|
pub fn llty_str(&self, ty: Type) -> String {
|
|
self.ccx().tn().type_to_string(ty)
|
|
}
|
|
|
|
pub fn ty_to_string(&self, t: ty::t) -> String {
|
|
t.repr(self.tcx())
|
|
}
|
|
|
|
pub fn to_str(&self) -> String {
|
|
let blk: *const Block = self;
|
|
format!("[block {}]", blk)
|
|
}
|
|
}
|
|
|
|
impl<'a> mc::Typer for Block<'a> {
|
|
fn tcx<'a>(&'a self) -> &'a ty::ctxt {
|
|
self.tcx()
|
|
}
|
|
|
|
fn node_ty(&self, id: ast::NodeId) -> mc::McResult<ty::t> {
|
|
Ok(node_id_type(self, id))
|
|
}
|
|
|
|
fn node_method_ty(&self, method_call: typeck::MethodCall) -> Option<ty::t> {
|
|
self.tcx().method_map.borrow().find(&method_call).map(|method| method.ty)
|
|
}
|
|
|
|
fn adjustments<'a>(&'a self) -> &'a RefCell<NodeMap<ty::AutoAdjustment>> {
|
|
&self.tcx().adjustments
|
|
}
|
|
|
|
fn is_method_call(&self, id: ast::NodeId) -> bool {
|
|
self.tcx().method_map.borrow().contains_key(&typeck::MethodCall::expr(id))
|
|
}
|
|
|
|
fn temporary_scope(&self, rvalue_id: ast::NodeId) -> Option<ast::NodeId> {
|
|
self.tcx().region_maps.temporary_scope(rvalue_id)
|
|
}
|
|
|
|
fn unboxed_closures<'a>(&'a self)
|
|
-> &'a RefCell<DefIdMap<ty::UnboxedClosure>> {
|
|
&self.tcx().unboxed_closures
|
|
}
|
|
|
|
fn upvar_borrow(&self, upvar_id: ty::UpvarId) -> ty::UpvarBorrow {
|
|
self.tcx().upvar_borrow_map.borrow().get_copy(&upvar_id)
|
|
}
|
|
|
|
fn capture_mode(&self, closure_expr_id: ast::NodeId)
|
|
-> freevars::CaptureMode {
|
|
self.tcx().capture_modes.borrow().get_copy(&closure_expr_id)
|
|
}
|
|
}
|
|
|
|
pub struct Result<'a> {
|
|
pub bcx: &'a Block<'a>,
|
|
pub val: ValueRef
|
|
}
|
|
|
|
impl<'a> Result<'a> {
|
|
pub fn new(bcx: &'a Block<'a>, val: ValueRef) -> Result<'a> {
|
|
Result {
|
|
bcx: bcx,
|
|
val: val,
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn val_ty(v: ValueRef) -> Type {
|
|
unsafe {
|
|
Type::from_ref(llvm::LLVMTypeOf(v))
|
|
}
|
|
}
|
|
|
|
// LLVM constant constructors.
|
|
pub fn C_null(t: Type) -> ValueRef {
|
|
unsafe {
|
|
llvm::LLVMConstNull(t.to_ref())
|
|
}
|
|
}
|
|
|
|
pub fn C_undef(t: Type) -> ValueRef {
|
|
unsafe {
|
|
llvm::LLVMGetUndef(t.to_ref())
|
|
}
|
|
}
|
|
|
|
pub fn C_integral(t: Type, u: u64, sign_extend: bool) -> ValueRef {
|
|
unsafe {
|
|
llvm::LLVMConstInt(t.to_ref(), u, sign_extend as Bool)
|
|
}
|
|
}
|
|
|
|
pub fn C_floating(s: &str, t: Type) -> ValueRef {
|
|
unsafe {
|
|
s.with_c_str(|buf| llvm::LLVMConstRealOfString(t.to_ref(), buf))
|
|
}
|
|
}
|
|
|
|
pub fn C_nil(ccx: &CrateContext) -> ValueRef {
|
|
C_struct(ccx, [], false)
|
|
}
|
|
|
|
pub fn C_bool(ccx: &CrateContext, val: bool) -> ValueRef {
|
|
C_integral(Type::i1(ccx), val as u64, false)
|
|
}
|
|
|
|
pub fn C_i32(ccx: &CrateContext, i: i32) -> ValueRef {
|
|
C_integral(Type::i32(ccx), i as u64, true)
|
|
}
|
|
|
|
pub fn C_i64(ccx: &CrateContext, i: i64) -> ValueRef {
|
|
C_integral(Type::i64(ccx), i as u64, true)
|
|
}
|
|
|
|
pub fn C_u64(ccx: &CrateContext, i: u64) -> ValueRef {
|
|
C_integral(Type::i64(ccx), i, false)
|
|
}
|
|
|
|
pub fn C_int(ccx: &CrateContext, i: int) -> ValueRef {
|
|
C_integral(ccx.int_type(), i as u64, true)
|
|
}
|
|
|
|
pub fn C_uint(ccx: &CrateContext, i: uint) -> ValueRef {
|
|
C_integral(ccx.int_type(), i as u64, false)
|
|
}
|
|
|
|
pub fn C_u8(ccx: &CrateContext, i: uint) -> ValueRef {
|
|
C_integral(Type::i8(ccx), i as u64, false)
|
|
}
|
|
|
|
|
|
// This is a 'c-like' raw string, which differs from
|
|
// our boxed-and-length-annotated strings.
|
|
pub fn C_cstr(cx: &CrateContext, s: InternedString, null_terminated: bool) -> ValueRef {
|
|
unsafe {
|
|
match cx.const_cstr_cache().borrow().find(&s) {
|
|
Some(&llval) => return llval,
|
|
None => ()
|
|
}
|
|
|
|
let sc = llvm::LLVMConstStringInContext(cx.llcx(),
|
|
s.get().as_ptr() as *const c_char,
|
|
s.get().len() as c_uint,
|
|
!null_terminated as Bool);
|
|
|
|
let gsym = token::gensym("str");
|
|
let g = format!("str{}", gsym.uint()).with_c_str(|buf| {
|
|
llvm::LLVMAddGlobal(cx.llmod(), val_ty(sc).to_ref(), buf)
|
|
});
|
|
llvm::LLVMSetInitializer(g, sc);
|
|
llvm::LLVMSetGlobalConstant(g, True);
|
|
llvm::SetLinkage(g, llvm::InternalLinkage);
|
|
|
|
cx.const_cstr_cache().borrow_mut().insert(s, g);
|
|
g
|
|
}
|
|
}
|
|
|
|
// NB: Do not use `do_spill_noroot` to make this into a constant string, or
|
|
// you will be kicked off fast isel. See issue #4352 for an example of this.
|
|
pub fn C_str_slice(cx: &CrateContext, s: InternedString) -> ValueRef {
|
|
unsafe {
|
|
let len = s.get().len();
|
|
let cs = llvm::LLVMConstPointerCast(C_cstr(cx, s, false),
|
|
Type::i8p(cx).to_ref());
|
|
C_named_struct(cx.tn().find_type("str_slice").unwrap(), [cs, C_uint(cx, len)])
|
|
}
|
|
}
|
|
|
|
pub fn C_binary_slice(cx: &CrateContext, data: &[u8]) -> ValueRef {
|
|
unsafe {
|
|
let len = data.len();
|
|
let lldata = C_bytes(cx, data);
|
|
|
|
let gsym = token::gensym("binary");
|
|
let g = format!("binary{}", gsym.uint()).with_c_str(|buf| {
|
|
llvm::LLVMAddGlobal(cx.llmod(), val_ty(lldata).to_ref(), buf)
|
|
});
|
|
llvm::LLVMSetInitializer(g, lldata);
|
|
llvm::LLVMSetGlobalConstant(g, True);
|
|
llvm::SetLinkage(g, llvm::InternalLinkage);
|
|
|
|
let cs = llvm::LLVMConstPointerCast(g, Type::i8p(cx).to_ref());
|
|
C_struct(cx, [cs, C_uint(cx, len)], false)
|
|
}
|
|
}
|
|
|
|
pub fn C_struct(ccx: &CrateContext, elts: &[ValueRef], packed: bool) -> ValueRef {
|
|
unsafe {
|
|
llvm::LLVMConstStructInContext(ccx.llcx(),
|
|
elts.as_ptr(), elts.len() as c_uint,
|
|
packed as Bool)
|
|
}
|
|
}
|
|
|
|
pub fn C_named_struct(t: Type, elts: &[ValueRef]) -> ValueRef {
|
|
unsafe {
|
|
llvm::LLVMConstNamedStruct(t.to_ref(), elts.as_ptr(), elts.len() as c_uint)
|
|
}
|
|
}
|
|
|
|
pub fn C_array(ty: Type, elts: &[ValueRef]) -> ValueRef {
|
|
unsafe {
|
|
return llvm::LLVMConstArray(ty.to_ref(), elts.as_ptr(), elts.len() as c_uint);
|
|
}
|
|
}
|
|
|
|
pub fn C_bytes(ccx: &CrateContext, bytes: &[u8]) -> ValueRef {
|
|
unsafe {
|
|
let ptr = bytes.as_ptr() as *const c_char;
|
|
return llvm::LLVMConstStringInContext(ccx.llcx(), ptr, bytes.len() as c_uint, True);
|
|
}
|
|
}
|
|
|
|
pub fn const_get_elt(cx: &CrateContext, v: ValueRef, us: &[c_uint])
|
|
-> ValueRef {
|
|
unsafe {
|
|
let r = llvm::LLVMConstExtractValue(v, us.as_ptr(), us.len() as c_uint);
|
|
|
|
debug!("const_get_elt(v={}, us={:?}, r={})",
|
|
cx.tn().val_to_string(v), us, cx.tn().val_to_string(r));
|
|
|
|
return r;
|
|
}
|
|
}
|
|
|
|
pub fn is_const(v: ValueRef) -> bool {
|
|
unsafe {
|
|
llvm::LLVMIsConstant(v) == True
|
|
}
|
|
}
|
|
|
|
pub fn const_to_int(v: ValueRef) -> c_longlong {
|
|
unsafe {
|
|
llvm::LLVMConstIntGetSExtValue(v)
|
|
}
|
|
}
|
|
|
|
pub fn const_to_uint(v: ValueRef) -> c_ulonglong {
|
|
unsafe {
|
|
llvm::LLVMConstIntGetZExtValue(v)
|
|
}
|
|
}
|
|
|
|
pub fn is_undef(val: ValueRef) -> bool {
|
|
unsafe {
|
|
llvm::LLVMIsUndef(val) != False
|
|
}
|
|
}
|
|
|
|
pub fn is_null(val: ValueRef) -> bool {
|
|
unsafe {
|
|
llvm::LLVMIsNull(val) != False
|
|
}
|
|
}
|
|
|
|
pub fn monomorphize_type(bcx: &Block, t: ty::t) -> ty::t {
|
|
t.subst(bcx.tcx(), &bcx.fcx.param_substs.substs)
|
|
}
|
|
|
|
pub fn node_id_type(bcx: &Block, id: ast::NodeId) -> ty::t {
|
|
let tcx = bcx.tcx();
|
|
let t = ty::node_id_to_type(tcx, id);
|
|
monomorphize_type(bcx, t)
|
|
}
|
|
|
|
pub fn expr_ty(bcx: &Block, ex: &ast::Expr) -> ty::t {
|
|
node_id_type(bcx, ex.id)
|
|
}
|
|
|
|
pub fn expr_ty_adjusted(bcx: &Block, ex: &ast::Expr) -> ty::t {
|
|
monomorphize_type(bcx, ty::expr_ty_adjusted(bcx.tcx(), ex))
|
|
}
|
|
|
|
// Key used to lookup values supplied for type parameters in an expr.
|
|
#[deriving(PartialEq)]
|
|
pub enum ExprOrMethodCall {
|
|
// Type parameters for a path like `None::<int>`
|
|
ExprId(ast::NodeId),
|
|
|
|
// Type parameters for a method call like `a.foo::<int>()`
|
|
MethodCall(typeck::MethodCall)
|
|
}
|
|
|
|
pub fn node_id_substs(bcx: &Block,
|
|
node: ExprOrMethodCall)
|
|
-> subst::Substs {
|
|
let tcx = bcx.tcx();
|
|
|
|
let substs = match node {
|
|
ExprId(id) => {
|
|
ty::node_id_item_substs(tcx, id).substs
|
|
}
|
|
MethodCall(method_call) => {
|
|
tcx.method_map.borrow().get(&method_call).substs.clone()
|
|
}
|
|
};
|
|
|
|
if substs.types.any(|t| ty::type_needs_infer(*t)) {
|
|
bcx.sess().bug(
|
|
format!("type parameters for node {:?} include inference types: \
|
|
{}",
|
|
node,
|
|
substs.repr(bcx.tcx())).as_slice());
|
|
}
|
|
|
|
substs.substp(tcx, bcx.fcx.param_substs)
|
|
}
|
|
|
|
pub fn node_vtables(bcx: &Block, id: typeck::MethodCall)
|
|
-> typeck::vtable_res {
|
|
bcx.tcx().vtable_map.borrow().find(&id).map(|vts| {
|
|
resolve_vtables_in_fn_ctxt(bcx.fcx, vts)
|
|
}).unwrap_or_else(|| subst::VecPerParamSpace::empty())
|
|
}
|
|
|
|
// Apply the typaram substitutions in the FunctionContext to some
|
|
// vtables. This should eliminate any vtable_params.
|
|
pub fn resolve_vtables_in_fn_ctxt(fcx: &FunctionContext,
|
|
vts: &typeck::vtable_res)
|
|
-> typeck::vtable_res {
|
|
resolve_vtables_under_param_substs(fcx.ccx.tcx(),
|
|
fcx.param_substs,
|
|
vts)
|
|
}
|
|
|
|
pub fn resolve_vtables_under_param_substs(tcx: &ty::ctxt,
|
|
param_substs: ¶m_substs,
|
|
vts: &typeck::vtable_res)
|
|
-> typeck::vtable_res
|
|
{
|
|
vts.map(|ds| {
|
|
resolve_param_vtables_under_param_substs(tcx,
|
|
param_substs,
|
|
ds)
|
|
})
|
|
}
|
|
|
|
pub fn resolve_param_vtables_under_param_substs(tcx: &ty::ctxt,
|
|
param_substs: ¶m_substs,
|
|
ds: &typeck::vtable_param_res)
|
|
-> typeck::vtable_param_res
|
|
{
|
|
ds.iter().map(|d| {
|
|
resolve_vtable_under_param_substs(tcx,
|
|
param_substs,
|
|
d)
|
|
}).collect()
|
|
}
|
|
|
|
|
|
|
|
pub fn resolve_vtable_under_param_substs(tcx: &ty::ctxt,
|
|
param_substs: ¶m_substs,
|
|
vt: &typeck::vtable_origin)
|
|
-> typeck::vtable_origin
|
|
{
|
|
match *vt {
|
|
typeck::vtable_static(trait_id, ref vtable_substs, ref sub) => {
|
|
let vtable_substs = vtable_substs.substp(tcx, param_substs);
|
|
typeck::vtable_static(
|
|
trait_id,
|
|
vtable_substs,
|
|
resolve_vtables_under_param_substs(tcx, param_substs, sub))
|
|
}
|
|
typeck::vtable_param(n_param, n_bound) => {
|
|
find_vtable(tcx, param_substs, n_param, n_bound)
|
|
}
|
|
typeck::vtable_unboxed_closure(def_id) => {
|
|
typeck::vtable_unboxed_closure(def_id)
|
|
}
|
|
typeck::vtable_error => typeck::vtable_error
|
|
}
|
|
}
|
|
|
|
pub fn find_vtable(tcx: &ty::ctxt,
|
|
ps: ¶m_substs,
|
|
n_param: typeck::param_index,
|
|
n_bound: uint)
|
|
-> typeck::vtable_origin {
|
|
debug!("find_vtable(n_param={:?}, n_bound={}, ps={})",
|
|
n_param, n_bound, ps.repr(tcx));
|
|
|
|
let param_bounds = ps.vtables.get(n_param.space, n_param.index);
|
|
param_bounds.get(n_bound).clone()
|
|
}
|
|
|
|
pub fn langcall(bcx: &Block,
|
|
span: Option<Span>,
|
|
msg: &str,
|
|
li: LangItem)
|
|
-> ast::DefId {
|
|
match bcx.tcx().lang_items.require(li) {
|
|
Ok(id) => id,
|
|
Err(s) => {
|
|
let msg = format!("{} {}", msg, s);
|
|
match span {
|
|
Some(span) => bcx.tcx().sess.span_fatal(span, msg.as_slice()),
|
|
None => bcx.tcx().sess.fatal(msg.as_slice()),
|
|
}
|
|
}
|
|
}
|
|
}
|