rust/src/libstd/vec.rs
bors 0c62d9d83d auto merge of #12298 : alexcrichton/rust/rustdoc-testing, r=sfackler
It's too easy to forget the `rust` tag to test something.

Closes #11698
2014-02-15 16:36:27 -08:00

4653 lines
132 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
/*!
Utilities for vector manipulation
The `vec` module contains useful code to help work with vector values.
Vectors are Rust's list type. Vectors contain zero or more values of
homogeneous types:
```rust
let int_vector = [1,2,3];
let str_vector = ["one", "two", "three"];
```
This is a big module, but for a high-level overview:
## Structs
Several structs that are useful for vectors, such as `Items`, which
represents iteration over a vector.
## Traits
A number of traits add methods that allow you to accomplish tasks with vectors.
Traits defined for the `&[T]` type (a vector slice), have methods that can be
called on either owned vectors, denoted `~[T]`, or on vector slices themselves.
These traits include `ImmutableVector`, and `MutableVector` for the `&mut [T]`
case.
An example is the method `.slice(a, b)` that returns an immutable "view" into
a vector or a vector slice from the index interval `[a, b)`:
```rust
let numbers = [0, 1, 2];
let last_numbers = numbers.slice(1, 3);
// last_numbers is now &[1, 2]
```
Traits defined for the `~[T]` type, like `OwnedVector`, can only be called
on such vectors. These methods deal with adding elements or otherwise changing
the allocation of the vector.
An example is the method `.push(element)` that will add an element at the end
of the vector:
```rust
let mut numbers = ~[0, 1, 2];
numbers.push(7);
// numbers is now ~[0, 1, 2, 7];
```
## Implementations of other traits
Vectors are a very useful type, and so there's several implementations of
traits from other modules. Some notable examples:
* `Clone`
* `Eq`, `Ord`, `TotalEq`, `TotalOrd` -- vectors can be compared,
if the element type defines the corresponding trait.
## Iteration
The method `iter()` returns an iteration value for a vector or a vector slice.
The iterator yields references to the vector's elements, so if the element
type of the vector is `int`, the element type of the iterator is `&int`.
```rust
let numbers = [0, 1, 2];
for &x in numbers.iter() {
println!("{} is a number!", x);
}
```
* `.rev_iter()` returns an iterator with the same values as `.iter()`,
but going in the reverse order, starting with the back element.
* `.mut_iter()` returns an iterator that allows modifying each value.
* `.move_iter()` converts an owned vector into an iterator that
moves out a value from the vector each iteration.
* Further iterators exist that split, chunk or permute the vector.
## Function definitions
There are a number of free functions that create or take vectors, for example:
* Creating a vector, like `from_elem` and `from_fn`
* Creating a vector with a given size: `with_capacity`
* Modifying a vector and returning it, like `append`
* Operations on paired elements, like `unzip`.
*/
#[warn(non_camel_case_types)];
use cast;
use cast::transmute;
use ops::Drop;
use clone::{Clone, DeepClone};
use container::{Container, Mutable};
use cmp::{Eq, TotalOrd, Ordering, Less, Equal, Greater};
use cmp;
use default::Default;
use fmt;
use iter::*;
use num::{Integer, CheckedAdd, Saturating, checked_next_power_of_two};
use option::{None, Option, Some};
use ptr;
use ptr::RawPtr;
use rt::global_heap::{malloc_raw, realloc_raw, exchange_free};
use result::{Ok, Err};
use mem;
use mem::size_of;
use kinds::marker;
use uint;
use unstable::finally::try_finally;
use unstable::raw::{Repr, Slice, Vec};
/**
* Creates and initializes an owned vector.
*
* Creates an owned vector of size `n_elts` and initializes the elements
* to the value returned by the function `op`.
*/
pub fn from_fn<T>(n_elts: uint, op: |uint| -> T) -> ~[T] {
unsafe {
let mut v = with_capacity(n_elts);
let p = v.as_mut_ptr();
let mut i = 0;
try_finally(
&mut i, (),
|i, ()| while *i < n_elts {
mem::move_val_init(
&mut(*p.offset(*i as int)),
op(*i));
*i += 1u;
},
|i| v.set_len(*i));
v
}
}
/**
* Creates and initializes an owned vector.
*
* Creates an owned vector of size `n_elts` and initializes the elements
* to the value `t`.
*/
pub fn from_elem<T:Clone>(n_elts: uint, t: T) -> ~[T] {
// FIXME (#7136): manually inline from_fn for 2x plus speedup (sadly very
// important, from_elem is a bottleneck in borrowck!). Unfortunately it
// still is substantially slower than using the unsafe
// vec::with_capacity/ptr::set_memory for primitive types.
unsafe {
let mut v = with_capacity(n_elts);
let p = v.as_mut_ptr();
let mut i = 0u;
try_finally(
&mut i, (),
|i, ()| while *i < n_elts {
mem::move_val_init(
&mut(*p.offset(*i as int)),
t.clone());
*i += 1u;
},
|i| v.set_len(*i));
v
}
}
/// Creates a new vector with a capacity of `capacity`
#[inline]
pub fn with_capacity<T>(capacity: uint) -> ~[T] {
unsafe {
let alloc = capacity * mem::nonzero_size_of::<T>();
let size = alloc + mem::size_of::<Vec<()>>();
if alloc / mem::nonzero_size_of::<T>() != capacity || size < alloc {
fail!("vector size is too large: {}", capacity);
}
let ptr = malloc_raw(size) as *mut Vec<()>;
(*ptr).alloc = alloc;
(*ptr).fill = 0;
transmute(ptr)
}
}
/**
* Builds a vector by calling a provided function with an argument
* function that pushes an element to the back of a vector.
* The initial capacity for the vector may optionally be specified.
*
* # Arguments
*
* * size - An option, maybe containing initial size of the vector to reserve
* * builder - A function that will construct the vector. It receives
* as an argument a function that will push an element
* onto the vector being constructed.
*/
#[inline]
pub fn build<A>(size: Option<uint>, builder: |push: |v: A||) -> ~[A] {
let mut vec = with_capacity(size.unwrap_or(4));
builder(|x| vec.push(x));
vec
}
/**
* Converts a pointer to A into a slice of length 1 (without copying).
*/
pub fn ref_slice<'a, A>(s: &'a A) -> &'a [A] {
unsafe {
transmute(Slice { data: s, len: 1 })
}
}
/**
* Converts a pointer to A into a slice of length 1 (without copying).
*/
pub fn mut_ref_slice<'a, A>(s: &'a mut A) -> &'a mut [A] {
unsafe {
let ptr: *A = transmute(s);
transmute(Slice { data: ptr, len: 1 })
}
}
/// An iterator over the slices of a vector separated by elements that
/// match a predicate function.
pub struct Splits<'a, T> {
priv v: &'a [T],
priv n: uint,
priv pred: 'a |t: &T| -> bool,
priv finished: bool
}
impl<'a, T> Iterator<&'a [T]> for Splits<'a, T> {
#[inline]
fn next(&mut self) -> Option<&'a [T]> {
if self.finished { return None; }
if self.n == 0 {
self.finished = true;
return Some(self.v);
}
match self.v.iter().position(|x| (self.pred)(x)) {
None => {
self.finished = true;
Some(self.v)
}
Some(idx) => {
let ret = Some(self.v.slice(0, idx));
self.v = self.v.slice(idx + 1, self.v.len());
self.n -= 1;
ret
}
}
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
if self.finished {
return (0, Some(0))
}
// if the predicate doesn't match anything, we yield one slice
// if it matches every element, we yield N+1 empty slices where
// N is either the number of elements or the number of splits.
match (self.v.len(), self.n) {
(0,_) => (1, Some(1)),
(_,0) => (1, Some(1)),
(l,n) => (1, cmp::min(l,n).checked_add(&1u))
}
}
}
/// An iterator over the slices of a vector separated by elements that
/// match a predicate function, from back to front.
pub struct RevSplits<'a, T> {
priv v: &'a [T],
priv n: uint,
priv pred: 'a |t: &T| -> bool,
priv finished: bool
}
impl<'a, T> Iterator<&'a [T]> for RevSplits<'a, T> {
#[inline]
fn next(&mut self) -> Option<&'a [T]> {
if self.finished { return None; }
if self.n == 0 {
self.finished = true;
return Some(self.v);
}
let pred = &mut self.pred;
match self.v.iter().rposition(|x| (*pred)(x)) {
None => {
self.finished = true;
Some(self.v)
}
Some(idx) => {
let ret = Some(self.v.slice(idx + 1, self.v.len()));
self.v = self.v.slice(0, idx);
self.n -= 1;
ret
}
}
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
if self.finished {
return (0, Some(0))
}
match (self.v.len(), self.n) {
(0,_) => (1, Some(1)),
(_,0) => (1, Some(1)),
(l,n) => (1, cmp::min(l,n).checked_add(&1u))
}
}
}
// Appending
/// Iterates over the `rhs` vector, copying each element and appending it to the
/// `lhs`. Afterwards, the `lhs` is then returned for use again.
#[inline]
pub fn append<T:Clone>(lhs: ~[T], rhs: &[T]) -> ~[T] {
let mut v = lhs;
v.push_all(rhs);
v
}
/// Appends one element to the vector provided. The vector itself is then
/// returned for use again.
#[inline]
pub fn append_one<T>(lhs: ~[T], x: T) -> ~[T] {
let mut v = lhs;
v.push(x);
v
}
// Functional utilities
/**
* Apply a function to each element of a vector and return a concatenation
* of each result vector
*/
pub fn flat_map<T, U>(v: &[T], f: |t: &T| -> ~[U]) -> ~[U] {
let mut result = ~[];
for elem in v.iter() { result.push_all_move(f(elem)); }
result
}
#[allow(missing_doc)]
pub trait VectorVector<T> {
// FIXME #5898: calling these .concat and .connect conflicts with
// StrVector::con{cat,nect}, since they have generic contents.
/// Flattens a vector of vectors of T into a single vector of T.
fn concat_vec(&self) -> ~[T];
/// Concatenate a vector of vectors, placing a given separator between each.
fn connect_vec(&self, sep: &T) -> ~[T];
}
impl<'a, T: Clone, V: Vector<T>> VectorVector<T> for &'a [V] {
fn concat_vec(&self) -> ~[T] {
let size = self.iter().fold(0u, |acc, v| acc + v.as_slice().len());
let mut result = with_capacity(size);
for v in self.iter() {
result.push_all(v.as_slice())
}
result
}
fn connect_vec(&self, sep: &T) -> ~[T] {
let size = self.iter().fold(0u, |acc, v| acc + v.as_slice().len());
let mut result = with_capacity(size + self.len());
let mut first = true;
for v in self.iter() {
if first { first = false } else { result.push(sep.clone()) }
result.push_all(v.as_slice())
}
result
}
}
/**
* Convert an iterator of pairs into a pair of vectors.
*
* Returns a tuple containing two vectors where the i-th element of the first
* vector contains the first element of the i-th tuple of the input iterator,
* and the i-th element of the second vector contains the second element
* of the i-th tuple of the input iterator.
*/
pub fn unzip<T, U, V: Iterator<(T, U)>>(mut iter: V) -> (~[T], ~[U]) {
let (lo, _) = iter.size_hint();
let mut ts = with_capacity(lo);
let mut us = with_capacity(lo);
for (t, u) in iter {
ts.push(t);
us.push(u);
}
(ts, us)
}
/// An Iterator that yields the element swaps needed to produce
/// a sequence of all possible permutations for an indexed sequence of
/// elements. Each permutation is only a single swap apart.
///
/// The SteinhausJohnsonTrotter algorithm is used.
///
/// Generates even and odd permutations alternately.
///
/// The last generated swap is always (0, 1), and it returns the
/// sequence to its initial order.
pub struct ElementSwaps {
priv sdir: ~[SizeDirection],
/// If true, emit the last swap that returns the sequence to initial state
priv emit_reset: bool,
}
impl ElementSwaps {
/// Create an `ElementSwaps` iterator for a sequence of `length` elements
pub fn new(length: uint) -> ElementSwaps {
// Initialize `sdir` with a direction that position should move in
// (all negative at the beginning) and the `size` of the
// element (equal to the original index).
ElementSwaps{
emit_reset: true,
sdir: range(0, length)
.map(|i| SizeDirection{ size: i, dir: Neg })
.to_owned_vec()
}
}
}
enum Direction { Pos, Neg }
/// An Index and Direction together
struct SizeDirection {
size: uint,
dir: Direction,
}
impl Iterator<(uint, uint)> for ElementSwaps {
#[inline]
fn next(&mut self) -> Option<(uint, uint)> {
fn new_pos(i: uint, s: Direction) -> uint {
i + match s { Pos => 1, Neg => -1 }
}
// Find the index of the largest mobile element:
// The direction should point into the vector, and the
// swap should be with a smaller `size` element.
let max = self.sdir.iter().map(|&x| x).enumerate()
.filter(|&(i, sd)|
new_pos(i, sd.dir) < self.sdir.len() &&
self.sdir[new_pos(i, sd.dir)].size < sd.size)
.max_by(|&(_, sd)| sd.size);
match max {
Some((i, sd)) => {
let j = new_pos(i, sd.dir);
self.sdir.swap(i, j);
// Swap the direction of each larger SizeDirection
for x in self.sdir.mut_iter() {
if x.size > sd.size {
x.dir = match x.dir { Pos => Neg, Neg => Pos };
}
}
Some((i, j))
},
None => if self.emit_reset && self.sdir.len() > 1 {
self.emit_reset = false;
Some((0, 1))
} else {
None
}
}
}
}
/// An Iterator that uses `ElementSwaps` to iterate through
/// all possible permutations of a vector.
///
/// The first iteration yields a clone of the vector as it is,
/// then each successive element is the vector with one
/// swap applied.
///
/// Generates even and odd permutations alternately.
pub struct Permutations<T> {
priv swaps: ElementSwaps,
priv v: ~[T],
}
impl<T: Clone> Iterator<~[T]> for Permutations<T> {
#[inline]
fn next(&mut self) -> Option<~[T]> {
match self.swaps.next() {
None => None,
Some((a, b)) => {
let elt = self.v.clone();
self.v.swap(a, b);
Some(elt)
}
}
}
}
/// An iterator over the (overlapping) slices of length `size` within
/// a vector.
#[deriving(Clone)]
pub struct Windows<'a, T> {
priv v: &'a [T],
priv size: uint
}
impl<'a, T> Iterator<&'a [T]> for Windows<'a, T> {
#[inline]
fn next(&mut self) -> Option<&'a [T]> {
if self.size > self.v.len() {
None
} else {
let ret = Some(self.v.slice(0, self.size));
self.v = self.v.slice(1, self.v.len());
ret
}
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
if self.size > self.v.len() {
(0, Some(0))
} else {
let x = self.v.len() - self.size;
(x.saturating_add(1), x.checked_add(&1u))
}
}
}
/// An iterator over a vector in (non-overlapping) chunks (`size`
/// elements at a time).
///
/// When the vector len is not evenly divided by the chunk size,
/// the last slice of the iteration will be the remainder.
#[deriving(Clone)]
pub struct Chunks<'a, T> {
priv v: &'a [T],
priv size: uint
}
impl<'a, T> Iterator<&'a [T]> for Chunks<'a, T> {
#[inline]
fn next(&mut self) -> Option<&'a [T]> {
if self.v.len() == 0 {
None
} else {
let chunksz = cmp::min(self.v.len(), self.size);
let (fst, snd) = (self.v.slice_to(chunksz),
self.v.slice_from(chunksz));
self.v = snd;
Some(fst)
}
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
if self.v.len() == 0 {
(0, Some(0))
} else {
let (n, rem) = self.v.len().div_rem(&self.size);
let n = if rem > 0 { n+1 } else { n };
(n, Some(n))
}
}
}
impl<'a, T> DoubleEndedIterator<&'a [T]> for Chunks<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<&'a [T]> {
if self.v.len() == 0 {
None
} else {
let remainder = self.v.len() % self.size;
let chunksz = if remainder != 0 { remainder } else { self.size };
let (fst, snd) = (self.v.slice_to(self.v.len() - chunksz),
self.v.slice_from(self.v.len() - chunksz));
self.v = fst;
Some(snd)
}
}
}
impl<'a, T> RandomAccessIterator<&'a [T]> for Chunks<'a, T> {
#[inline]
fn indexable(&self) -> uint {
self.v.len()/self.size + if self.v.len() % self.size != 0 { 1 } else { 0 }
}
#[inline]
fn idx(&self, index: uint) -> Option<&'a [T]> {
if index < self.indexable() {
let lo = index * self.size;
let mut hi = lo + self.size;
if hi < lo || hi > self.v.len() { hi = self.v.len(); }
Some(self.v.slice(lo, hi))
} else {
None
}
}
}
// Equality
#[cfg(not(test))]
#[allow(missing_doc)]
pub mod traits {
use super::*;
use container::Container;
use clone::Clone;
use cmp::{Eq, Ord, TotalEq, TotalOrd, Ordering, Equiv};
use iter::order;
use ops::Add;
impl<'a,T:Eq> Eq for &'a [T] {
fn eq(&self, other: & &'a [T]) -> bool {
self.len() == other.len() &&
order::eq(self.iter(), other.iter())
}
fn ne(&self, other: & &'a [T]) -> bool {
self.len() != other.len() ||
order::ne(self.iter(), other.iter())
}
}
impl<T:Eq> Eq for ~[T] {
#[inline]
fn eq(&self, other: &~[T]) -> bool { self.as_slice() == *other }
#[inline]
fn ne(&self, other: &~[T]) -> bool { !self.eq(other) }
}
impl<'a,T:TotalEq> TotalEq for &'a [T] {
fn equals(&self, other: & &'a [T]) -> bool {
self.len() == other.len() &&
order::equals(self.iter(), other.iter())
}
}
impl<T:TotalEq> TotalEq for ~[T] {
#[inline]
fn equals(&self, other: &~[T]) -> bool { self.as_slice().equals(&other.as_slice()) }
}
impl<'a,T:Eq, V: Vector<T>> Equiv<V> for &'a [T] {
#[inline]
fn equiv(&self, other: &V) -> bool { self.as_slice() == other.as_slice() }
}
impl<'a,T:Eq, V: Vector<T>> Equiv<V> for ~[T] {
#[inline]
fn equiv(&self, other: &V) -> bool { self.as_slice() == other.as_slice() }
}
impl<'a,T:TotalOrd> TotalOrd for &'a [T] {
fn cmp(&self, other: & &'a [T]) -> Ordering {
order::cmp(self.iter(), other.iter())
}
}
impl<T: TotalOrd> TotalOrd for ~[T] {
#[inline]
fn cmp(&self, other: &~[T]) -> Ordering { self.as_slice().cmp(&other.as_slice()) }
}
impl<'a, T: Eq + Ord> Ord for &'a [T] {
fn lt(&self, other: & &'a [T]) -> bool {
order::lt(self.iter(), other.iter())
}
#[inline]
fn le(&self, other: & &'a [T]) -> bool {
order::le(self.iter(), other.iter())
}
#[inline]
fn ge(&self, other: & &'a [T]) -> bool {
order::ge(self.iter(), other.iter())
}
#[inline]
fn gt(&self, other: & &'a [T]) -> bool {
order::gt(self.iter(), other.iter())
}
}
impl<T: Eq + Ord> Ord for ~[T] {
#[inline]
fn lt(&self, other: &~[T]) -> bool { self.as_slice() < other.as_slice() }
#[inline]
fn le(&self, other: &~[T]) -> bool { self.as_slice() <= other.as_slice() }
#[inline]
fn ge(&self, other: &~[T]) -> bool { self.as_slice() >= other.as_slice() }
#[inline]
fn gt(&self, other: &~[T]) -> bool { self.as_slice() > other.as_slice() }
}
impl<'a,T:Clone, V: Vector<T>> Add<V, ~[T]> for &'a [T] {
#[inline]
fn add(&self, rhs: &V) -> ~[T] {
let mut res = with_capacity(self.len() + rhs.as_slice().len());
res.push_all(*self);
res.push_all(rhs.as_slice());
res
}
}
impl<T:Clone, V: Vector<T>> Add<V, ~[T]> for ~[T] {
#[inline]
fn add(&self, rhs: &V) -> ~[T] {
self.as_slice() + rhs.as_slice()
}
}
}
#[cfg(test)]
pub mod traits {}
/// Any vector that can be represented as a slice.
pub trait Vector<T> {
/// Work with `self` as a slice.
fn as_slice<'a>(&'a self) -> &'a [T];
}
impl<'a,T> Vector<T> for &'a [T] {
#[inline(always)]
fn as_slice<'a>(&'a self) -> &'a [T] { *self }
}
impl<T> Vector<T> for ~[T] {
#[inline(always)]
fn as_slice<'a>(&'a self) -> &'a [T] { let v: &'a [T] = *self; v }
}
impl<'a, T> Container for &'a [T] {
/// Returns the length of a vector
#[inline]
fn len(&self) -> uint {
self.repr().len
}
}
impl<T> Container for ~[T] {
/// Returns the length of a vector
#[inline]
fn len(&self) -> uint {
self.as_slice().len()
}
}
/// Extension methods for vector slices with cloneable elements
pub trait CloneableVector<T> {
/// Copy `self` into a new owned vector
fn to_owned(&self) -> ~[T];
/// Convert `self` into an owned vector, not making a copy if possible.
fn into_owned(self) -> ~[T];
}
/// Extension methods for vector slices
impl<'a, T: Clone> CloneableVector<T> for &'a [T] {
/// Returns a copy of `v`.
#[inline]
fn to_owned(&self) -> ~[T] {
let mut result = with_capacity(self.len());
for e in self.iter() {
result.push((*e).clone());
}
result
}
#[inline(always)]
fn into_owned(self) -> ~[T] { self.to_owned() }
}
/// Extension methods for owned vectors
impl<T: Clone> CloneableVector<T> for ~[T] {
#[inline]
fn to_owned(&self) -> ~[T] { self.clone() }
#[inline(always)]
fn into_owned(self) -> ~[T] { self }
}
/// Extension methods for vectors
pub trait ImmutableVector<'a, T> {
/**
* Returns a slice of self between `start` and `end`.
*
* Fails when `start` or `end` point outside the bounds of self,
* or when `start` > `end`.
*/
fn slice(&self, start: uint, end: uint) -> &'a [T];
/**
* Returns a slice of self from `start` to the end of the vec.
*
* Fails when `start` points outside the bounds of self.
*/
fn slice_from(&self, start: uint) -> &'a [T];
/**
* Returns a slice of self from the start of the vec to `end`.
*
* Fails when `end` points outside the bounds of self.
*/
fn slice_to(&self, end: uint) -> &'a [T];
/// Returns an iterator over the vector
fn iter(self) -> Items<'a, T>;
/// Returns a reversed iterator over a vector
fn rev_iter(self) -> RevItems<'a, T>;
/// Returns an iterator over the subslices of the vector which are
/// separated by elements that match `pred`. The matched element
/// is not contained in the subslices.
fn split(self, pred: 'a |&T| -> bool) -> Splits<'a, T>;
/// Returns an iterator over the subslices of the vector which are
/// separated by elements that match `pred`, limited to splitting
/// at most `n` times. The matched element is not contained in
/// the subslices.
fn splitn(self, n: uint, pred: 'a |&T| -> bool) -> Splits<'a, T>;
/// Returns an iterator over the subslices of the vector which are
/// separated by elements that match `pred`. This starts at the
/// end of the vector and works backwards. The matched element is
/// not contained in the subslices.
fn rsplit(self, pred: 'a |&T| -> bool) -> RevSplits<'a, T>;
/// Returns an iterator over the subslices of the vector which are
/// separated by elements that match `pred` limited to splitting
/// at most `n` times. This starts at the end of the vector and
/// works backwards. The matched element is not contained in the
/// subslices.
fn rsplitn(self, n: uint, pred: 'a |&T| -> bool) -> RevSplits<'a, T>;
/**
* Returns an iterator over all contiguous windows of length
* `size`. The windows overlap. If the vector is shorter than
* `size`, the iterator returns no values.
*
* # Failure
*
* Fails if `size` is 0.
*
* # Example
*
* Print the adjacent pairs of a vector (i.e. `[1,2]`, `[2,3]`,
* `[3,4]`):
*
* ```rust
* let v = &[1,2,3,4];
* for win in v.windows(2) {
* println!("{:?}", win);
* }
* ```
*
*/
fn windows(self, size: uint) -> Windows<'a, T>;
/**
*
* Returns an iterator over `size` elements of the vector at a
* time. The chunks do not overlap. If `size` does not divide the
* length of the vector, then the last chunk will not have length
* `size`.
*
* # Failure
*
* Fails if `size` is 0.
*
* # Example
*
* Print the vector two elements at a time (i.e. `[1,2]`,
* `[3,4]`, `[5]`):
*
* ```rust
* let v = &[1,2,3,4,5];
* for win in v.chunks(2) {
* println!("{:?}", win);
* }
* ```
*
*/
fn chunks(self, size: uint) -> Chunks<'a, T>;
/// Returns the element of a vector at the given index, or `None` if the
/// index is out of bounds
fn get(&self, index: uint) -> Option<&'a T>;
/// Returns the first element of a vector, or `None` if it is empty
fn head(&self) -> Option<&'a T>;
/// Returns all but the first element of a vector
fn tail(&self) -> &'a [T];
/// Returns all but the first `n' elements of a vector
fn tailn(&self, n: uint) -> &'a [T];
/// Returns all but the last element of a vector
fn init(&self) -> &'a [T];
/// Returns all but the last `n' elements of a vector
fn initn(&self, n: uint) -> &'a [T];
/// Returns the last element of a vector, or `None` if it is empty.
fn last(&self) -> Option<&'a T>;
/**
* Apply a function to each element of a vector and return a concatenation
* of each result vector
*/
fn flat_map<U>(&self, f: |t: &T| -> ~[U]) -> ~[U];
/// Returns a pointer to the element at the given index, without doing
/// bounds checking.
unsafe fn unsafe_ref(self, index: uint) -> &'a T;
/**
* Returns an unsafe pointer to the vector's buffer
*
* The caller must ensure that the vector outlives the pointer this
* function returns, or else it will end up pointing to garbage.
*
* Modifying the vector may cause its buffer to be reallocated, which
* would also make any pointers to it invalid.
*/
fn as_ptr(&self) -> *T;
/**
* Binary search a sorted vector with a comparator function.
*
* The comparator function should implement an order consistent
* with the sort order of the underlying vector, returning an
* order code that indicates whether its argument is `Less`,
* `Equal` or `Greater` the desired target.
*
* Returns the index where the comparator returned `Equal`, or `None` if
* not found.
*/
fn bsearch(&self, f: |&T| -> Ordering) -> Option<uint>;
/// Deprecated, use iterators where possible
/// (`self.iter().map(f)`). Apply a function to each element
/// of a vector and return the results.
fn map<U>(&self, |t: &T| -> U) -> ~[U];
/**
* Returns a mutable reference to the first element in this slice
* and adjusts the slice in place so that it no longer contains
* that element. O(1).
*
* Equivalent to:
*
* ```ignore
* if self.len() == 0 { return None }
* let head = &self[0];
* *self = self.slice_from(1);
* Some(head)
* ```
*
* Returns `None` if vector is empty
*/
fn shift_ref(&mut self) -> Option<&'a T>;
/**
* Returns a mutable reference to the last element in this slice
* and adjusts the slice in place so that it no longer contains
* that element. O(1).
*
* Equivalent to:
*
* ```ignore
* if self.len() == 0 { return None; }
* let tail = &self[self.len() - 1];
* *self = self.slice_to(self.len() - 1);
* Some(tail)
* ```
*
* Returns `None` if slice is empty.
*/
fn pop_ref(&mut self) -> Option<&'a T>;
}
impl<'a,T> ImmutableVector<'a, T> for &'a [T] {
#[inline]
fn slice(&self, start: uint, end: uint) -> &'a [T] {
assert!(start <= end);
assert!(end <= self.len());
unsafe {
transmute(Slice {
data: self.as_ptr().offset(start as int),
len: (end - start)
})
}
}
#[inline]
fn slice_from(&self, start: uint) -> &'a [T] {
self.slice(start, self.len())
}
#[inline]
fn slice_to(&self, end: uint) -> &'a [T] {
self.slice(0, end)
}
#[inline]
fn iter(self) -> Items<'a, T> {
unsafe {
let p = self.as_ptr();
if mem::size_of::<T>() == 0 {
Items{ptr: p,
end: (p as uint + self.len()) as *T,
marker: marker::ContravariantLifetime::<'a>}
} else {
Items{ptr: p,
end: p.offset(self.len() as int),
marker: marker::ContravariantLifetime::<'a>}
}
}
}
#[inline]
fn rev_iter(self) -> RevItems<'a, T> {
self.iter().rev()
}
#[inline]
fn split(self, pred: 'a |&T| -> bool) -> Splits<'a, T> {
self.splitn(uint::MAX, pred)
}
#[inline]
fn splitn(self, n: uint, pred: 'a |&T| -> bool) -> Splits<'a, T> {
Splits {
v: self,
n: n,
pred: pred,
finished: false
}
}
#[inline]
fn rsplit(self, pred: 'a |&T| -> bool) -> RevSplits<'a, T> {
self.rsplitn(uint::MAX, pred)
}
#[inline]
fn rsplitn(self, n: uint, pred: 'a |&T| -> bool) -> RevSplits<'a, T> {
RevSplits {
v: self,
n: n,
pred: pred,
finished: false
}
}
#[inline]
fn windows(self, size: uint) -> Windows<'a, T> {
assert!(size != 0);
Windows { v: self, size: size }
}
#[inline]
fn chunks(self, size: uint) -> Chunks<'a, T> {
assert!(size != 0);
Chunks { v: self, size: size }
}
#[inline]
fn get(&self, index: uint) -> Option<&'a T> {
if index < self.len() { Some(&self[index]) } else { None }
}
#[inline]
fn head(&self) -> Option<&'a T> {
if self.len() == 0 { None } else { Some(&self[0]) }
}
#[inline]
fn tail(&self) -> &'a [T] { self.slice(1, self.len()) }
#[inline]
fn tailn(&self, n: uint) -> &'a [T] { self.slice(n, self.len()) }
#[inline]
fn init(&self) -> &'a [T] {
self.slice(0, self.len() - 1)
}
#[inline]
fn initn(&self, n: uint) -> &'a [T] {
self.slice(0, self.len() - n)
}
#[inline]
fn last(&self) -> Option<&'a T> {
if self.len() == 0 { None } else { Some(&self[self.len() - 1]) }
}
#[inline]
fn flat_map<U>(&self, f: |t: &T| -> ~[U]) -> ~[U] {
flat_map(*self, f)
}
#[inline]
unsafe fn unsafe_ref(self, index: uint) -> &'a T {
transmute(self.repr().data.offset(index as int))
}
#[inline]
fn as_ptr(&self) -> *T {
self.repr().data
}
fn bsearch(&self, f: |&T| -> Ordering) -> Option<uint> {
let mut base : uint = 0;
let mut lim : uint = self.len();
while lim != 0 {
let ix = base + (lim >> 1);
match f(&self[ix]) {
Equal => return Some(ix),
Less => {
base = ix + 1;
lim -= 1;
}
Greater => ()
}
lim >>= 1;
}
return None;
}
fn map<U>(&self, f: |t: &T| -> U) -> ~[U] {
self.iter().map(f).collect()
}
fn shift_ref(&mut self) -> Option<&'a T> {
if self.len() == 0 { return None; }
unsafe {
let s: &mut Slice<T> = transmute(self);
Some(&*raw::shift_ptr(s))
}
}
fn pop_ref(&mut self) -> Option<&'a T> {
if self.len() == 0 { return None; }
unsafe {
let s: &mut Slice<T> = transmute(self);
Some(&*raw::pop_ptr(s))
}
}
}
/// Extension methods for vectors contain `Eq` elements.
pub trait ImmutableEqVector<T:Eq> {
/// Find the first index containing a matching value
fn position_elem(&self, t: &T) -> Option<uint>;
/// Find the last index containing a matching value
fn rposition_elem(&self, t: &T) -> Option<uint>;
/// Return true if a vector contains an element with the given value
fn contains(&self, x: &T) -> bool;
/// Returns true if `needle` is a prefix of the vector.
fn starts_with(&self, needle: &[T]) -> bool;
/// Returns true if `needle` is a suffix of the vector.
fn ends_with(&self, needle: &[T]) -> bool;
}
impl<'a,T:Eq> ImmutableEqVector<T> for &'a [T] {
#[inline]
fn position_elem(&self, x: &T) -> Option<uint> {
self.iter().position(|y| *x == *y)
}
#[inline]
fn rposition_elem(&self, t: &T) -> Option<uint> {
self.iter().rposition(|x| *x == *t)
}
#[inline]
fn contains(&self, x: &T) -> bool {
self.iter().any(|elt| *x == *elt)
}
#[inline]
fn starts_with(&self, needle: &[T]) -> bool {
let n = needle.len();
self.len() >= n && needle == self.slice_to(n)
}
#[inline]
fn ends_with(&self, needle: &[T]) -> bool {
let (m, n) = (self.len(), needle.len());
m >= n && needle == self.slice_from(m - n)
}
}
/// Extension methods for vectors containing `TotalOrd` elements.
pub trait ImmutableTotalOrdVector<T: TotalOrd> {
/**
* Binary search a sorted vector for a given element.
*
* Returns the index of the element or None if not found.
*/
fn bsearch_elem(&self, x: &T) -> Option<uint>;
}
impl<'a, T: TotalOrd> ImmutableTotalOrdVector<T> for &'a [T] {
fn bsearch_elem(&self, x: &T) -> Option<uint> {
self.bsearch(|p| p.cmp(x))
}
}
/// Extension methods for vectors containing `Clone` elements.
pub trait ImmutableCloneableVector<T> {
/**
* Partitions the vector into those that satisfies the predicate, and
* those that do not.
*/
fn partitioned(&self, f: |&T| -> bool) -> (~[T], ~[T]);
/// Create an iterator that yields every possible permutation of the
/// vector in succession.
fn permutations(self) -> Permutations<T>;
}
impl<'a,T:Clone> ImmutableCloneableVector<T> for &'a [T] {
#[inline]
fn partitioned(&self, f: |&T| -> bool) -> (~[T], ~[T]) {
let mut lefts = ~[];
let mut rights = ~[];
for elt in self.iter() {
if f(elt) {
lefts.push((*elt).clone());
} else {
rights.push((*elt).clone());
}
}
(lefts, rights)
}
fn permutations(self) -> Permutations<T> {
Permutations{
swaps: ElementSwaps::new(self.len()),
v: self.to_owned(),
}
}
}
/// Extension methods for owned vectors.
pub trait OwnedVector<T> {
/// Creates a consuming iterator, that is, one that moves each
/// value out of the vector (from start to end). The vector cannot
/// be used after calling this.
///
/// # Examples
///
/// ```rust
/// let v = ~[~"a", ~"b"];
/// for s in v.move_iter() {
/// // s has type ~str, not &~str
/// println!("{}", s);
/// }
/// ```
fn move_iter(self) -> MoveItems<T>;
/// Creates a consuming iterator that moves out of the vector in
/// reverse order.
fn move_rev_iter(self) -> RevMoveItems<T>;
/**
* Reserves capacity for exactly `n` elements in the given vector.
*
* If the capacity for `self` is already equal to or greater than the requested
* capacity, then no action is taken.
*
* # Arguments
*
* * n - The number of elements to reserve space for
*
* # Failure
*
* This method always succeeds in reserving space for `n` elements, or it does
* not return.
*/
fn reserve_exact(&mut self, n: uint);
/**
* Reserves capacity for at least `n` elements in the given vector.
*
* This function will over-allocate in order to amortize the allocation costs
* in scenarios where the caller may need to repeatedly reserve additional
* space.
*
* If the capacity for `self` is already equal to or greater than the requested
* capacity, then no action is taken.
*
* # Arguments
*
* * n - The number of elements to reserve space for
*/
fn reserve(&mut self, n: uint);
/**
* Reserves capacity for at least `n` additional elements in the given vector.
*
* # Failure
*
* Fails if the new required capacity overflows uint.
*
* May also fail if `reserve` fails.
*/
fn reserve_additional(&mut self, n: uint);
/// Returns the number of elements the vector can hold without reallocating.
fn capacity(&self) -> uint;
/// Shrink the capacity of the vector to match the length
fn shrink_to_fit(&mut self);
/// Append an element to a vector
fn push(&mut self, t: T);
/// Takes ownership of the vector `rhs`, moving all elements into
/// the current vector. This does not copy any elements, and it is
/// illegal to use the `rhs` vector after calling this method
/// (because it is moved here).
///
/// # Example
///
/// ```rust
/// let mut a = ~[~1];
/// a.push_all_move(~[~2, ~3, ~4]);
/// assert!(a == ~[~1, ~2, ~3, ~4]);
/// ```
fn push_all_move(&mut self, rhs: ~[T]);
/// Remove the last element from a vector and return it, or `None` if it is empty
fn pop(&mut self) -> Option<T>;
/// Removes the first element from a vector and return it, or `None` if it is empty
fn shift(&mut self) -> Option<T>;
/// Prepend an element to the vector
fn unshift(&mut self, x: T);
/// Insert an element at position i within v, shifting all
/// elements after position i one position to the right.
fn insert(&mut self, i: uint, x:T);
/// Remove and return the element at position `i` within `v`,
/// shifting all elements after position `i` one position to the
/// left. Returns `None` if `i` is out of bounds.
///
/// # Example
/// ```rust
/// let mut v = ~[1, 2, 3];
/// assert_eq!(v.remove(1), Some(2));
/// assert_eq!(v, ~[1, 3]);
///
/// assert_eq!(v.remove(4), None);
/// // v is unchanged:
/// assert_eq!(v, ~[1, 3]);
/// ```
fn remove(&mut self, i: uint) -> Option<T>;
/**
* Remove an element from anywhere in the vector and return it, replacing it
* with the last element. This does not preserve ordering, but is O(1).
*
* Fails if index >= length.
*/
fn swap_remove(&mut self, index: uint) -> T;
/// Shorten a vector, dropping excess elements.
fn truncate(&mut self, newlen: uint);
/**
* Like `filter()`, but in place. Preserves order of `v`. Linear time.
*/
fn retain(&mut self, f: |t: &T| -> bool);
/**
* Partitions the vector into those that satisfies the predicate, and
* those that do not.
*/
fn partition(self, f: |&T| -> bool) -> (~[T], ~[T]);
/**
* Expands a vector in place, initializing the new elements to the result of
* a function.
*
* Function `init_op` is called `n` times with the values [0..`n`)
*
* # Arguments
*
* * n - The number of elements to add
* * init_op - A function to call to retrieve each appended element's
* value
*/
fn grow_fn(&mut self, n: uint, op: |uint| -> T);
/**
* Sets the length of a vector
*
* This will explicitly set the size of the vector, without actually
* modifying its buffers, so it is up to the caller to ensure that
* the vector is actually the specified size.
*/
unsafe fn set_len(&mut self, new_len: uint);
}
impl<T> OwnedVector<T> for ~[T] {
#[inline]
fn move_iter(self) -> MoveItems<T> {
unsafe {
let iter = transmute(self.iter());
let ptr = transmute(self);
MoveItems { allocation: ptr, iter: iter }
}
}
#[inline]
fn move_rev_iter(self) -> RevMoveItems<T> {
self.move_iter().rev()
}
fn reserve_exact(&mut self, n: uint) {
// Only make the (slow) call into the runtime if we have to
if self.capacity() < n {
unsafe {
let ptr: *mut *mut Vec<()> = transmute(self);
let alloc = n * mem::nonzero_size_of::<T>();
let size = alloc + mem::size_of::<Vec<()>>();
if alloc / mem::nonzero_size_of::<T>() != n || size < alloc {
fail!("vector size is too large: {}", n);
}
*ptr = realloc_raw(*ptr as *mut u8, size)
as *mut Vec<()>;
(**ptr).alloc = alloc;
}
}
}
#[inline]
fn reserve(&mut self, n: uint) {
self.reserve_exact(checked_next_power_of_two(n).unwrap_or(n));
}
#[inline]
fn reserve_additional(&mut self, n: uint) {
if self.capacity() - self.len() < n {
match self.len().checked_add(&n) {
None => fail!("vec::reserve_additional: `uint` overflow"),
Some(new_cap) => self.reserve(new_cap)
}
}
}
#[inline]
fn capacity(&self) -> uint {
unsafe {
let repr: **Vec<()> = transmute(self);
(**repr).alloc / mem::nonzero_size_of::<T>()
}
}
fn shrink_to_fit(&mut self) {
unsafe {
let ptr: *mut *mut Vec<()> = transmute(self);
let alloc = (**ptr).fill;
let size = alloc + mem::size_of::<Vec<()>>();
*ptr = realloc_raw(*ptr as *mut u8, size) as *mut Vec<()>;
(**ptr).alloc = alloc;
}
}
#[inline]
fn push(&mut self, t: T) {
unsafe {
let repr: **Vec<()> = transmute(&mut *self);
let fill = (**repr).fill;
if (**repr).alloc <= fill {
self.reserve_additional(1);
}
push_fast(self, t);
}
// This doesn't bother to make sure we have space.
#[inline] // really pretty please
unsafe fn push_fast<T>(this: &mut ~[T], t: T) {
let repr: **mut Vec<u8> = transmute(this);
let fill = (**repr).fill;
(**repr).fill += mem::nonzero_size_of::<T>();
let p = &((**repr).data) as *u8;
let p = p.offset(fill as int) as *mut T;
mem::move_val_init(&mut(*p), t);
}
}
#[inline]
fn push_all_move(&mut self, mut rhs: ~[T]) {
let self_len = self.len();
let rhs_len = rhs.len();
let new_len = self_len + rhs_len;
self.reserve_additional(rhs.len());
unsafe { // Note: infallible.
let self_p = self.as_mut_ptr();
let rhs_p = rhs.as_ptr();
ptr::copy_memory(self_p.offset(self_len as int), rhs_p, rhs_len);
self.set_len(new_len);
rhs.set_len(0);
}
}
fn pop(&mut self) -> Option<T> {
match self.len() {
0 => None,
ln => {
let valptr = &mut self[ln - 1u] as *mut T;
unsafe {
self.set_len(ln - 1u);
Some(ptr::read(&*valptr))
}
}
}
}
#[inline]
fn shift(&mut self) -> Option<T> {
self.remove(0)
}
#[inline]
fn unshift(&mut self, x: T) {
self.insert(0, x)
}
fn insert(&mut self, i: uint, x: T) {
let len = self.len();
assert!(i <= len);
// space for the new element
self.reserve_additional(1);
unsafe { // infallible
// The spot to put the new value
let p = self.as_mut_ptr().offset(i as int);
// Shift everything over to make space. (Duplicating the
// `i`th element into two consecutive places.)
ptr::copy_memory(p.offset(1), &*p, len - i);
// Write it in, overwriting the first copy of the `i`th
// element.
mem::move_val_init(&mut *p, x);
self.set_len(len + 1);
}
}
fn remove(&mut self, i: uint) -> Option<T> {
let len = self.len();
if i < len {
unsafe { // infallible
// the place we are taking from.
let ptr = self.as_mut_ptr().offset(i as int);
// copy it out, unsafely having a copy of the value on
// the stack and in the vector at the same time.
let ret = Some(ptr::read(ptr as *T));
// Shift everything down to fill in that spot.
ptr::copy_memory(ptr, &*ptr.offset(1), len - i - 1);
self.set_len(len - 1);
ret
}
} else {
None
}
}
fn swap_remove(&mut self, index: uint) -> T {
let ln = self.len();
if index >= ln {
fail!("vec::swap_remove - index {} >= length {}", index, ln);
}
if index < ln - 1 {
self.swap(index, ln - 1);
}
self.pop().unwrap()
}
fn truncate(&mut self, newlen: uint) {
let oldlen = self.len();
assert!(newlen <= oldlen);
unsafe {
let p = self.as_mut_ptr();
// This loop is optimized out for non-drop types.
for i in range(newlen, oldlen) {
ptr::read_and_zero(p.offset(i as int));
}
}
unsafe { self.set_len(newlen); }
}
fn retain(&mut self, f: |t: &T| -> bool) {
let len = self.len();
let mut deleted: uint = 0;
for i in range(0u, len) {
if !f(&self[i]) {
deleted += 1;
} else if deleted > 0 {
self.swap(i - deleted, i);
}
}
if deleted > 0 {
self.truncate(len - deleted);
}
}
#[inline]
fn partition(self, f: |&T| -> bool) -> (~[T], ~[T]) {
let mut lefts = ~[];
let mut rights = ~[];
for elt in self.move_iter() {
if f(&elt) {
lefts.push(elt);
} else {
rights.push(elt);
}
}
(lefts, rights)
}
fn grow_fn(&mut self, n: uint, op: |uint| -> T) {
let new_len = self.len() + n;
self.reserve(new_len);
let mut i: uint = 0u;
while i < n {
self.push(op(i));
i += 1u;
}
}
#[inline]
unsafe fn set_len(&mut self, new_len: uint) {
let repr: **mut Vec<()> = transmute(self);
(**repr).fill = new_len * mem::nonzero_size_of::<T>();
}
}
impl<T> Mutable for ~[T] {
/// Clear the vector, removing all values.
fn clear(&mut self) { self.truncate(0) }
}
/// Extension methods for owned vectors containing `Clone` elements.
pub trait OwnedCloneableVector<T:Clone> {
/// Iterates over the slice `rhs`, copies each element, and then appends it to
/// the vector provided `v`. The `rhs` vector is traversed in-order.
///
/// # Example
///
/// ```rust
/// let mut a = ~[1];
/// a.push_all([2, 3, 4]);
/// assert!(a == ~[1, 2, 3, 4]);
/// ```
fn push_all(&mut self, rhs: &[T]);
/**
* Expands a vector in place, initializing the new elements to a given value
*
* # Arguments
*
* * n - The number of elements to add
* * initval - The value for the new elements
*/
fn grow(&mut self, n: uint, initval: &T);
/**
* Sets the value of a vector element at a given index, growing the vector as
* needed
*
* Sets the element at position `index` to `val`. If `index` is past the end
* of the vector, expands the vector by replicating `initval` to fill the
* intervening space.
*/
fn grow_set(&mut self, index: uint, initval: &T, val: T);
}
impl<T:Clone> OwnedCloneableVector<T> for ~[T] {
#[inline]
fn push_all(&mut self, rhs: &[T]) {
let new_len = self.len() + rhs.len();
self.reserve_exact(new_len);
for elt in rhs.iter() {
self.push((*elt).clone())
}
}
fn grow(&mut self, n: uint, initval: &T) {
let new_len = self.len() + n;
self.reserve(new_len);
let mut i: uint = 0u;
while i < n {
self.push((*initval).clone());
i += 1u;
}
}
fn grow_set(&mut self, index: uint, initval: &T, val: T) {
let l = self.len();
if index >= l { self.grow(index - l + 1u, initval); }
self[index] = val;
}
}
/// Extension methods for owned vectors containing `Eq` elements.
pub trait OwnedEqVector<T:Eq> {
/**
* Remove consecutive repeated elements from a vector; if the vector is
* sorted, this removes all duplicates.
*/
fn dedup(&mut self);
}
impl<T:Eq> OwnedEqVector<T> for ~[T] {
fn dedup(&mut self) {
unsafe {
// Although we have a mutable reference to `self`, we cannot make
// *arbitrary* changes. The `Eq` comparisons could fail, so we
// must ensure that the vector is in a valid state at all time.
//
// The way that we handle this is by using swaps; we iterate
// over all the elements, swapping as we go so that at the end
// the elements we wish to keep are in the front, and those we
// wish to reject are at the back. We can then truncate the
// vector. This operation is still O(n).
//
// Example: We start in this state, where `r` represents "next
// read" and `w` represents "next_write`.
//
// r
// +---+---+---+---+---+---+
// | 0 | 1 | 1 | 2 | 3 | 3 |
// +---+---+---+---+---+---+
// w
//
// Comparing self[r] against self[w-1], tis is not a duplicate, so
// we swap self[r] and self[w] (no effect as r==w) and then increment both
// r and w, leaving us with:
//
// r
// +---+---+---+---+---+---+
// | 0 | 1 | 1 | 2 | 3 | 3 |
// +---+---+---+---+---+---+
// w
//
// Comparing self[r] against self[w-1], this value is a duplicate,
// so we increment `r` but leave everything else unchanged:
//
// r
// +---+---+---+---+---+---+
// | 0 | 1 | 1 | 2 | 3 | 3 |
// +---+---+---+---+---+---+
// w
//
// Comparing self[r] against self[w-1], this is not a duplicate,
// so swap self[r] and self[w] and advance r and w:
//
// r
// +---+---+---+---+---+---+
// | 0 | 1 | 2 | 1 | 3 | 3 |
// +---+---+---+---+---+---+
// w
//
// Not a duplicate, repeat:
//
// r
// +---+---+---+---+---+---+
// | 0 | 1 | 2 | 3 | 1 | 3 |
// +---+---+---+---+---+---+
// w
//
// Duplicate, advance r. End of vec. Truncate to w.
let ln = self.len();
if ln < 1 { return; }
// Avoid bounds checks by using unsafe pointers.
let p = self.as_mut_ptr();
let mut r = 1;
let mut w = 1;
while r < ln {
let p_r = p.offset(r as int);
let p_wm1 = p.offset((w - 1) as int);
if *p_r != *p_wm1 {
if r != w {
let p_w = p_wm1.offset(1);
mem::swap(&mut *p_r, &mut *p_w);
}
w += 1;
}
r += 1;
}
self.truncate(w);
}
}
}
fn insertion_sort<T>(v: &mut [T], compare: |&T, &T| -> Ordering) {
let len = v.len() as int;
let buf_v = v.as_mut_ptr();
// 1 <= i < len;
for i in range(1, len) {
// j satisfies: 0 <= j <= i;
let mut j = i;
unsafe {
// `i` is in bounds.
let read_ptr = buf_v.offset(i) as *T;
// find where to insert, we need to do strict <,
// rather than <=, to maintain stability.
// 0 <= j - 1 < len, so .offset(j - 1) is in bounds.
while j > 0 &&
compare(&*read_ptr, &*buf_v.offset(j - 1)) == Less {
j -= 1;
}
// shift everything to the right, to make space to
// insert this value.
// j + 1 could be `len` (for the last `i`), but in
// that case, `i == j` so we don't copy. The
// `.offset(j)` is always in bounds.
if i != j {
let tmp = ptr::read(read_ptr);
ptr::copy_memory(buf_v.offset(j + 1),
&*buf_v.offset(j),
(i - j) as uint);
ptr::copy_nonoverlapping_memory(buf_v.offset(j),
&tmp as *T,
1);
cast::forget(tmp);
}
}
}
}
fn merge_sort<T>(v: &mut [T], compare: |&T, &T| -> Ordering) {
// warning: this wildly uses unsafe.
static BASE_INSERTION: uint = 32;
static LARGE_INSERTION: uint = 16;
// FIXME #12092: smaller insertion runs seems to make sorting
// vectors of large elements a little faster on some platforms,
// but hasn't been tested/tuned extensively
let insertion = if size_of::<T>() <= 16 {
BASE_INSERTION
} else {
LARGE_INSERTION
};
let len = v.len();
// short vectors get sorted in-place via insertion sort to avoid allocations
if len <= insertion {
insertion_sort(v, compare);
return;
}
// allocate some memory to use as scratch memory, we keep the
// length 0 so we can keep shallow copies of the contents of `v`
// without risking the dtors running on an object twice if
// `compare` fails.
let mut working_space = with_capacity(2 * len);
// these both are buffers of length `len`.
let mut buf_dat = working_space.as_mut_ptr();
let mut buf_tmp = unsafe {buf_dat.offset(len as int)};
// length `len`.
let buf_v = v.as_ptr();
// step 1. sort short runs with insertion sort. This takes the
// values from `v` and sorts them into `buf_dat`, leaving that
// with sorted runs of length INSERTION.
// We could hardcode the sorting comparisons here, and we could
// manipulate/step the pointers themselves, rather than repeatedly
// .offset-ing.
for start in range_step(0, len, insertion) {
// start <= i < len;
for i in range(start, cmp::min(start + insertion, len)) {
// j satisfies: start <= j <= i;
let mut j = i as int;
unsafe {
// `i` is in bounds.
let read_ptr = buf_v.offset(i as int);
// find where to insert, we need to do strict <,
// rather than <=, to maintain stability.
// start <= j - 1 < len, so .offset(j - 1) is in
// bounds.
while j > start as int &&
compare(&*read_ptr, &*buf_dat.offset(j - 1)) == Less {
j -= 1;
}
// shift everything to the right, to make space to
// insert this value.
// j + 1 could be `len` (for the last `i`), but in
// that case, `i == j` so we don't copy. The
// `.offset(j)` is always in bounds.
ptr::copy_memory(buf_dat.offset(j + 1),
&*buf_dat.offset(j),
i - j as uint);
ptr::copy_nonoverlapping_memory(buf_dat.offset(j), read_ptr, 1);
}
}
}
// step 2. merge the sorted runs.
let mut width = insertion;
while width < len {
// merge the sorted runs of length `width` in `buf_dat` two at
// a time, placing the result in `buf_tmp`.
// 0 <= start <= len.
for start in range_step(0, len, 2 * width) {
// manipulate pointers directly for speed (rather than
// using a `for` loop with `range` and `.offset` inside
// that loop).
unsafe {
// the end of the first run & start of the
// second. Offset of `len` is defined, since this is
// precisely one byte past the end of the object.
let right_start = buf_dat.offset(cmp::min(start + width, len) as int);
// end of the second. Similar reasoning to the above re safety.
let right_end_idx = cmp::min(start + 2 * width, len);
let right_end = buf_dat.offset(right_end_idx as int);
// the pointers to the elements under consideration
// from the two runs.
// both of these are in bounds.
let mut left = buf_dat.offset(start as int);
let mut right = right_start;
// where we're putting the results, it is a run of
// length `2*width`, so we step it once for each step
// of either `left` or `right`. `buf_tmp` has length
// `len`, so these are in bounds.
let mut out = buf_tmp.offset(start as int);
let out_end = buf_tmp.offset(right_end_idx as int);
while out < out_end {
// Either the left or the right run are exhausted,
// so just copy the remainder from the other run
// and move on; this gives a huge speed-up (order
// of 25%) for mostly sorted vectors (the best
// case).
if left == right_start {
// the number remaining in this run.
let elems = (right_end as uint - right as uint) / mem::size_of::<T>();
ptr::copy_nonoverlapping_memory(out, &*right, elems);
break;
} else if right == right_end {
let elems = (right_start as uint - left as uint) / mem::size_of::<T>();
ptr::copy_nonoverlapping_memory(out, &*left, elems);
break;
}
// check which side is smaller, and that's the
// next element for the new run.
// `left < right_start` and `right < right_end`,
// so these are valid.
let to_copy = if compare(&*left, &*right) == Greater {
step(&mut right)
} else {
step(&mut left)
};
ptr::copy_nonoverlapping_memory(out, &*to_copy, 1);
step(&mut out);
}
}
}
mem::swap(&mut buf_dat, &mut buf_tmp);
width *= 2;
}
// write the result to `v` in one go, so that there are never two copies
// of the same object in `v`.
unsafe {
ptr::copy_nonoverlapping_memory(v.as_mut_ptr(), &*buf_dat, len);
}
// increment the pointer, returning the old pointer.
#[inline(always)]
unsafe fn step<T>(ptr: &mut *mut T) -> *mut T {
let old = *ptr;
*ptr = ptr.offset(1);
old
}
}
/// Extension methods for vectors such that their elements are
/// mutable.
pub trait MutableVector<'a, T> {
/// Work with `self` as a mut slice.
/// Primarily intended for getting a &mut [T] from a [T, ..N].
fn as_mut_slice(self) -> &'a mut [T];
/// Return a slice that points into another slice.
fn mut_slice(self, start: uint, end: uint) -> &'a mut [T];
/**
* Returns a slice of self from `start` to the end of the vec.
*
* Fails when `start` points outside the bounds of self.
*/
fn mut_slice_from(self, start: uint) -> &'a mut [T];
/**
* Returns a slice of self from the start of the vec to `end`.
*
* Fails when `end` points outside the bounds of self.
*/
fn mut_slice_to(self, end: uint) -> &'a mut [T];
/// Returns an iterator that allows modifying each value
fn mut_iter(self) -> MutItems<'a, T>;
/// Returns a mutable pointer to the last item in the vector.
fn mut_last(self) -> Option<&'a mut T>;
/// Returns a reversed iterator that allows modifying each value
fn mut_rev_iter(self) -> RevMutItems<'a, T>;
/// Returns an iterator over the mutable subslices of the vector
/// which are separated by elements that match `pred`. The
/// matched element is not contained in the subslices.
fn mut_split(self, pred: 'a |&T| -> bool) -> MutSplits<'a, T>;
/**
* Returns an iterator over `size` elements of the vector at a time.
* The chunks are mutable and do not overlap. If `size` does not divide the
* length of the vector, then the last chunk will not have length
* `size`.
*
* # Failure
*
* Fails if `size` is 0.
*/
fn mut_chunks(self, chunk_size: uint) -> MutChunks<'a, T>;
/**
* Returns a mutable reference to the first element in this slice
* and adjusts the slice in place so that it no longer contains
* that element. O(1).
*
* Equivalent to:
*
* ```ignore
* if self.len() == 0 { return None; }
* let head = &mut self[0];
* *self = self.mut_slice_from(1);
* Some(head)
* ```
*
* Returns `None` if slice is empty
*/
fn mut_shift_ref(&mut self) -> Option<&'a mut T>;
/**
* Returns a mutable reference to the last element in this slice
* and adjusts the slice in place so that it no longer contains
* that element. O(1).
*
* Equivalent to:
*
* ```ignore
* if self.len() == 0 { return None; }
* let tail = &mut self[self.len() - 1];
* *self = self.mut_slice_to(self.len() - 1);
* Some(tail)
* ```
*
* Returns `None` if slice is empty.
*/
fn mut_pop_ref(&mut self) -> Option<&'a mut T>;
/// Swaps two elements in a vector.
///
/// Fails if `a` or `b` are out of bounds.
///
/// # Arguments
///
/// * a - The index of the first element
/// * b - The index of the second element
///
/// # Example
///
/// ```rust
/// let mut v = ["a", "b", "c", "d"];
/// v.swap(1, 3);
/// assert_eq!(v, ["a", "d", "c", "b"]);
/// ```
fn swap(self, a: uint, b: uint);
/// Divides one `&mut` into two at an index.
///
/// The first will contain all indices from `[0, mid)` (excluding
/// the index `mid` itself) and the second will contain all
/// indices from `[mid, len)` (excluding the index `len` itself).
///
/// Fails if `mid > len`.
///
/// # Example
///
/// ```rust
/// let mut v = [1, 2, 3, 4, 5, 6];
///
/// // scoped to restrict the lifetime of the borrows
/// {
/// let (left, right) = v.mut_split_at(0);
/// assert_eq!(left, &mut []);
/// assert_eq!(right, &mut [1, 2, 3, 4, 5, 6]);
/// }
///
/// {
/// let (left, right) = v.mut_split_at(2);
/// assert_eq!(left, &mut [1, 2]);
/// assert_eq!(right, &mut [3, 4, 5, 6]);
/// }
///
/// {
/// let (left, right) = v.mut_split_at(6);
/// assert_eq!(left, &mut [1, 2, 3, 4, 5, 6]);
/// assert_eq!(right, &mut []);
/// }
/// ```
fn mut_split_at(self, mid: uint) -> (&'a mut [T],
&'a mut [T]);
/// Reverse the order of elements in a vector, in place.
///
/// # Example
///
/// ```rust
/// let mut v = [1, 2, 3];
/// v.reverse();
/// assert_eq!(v, [3, 2, 1]);
/// ```
fn reverse(self);
/// Sort the vector, in place, using `compare` to compare
/// elements.
///
/// This sort is `O(n log n)` worst-case and stable, but allocates
/// approximately `2 * n`, where `n` is the length of `self`.
///
/// # Example
///
/// ```rust
/// let mut v = [5i, 4, 1, 3, 2];
/// v.sort_by(|a, b| a.cmp(b));
/// assert_eq!(v, [1, 2, 3, 4, 5]);
///
/// // reverse sorting
/// v.sort_by(|a, b| b.cmp(a));
/// assert_eq!(v, [5, 4, 3, 2, 1]);
/// ```
fn sort_by(self, compare: |&T, &T| -> Ordering);
/**
* Consumes `src` and moves as many elements as it can into `self`
* from the range [start,end).
*
* Returns the number of elements copied (the shorter of self.len()
* and end - start).
*
* # Arguments
*
* * src - A mutable vector of `T`
* * start - The index into `src` to start copying from
* * end - The index into `str` to stop copying from
*/
fn move_from(self, src: ~[T], start: uint, end: uint) -> uint;
/// Returns an unsafe mutable pointer to the element in index
unsafe fn unsafe_mut_ref(self, index: uint) -> &'a mut T;
/// Return an unsafe mutable pointer to the vector's buffer.
///
/// The caller must ensure that the vector outlives the pointer this
/// function returns, or else it will end up pointing to garbage.
///
/// Modifying the vector may cause its buffer to be reallocated, which
/// would also make any pointers to it invalid.
#[inline]
fn as_mut_ptr(self) -> *mut T;
/// Unsafely sets the element in index to the value.
///
/// This performs no bounds checks, and it is undefined behaviour
/// if `index` is larger than the length of `self`. However, it
/// does run the destructor at `index`. It is equivalent to
/// `self[index] = val`.
///
/// # Example
///
/// ```rust
/// let mut v = ~[~"foo", ~"bar", ~"baz"];
///
/// unsafe {
/// // `~"baz"` is deallocated.
/// v.unsafe_set(2, ~"qux");
///
/// // Out of bounds: could cause a crash, or overwriting
/// // other data, or something else.
/// // v.unsafe_set(10, ~"oops");
/// }
/// ```
unsafe fn unsafe_set(self, index: uint, val: T);
/// Unchecked vector index assignment. Does not drop the
/// old value and hence is only suitable when the vector
/// is newly allocated.
///
/// # Example
///
/// ```rust
/// let mut v = [~"foo", ~"bar"];
///
/// // memory leak! `~"bar"` is not deallocated.
/// unsafe { v.init_elem(1, ~"baz"); }
/// ```
unsafe fn init_elem(self, i: uint, val: T);
/// Copies raw bytes from `src` to `self`.
///
/// This does not run destructors on the overwritten elements, and
/// ignores move semantics. `self` and `src` must not
/// overlap. Fails if `self` is shorter than `src`.
unsafe fn copy_memory(self, src: &[T]);
}
impl<'a,T> MutableVector<'a, T> for &'a mut [T] {
#[inline]
fn as_mut_slice(self) -> &'a mut [T] { self }
fn mut_slice(self, start: uint, end: uint) -> &'a mut [T] {
assert!(start <= end);
assert!(end <= self.len());
unsafe {
transmute(Slice {
data: self.as_mut_ptr().offset(start as int) as *T,
len: (end - start)
})
}
}
#[inline]
fn mut_slice_from(self, start: uint) -> &'a mut [T] {
let len = self.len();
self.mut_slice(start, len)
}
#[inline]
fn mut_slice_to(self, end: uint) -> &'a mut [T] {
self.mut_slice(0, end)
}
#[inline]
fn mut_split_at(self, mid: uint) -> (&'a mut [T], &'a mut [T]) {
unsafe {
let len = self.len();
let self2: &'a mut [T] = cast::transmute_copy(&self);
(self.mut_slice(0, mid), self2.mut_slice(mid, len))
}
}
#[inline]
fn mut_iter(self) -> MutItems<'a, T> {
unsafe {
let p = self.as_mut_ptr();
if mem::size_of::<T>() == 0 {
MutItems{ptr: p,
end: (p as uint + self.len()) as *mut T,
marker: marker::ContravariantLifetime::<'a>}
} else {
MutItems{ptr: p,
end: p.offset(self.len() as int),
marker: marker::ContravariantLifetime::<'a>}
}
}
}
#[inline]
fn mut_last(self) -> Option<&'a mut T> {
let len = self.len();
if len == 0 { return None; }
Some(&mut self[len - 1])
}
#[inline]
fn mut_rev_iter(self) -> RevMutItems<'a, T> {
self.mut_iter().rev()
}
#[inline]
fn mut_split(self, pred: 'a |&T| -> bool) -> MutSplits<'a, T> {
MutSplits { v: self, pred: pred, finished: false }
}
#[inline]
fn mut_chunks(self, chunk_size: uint) -> MutChunks<'a, T> {
assert!(chunk_size > 0);
MutChunks { v: self, chunk_size: chunk_size }
}
fn mut_shift_ref(&mut self) -> Option<&'a mut T> {
if self.len() == 0 { return None; }
unsafe {
let s: &mut Slice<T> = transmute(self);
Some(cast::transmute_mut(&*raw::shift_ptr(s)))
}
}
fn mut_pop_ref(&mut self) -> Option<&'a mut T> {
if self.len() == 0 { return None; }
unsafe {
let s: &mut Slice<T> = transmute(self);
Some(cast::transmute_mut(&*raw::pop_ptr(s)))
}
}
fn swap(self, a: uint, b: uint) {
unsafe {
// Can't take two mutable loans from one vector, so instead just cast
// them to their raw pointers to do the swap
let pa: *mut T = &mut self[a];
let pb: *mut T = &mut self[b];
ptr::swap(pa, pb);
}
}
fn reverse(self) {
let mut i: uint = 0;
let ln = self.len();
while i < ln / 2 {
self.swap(i, ln - i - 1);
i += 1;
}
}
#[inline]
fn sort_by(self, compare: |&T, &T| -> Ordering) {
merge_sort(self, compare)
}
#[inline]
fn move_from(self, mut src: ~[T], start: uint, end: uint) -> uint {
for (a, b) in self.mut_iter().zip(src.mut_slice(start, end).mut_iter()) {
mem::swap(a, b);
}
cmp::min(self.len(), end-start)
}
#[inline]
unsafe fn unsafe_mut_ref(self, index: uint) -> &'a mut T {
transmute((self.repr().data as *mut T).offset(index as int))
}
#[inline]
fn as_mut_ptr(self) -> *mut T {
self.repr().data as *mut T
}
#[inline]
unsafe fn unsafe_set(self, index: uint, val: T) {
*self.unsafe_mut_ref(index) = val;
}
#[inline]
unsafe fn init_elem(self, i: uint, val: T) {
mem::move_val_init(&mut (*self.as_mut_ptr().offset(i as int)), val);
}
#[inline]
unsafe fn copy_memory(self, src: &[T]) {
let len_src = src.len();
assert!(self.len() >= len_src);
ptr::copy_nonoverlapping_memory(self.as_mut_ptr(), src.as_ptr(), len_src)
}
}
/// Trait for &[T] where T is Cloneable
pub trait MutableCloneableVector<T> {
/// Copies as many elements from `src` as it can into `self` (the
/// shorter of `self.len()` and `src.len()`). Returns the number
/// of elements copied.
///
/// # Example
///
/// ```rust
/// use std::vec::MutableCloneableVector;
///
/// let mut dst = [0, 0, 0];
/// let src = [1, 2];
///
/// assert_eq!(dst.copy_from(src), 2);
/// assert_eq!(dst, [1, 2, 0]);
///
/// let src2 = [3, 4, 5, 6];
/// assert_eq!(dst.copy_from(src2), 3);
/// assert_eq!(dst, [3, 4, 5]);
/// ```
fn copy_from(self, &[T]) -> uint;
}
impl<'a, T:Clone> MutableCloneableVector<T> for &'a mut [T] {
#[inline]
fn copy_from(self, src: &[T]) -> uint {
for (a, b) in self.mut_iter().zip(src.iter()) {
a.clone_from(b);
}
cmp::min(self.len(), src.len())
}
}
/// Methods for mutable vectors with orderable elements, such as
/// in-place sorting.
pub trait MutableTotalOrdVector<T> {
/// Sort the vector, in place.
///
/// This is equivalent to `self.sort_by(|a, b| a.cmp(b))`.
///
/// # Example
///
/// ```rust
/// let mut v = [-5, 4, 1, -3, 2];
///
/// v.sort();
/// assert_eq!(v, [-5, -3, 1, 2, 4]);
/// ```
fn sort(self);
}
impl<'a, T: TotalOrd> MutableTotalOrdVector<T> for &'a mut [T] {
#[inline]
fn sort(self) {
self.sort_by(|a,b| a.cmp(b))
}
}
/**
* Constructs a vector from an unsafe pointer to a buffer
*
* # Arguments
*
* * ptr - An unsafe pointer to a buffer of `T`
* * elts - The number of elements in the buffer
*/
// Wrapper for fn in raw: needs to be called by net_tcp::on_tcp_read_cb
pub unsafe fn from_buf<T>(ptr: *T, elts: uint) -> ~[T] {
raw::from_buf_raw(ptr, elts)
}
/// Unsafe operations
pub mod raw {
use cast::transmute;
use ptr;
use ptr::RawPtr;
use vec::{with_capacity, MutableVector, OwnedVector};
use unstable::raw::Slice;
/**
* Form a slice from a pointer and length (as a number of units,
* not bytes).
*/
#[inline]
pub unsafe fn buf_as_slice<T,U>(p: *T, len: uint, f: |v: &[T]| -> U)
-> U {
f(transmute(Slice {
data: p,
len: len
}))
}
/**
* Form a slice from a pointer and length (as a number of units,
* not bytes).
*/
#[inline]
pub unsafe fn mut_buf_as_slice<T,
U>(
p: *mut T,
len: uint,
f: |v: &mut [T]| -> U)
-> U {
f(transmute(Slice {
data: p as *T,
len: len
}))
}
/**
* Constructs a vector from an unsafe pointer to a buffer
*
* # Arguments
*
* * ptr - An unsafe pointer to a buffer of `T`
* * elts - The number of elements in the buffer
*/
// Was in raw, but needs to be called by net_tcp::on_tcp_read_cb
#[inline]
pub unsafe fn from_buf_raw<T>(ptr: *T, elts: uint) -> ~[T] {
let mut dst = with_capacity(elts);
dst.set_len(elts);
ptr::copy_memory(dst.as_mut_ptr(), ptr, elts);
dst
}
/**
* Returns a pointer to first element in slice and adjusts
* slice so it no longer contains that element. Fails if
* slice is empty. O(1).
*/
pub unsafe fn shift_ptr<T>(slice: &mut Slice<T>) -> *T {
if slice.len == 0 { fail!("shift on empty slice"); }
let head: *T = slice.data;
slice.data = slice.data.offset(1);
slice.len -= 1;
head
}
/**
* Returns a pointer to last element in slice and adjusts
* slice so it no longer contains that element. Fails if
* slice is empty. O(1).
*/
pub unsafe fn pop_ptr<T>(slice: &mut Slice<T>) -> *T {
if slice.len == 0 { fail!("pop on empty slice"); }
let tail: *T = slice.data.offset((slice.len - 1) as int);
slice.len -= 1;
tail
}
}
/// Operations on `[u8]`.
pub mod bytes {
use container::Container;
use vec::{MutableVector, OwnedVector, ImmutableVector};
use ptr;
use ptr::RawPtr;
/// A trait for operations on mutable `[u8]`s.
pub trait MutableByteVector {
/// Sets all bytes of the receiver to the given value.
fn set_memory(self, value: u8);
}
impl<'a> MutableByteVector for &'a mut [u8] {
#[inline]
fn set_memory(self, value: u8) {
unsafe { ptr::set_memory(self.as_mut_ptr(), value, self.len()) };
}
}
/// Copies data from `src` to `dst`
///
/// `src` and `dst` must not overlap. Fails if the length of `dst`
/// is less than the length of `src`.
#[inline]
pub fn copy_memory(dst: &mut [u8], src: &[u8]) {
// Bound checks are done at .copy_memory.
unsafe { dst.copy_memory(src) }
}
/**
* Allocate space in `dst` and append the data to `src`.
*/
#[inline]
pub fn push_bytes(dst: &mut ~[u8], src: &[u8]) {
let old_len = dst.len();
dst.reserve_additional(src.len());
unsafe {
ptr::copy_memory(dst.as_mut_ptr().offset(old_len as int), src.as_ptr(), src.len());
dst.set_len(old_len + src.len());
}
}
}
impl<A: Clone> Clone for ~[A] {
#[inline]
fn clone(&self) -> ~[A] {
self.iter().map(|item| item.clone()).collect()
}
fn clone_from(&mut self, source: &~[A]) {
if self.len() < source.len() {
*self = source.clone()
} else {
self.truncate(source.len());
for (x, y) in self.mut_iter().zip(source.iter()) {
x.clone_from(y);
}
}
}
}
impl<A: DeepClone> DeepClone for ~[A] {
#[inline]
fn deep_clone(&self) -> ~[A] {
self.iter().map(|item| item.deep_clone()).collect()
}
fn deep_clone_from(&mut self, source: &~[A]) {
if self.len() < source.len() {
*self = source.deep_clone()
} else {
self.truncate(source.len());
for (x, y) in self.mut_iter().zip(source.iter()) {
x.deep_clone_from(y);
}
}
}
}
impl<'a, T: fmt::Show> fmt::Show for &'a [T] {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if_ok!(write!(f.buf, "["));
let mut is_first = true;
for x in self.iter() {
if is_first {
is_first = false;
} else {
if_ok!(write!(f.buf, ", "));
}
if_ok!(write!(f.buf, "{}", *x))
}
write!(f.buf, "]")
}
}
impl<T: fmt::Show> fmt::Show for ~[T] {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.as_slice().fmt(f)
}
}
// This works because every lifetime is a sub-lifetime of 'static
impl<'a, A> Default for &'a [A] {
fn default() -> &'a [A] { &'a [] }
}
impl<A> Default for ~[A] {
fn default() -> ~[A] { ~[] }
}
macro_rules! iterator {
(struct $name:ident -> $ptr:ty, $elem:ty) => {
/// An iterator for iterating over a vector.
pub struct $name<'a, T> {
priv ptr: $ptr,
priv end: $ptr,
priv marker: marker::ContravariantLifetime<'a>,
}
impl<'a, T> Iterator<$elem> for $name<'a, T> {
#[inline]
fn next(&mut self) -> Option<$elem> {
// could be implemented with slices, but this avoids bounds checks
unsafe {
if self.ptr == self.end {
None
} else {
let old = self.ptr;
self.ptr = if mem::size_of::<T>() == 0 {
// purposefully don't use 'ptr.offset' because for
// vectors with 0-size elements this would return the
// same pointer.
transmute(self.ptr as uint + 1)
} else {
self.ptr.offset(1)
};
Some(transmute(old))
}
}
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
let diff = (self.end as uint) - (self.ptr as uint);
let exact = diff / mem::nonzero_size_of::<T>();
(exact, Some(exact))
}
}
impl<'a, T> DoubleEndedIterator<$elem> for $name<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<$elem> {
// could be implemented with slices, but this avoids bounds checks
unsafe {
if self.end == self.ptr {
None
} else {
self.end = if mem::size_of::<T>() == 0 {
// See above for why 'ptr.offset' isn't used
transmute(self.end as uint - 1)
} else {
self.end.offset(-1)
};
Some(transmute(self.end))
}
}
}
}
}
}
impl<'a, T> RandomAccessIterator<&'a T> for Items<'a, T> {
#[inline]
fn indexable(&self) -> uint {
let (exact, _) = self.size_hint();
exact
}
#[inline]
fn idx(&self, index: uint) -> Option<&'a T> {
unsafe {
if index < self.indexable() {
transmute(self.ptr.offset(index as int))
} else {
None
}
}
}
}
iterator!{struct Items -> *T, &'a T}
pub type RevItems<'a, T> = Rev<Items<'a, T>>;
impl<'a, T> ExactSize<&'a T> for Items<'a, T> {}
impl<'a, T> ExactSize<&'a mut T> for MutItems<'a, T> {}
impl<'a, T> Clone for Items<'a, T> {
fn clone(&self) -> Items<'a, T> { *self }
}
iterator!{struct MutItems -> *mut T, &'a mut T}
pub type RevMutItems<'a, T> = Rev<MutItems<'a, T>>;
/// An iterator over the subslices of the vector which are separated
/// by elements that match `pred`.
pub struct MutSplits<'a, T> {
priv v: &'a mut [T],
priv pred: 'a |t: &T| -> bool,
priv finished: bool
}
impl<'a, T> Iterator<&'a mut [T]> for MutSplits<'a, T> {
#[inline]
fn next(&mut self) -> Option<&'a mut [T]> {
if self.finished { return None; }
match self.v.iter().position(|x| (self.pred)(x)) {
None => {
self.finished = true;
let tmp = mem::replace(&mut self.v, &mut []);
let len = tmp.len();
let (head, tail) = tmp.mut_split_at(len);
self.v = tail;
Some(head)
}
Some(idx) => {
let tmp = mem::replace(&mut self.v, &mut []);
let (head, tail) = tmp.mut_split_at(idx);
self.v = tail.mut_slice_from(1);
Some(head)
}
}
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
if self.finished {
(0, Some(0))
} else {
// if the predicate doesn't match anything, we yield one slice
// if it matches every element, we yield len+1 empty slices.
(1, Some(self.v.len() + 1))
}
}
}
impl<'a, T> DoubleEndedIterator<&'a mut [T]> for MutSplits<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<&'a mut [T]> {
if self.finished { return None; }
match self.v.iter().rposition(|x| (self.pred)(x)) {
None => {
self.finished = true;
let tmp = mem::replace(&mut self.v, &mut []);
Some(tmp)
}
Some(idx) => {
let tmp = mem::replace(&mut self.v, &mut []);
let (head, tail) = tmp.mut_split_at(idx);
self.v = head;
Some(tail.mut_slice_from(1))
}
}
}
}
/// An iterator over a vector in (non-overlapping) mutable chunks (`size` elements at a time). When
/// the vector len is not evenly divided by the chunk size, the last slice of the iteration will be
/// the remainder.
pub struct MutChunks<'a, T> {
priv v: &'a mut [T],
priv chunk_size: uint
}
impl<'a, T> Iterator<&'a mut [T]> for MutChunks<'a, T> {
#[inline]
fn next(&mut self) -> Option<&'a mut [T]> {
if self.v.len() == 0 {
None
} else {
let sz = cmp::min(self.v.len(), self.chunk_size);
let tmp = mem::replace(&mut self.v, &mut []);
let (head, tail) = tmp.mut_split_at(sz);
self.v = tail;
Some(head)
}
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
if self.v.len() == 0 {
(0, Some(0))
} else {
let (n, rem) = self.v.len().div_rem(&self.chunk_size);
let n = if rem > 0 { n + 1 } else { n };
(n, Some(n))
}
}
}
impl<'a, T> DoubleEndedIterator<&'a mut [T]> for MutChunks<'a, T> {
#[inline]
fn next_back(&mut self) -> Option<&'a mut [T]> {
if self.v.len() == 0 {
None
} else {
let remainder = self.v.len() % self.chunk_size;
let sz = if remainder != 0 { remainder } else { self.chunk_size };
let tmp = mem::replace(&mut self.v, &mut []);
let tmp_len = tmp.len();
let (head, tail) = tmp.mut_split_at(tmp_len - sz);
self.v = head;
Some(tail)
}
}
}
/// An iterator that moves out of a vector.
pub struct MoveItems<T> {
priv allocation: *mut u8, // the block of memory allocated for the vector
priv iter: Items<'static, T>
}
impl<T> Iterator<T> for MoveItems<T> {
#[inline]
fn next(&mut self) -> Option<T> {
unsafe {
self.iter.next().map(|x| ptr::read(x))
}
}
#[inline]
fn size_hint(&self) -> (uint, Option<uint>) {
self.iter.size_hint()
}
}
impl<T> DoubleEndedIterator<T> for MoveItems<T> {
#[inline]
fn next_back(&mut self) -> Option<T> {
unsafe {
self.iter.next_back().map(|x| ptr::read(x))
}
}
}
#[unsafe_destructor]
impl<T> Drop for MoveItems<T> {
fn drop(&mut self) {
// destroy the remaining elements
for _x in *self {}
unsafe {
exchange_free(self.allocation as *u8)
}
}
}
/// An iterator that moves out of a vector in reverse order.
pub type RevMoveItems<T> = Rev<MoveItems<T>>;
impl<A> FromIterator<A> for ~[A] {
fn from_iterator<T: Iterator<A>>(iterator: &mut T) -> ~[A] {
let (lower, _) = iterator.size_hint();
let mut xs = with_capacity(lower);
for x in *iterator {
xs.push(x);
}
xs
}
}
impl<A> Extendable<A> for ~[A] {
fn extend<T: Iterator<A>>(&mut self, iterator: &mut T) {
let (lower, _) = iterator.size_hint();
let len = self.len();
self.reserve_exact(len + lower);
for x in *iterator {
self.push(x);
}
}
}
#[cfg(test)]
mod tests {
use prelude::*;
use mem;
use vec::*;
use cmp::*;
use rand::{Rng, task_rng};
fn square(n: uint) -> uint { n * n }
fn square_ref(n: &uint) -> uint { square(*n) }
fn is_odd(n: &uint) -> bool { *n % 2u == 1u }
#[test]
fn test_unsafe_ptrs() {
unsafe {
// Test on-stack copy-from-buf.
let a = ~[1, 2, 3];
let mut ptr = a.as_ptr();
let b = from_buf(ptr, 3u);
assert_eq!(b.len(), 3u);
assert_eq!(b[0], 1);
assert_eq!(b[1], 2);
assert_eq!(b[2], 3);
// Test on-heap copy-from-buf.
let c = ~[1, 2, 3, 4, 5];
ptr = c.as_ptr();
let d = from_buf(ptr, 5u);
assert_eq!(d.len(), 5u);
assert_eq!(d[0], 1);
assert_eq!(d[1], 2);
assert_eq!(d[2], 3);
assert_eq!(d[3], 4);
assert_eq!(d[4], 5);
}
}
#[test]
fn test_from_fn() {
// Test on-stack from_fn.
let mut v = from_fn(3u, square);
assert_eq!(v.len(), 3u);
assert_eq!(v[0], 0u);
assert_eq!(v[1], 1u);
assert_eq!(v[2], 4u);
// Test on-heap from_fn.
v = from_fn(5u, square);
assert_eq!(v.len(), 5u);
assert_eq!(v[0], 0u);
assert_eq!(v[1], 1u);
assert_eq!(v[2], 4u);
assert_eq!(v[3], 9u);
assert_eq!(v[4], 16u);
}
#[test]
fn test_from_elem() {
// Test on-stack from_elem.
let mut v = from_elem(2u, 10u);
assert_eq!(v.len(), 2u);
assert_eq!(v[0], 10u);
assert_eq!(v[1], 10u);
// Test on-heap from_elem.
v = from_elem(6u, 20u);
assert_eq!(v[0], 20u);
assert_eq!(v[1], 20u);
assert_eq!(v[2], 20u);
assert_eq!(v[3], 20u);
assert_eq!(v[4], 20u);
assert_eq!(v[5], 20u);
}
#[test]
fn test_is_empty() {
let xs: [int, ..0] = [];
assert!(xs.is_empty());
assert!(![0].is_empty());
}
#[test]
fn test_len_divzero() {
type Z = [i8, ..0];
let v0 : &[Z] = &[];
let v1 : &[Z] = &[[]];
let v2 : &[Z] = &[[], []];
assert_eq!(mem::size_of::<Z>(), 0);
assert_eq!(v0.len(), 0);
assert_eq!(v1.len(), 1);
assert_eq!(v2.len(), 2);
}
#[test]
fn test_get() {
let mut a = ~[11];
assert_eq!(a.get(1), None);
a = ~[11, 12];
assert_eq!(a.get(1).unwrap(), &12);
a = ~[11, 12, 13];
assert_eq!(a.get(1).unwrap(), &12);
}
#[test]
fn test_head() {
let mut a = ~[];
assert_eq!(a.head(), None);
a = ~[11];
assert_eq!(a.head().unwrap(), &11);
a = ~[11, 12];
assert_eq!(a.head().unwrap(), &11);
}
#[test]
fn test_tail() {
let mut a = ~[11];
assert_eq!(a.tail(), &[]);
a = ~[11, 12];
assert_eq!(a.tail(), &[12]);
}
#[test]
#[should_fail]
fn test_tail_empty() {
let a: ~[int] = ~[];
a.tail();
}
#[test]
fn test_tailn() {
let mut a = ~[11, 12, 13];
assert_eq!(a.tailn(0), &[11, 12, 13]);
a = ~[11, 12, 13];
assert_eq!(a.tailn(2), &[13]);
}
#[test]
#[should_fail]
fn test_tailn_empty() {
let a: ~[int] = ~[];
a.tailn(2);
}
#[test]
fn test_init() {
let mut a = ~[11];
assert_eq!(a.init(), &[]);
a = ~[11, 12];
assert_eq!(a.init(), &[11]);
}
#[test]
#[should_fail]
fn test_init_empty() {
let a: ~[int] = ~[];
a.init();
}
#[test]
fn test_initn() {
let mut a = ~[11, 12, 13];
assert_eq!(a.initn(0), &[11, 12, 13]);
a = ~[11, 12, 13];
assert_eq!(a.initn(2), &[11]);
}
#[test]
#[should_fail]
fn test_initn_empty() {
let a: ~[int] = ~[];
a.initn(2);
}
#[test]
fn test_last() {
let mut a = ~[];
assert_eq!(a.last(), None);
a = ~[11];
assert_eq!(a.last().unwrap(), &11);
a = ~[11, 12];
assert_eq!(a.last().unwrap(), &12);
}
#[test]
fn test_slice() {
// Test fixed length vector.
let vec_fixed = [1, 2, 3, 4];
let v_a = vec_fixed.slice(1u, vec_fixed.len()).to_owned();
assert_eq!(v_a.len(), 3u);
assert_eq!(v_a[0], 2);
assert_eq!(v_a[1], 3);
assert_eq!(v_a[2], 4);
// Test on stack.
let vec_stack = &[1, 2, 3];
let v_b = vec_stack.slice(1u, 3u).to_owned();
assert_eq!(v_b.len(), 2u);
assert_eq!(v_b[0], 2);
assert_eq!(v_b[1], 3);
// Test on exchange heap.
let vec_unique = ~[1, 2, 3, 4, 5, 6];
let v_d = vec_unique.slice(1u, 6u).to_owned();
assert_eq!(v_d.len(), 5u);
assert_eq!(v_d[0], 2);
assert_eq!(v_d[1], 3);
assert_eq!(v_d[2], 4);
assert_eq!(v_d[3], 5);
assert_eq!(v_d[4], 6);
}
#[test]
fn test_slice_from() {
let vec = &[1, 2, 3, 4];
assert_eq!(vec.slice_from(0), vec);
assert_eq!(vec.slice_from(2), &[3, 4]);
assert_eq!(vec.slice_from(4), &[]);
}
#[test]
fn test_slice_to() {
let vec = &[1, 2, 3, 4];
assert_eq!(vec.slice_to(4), vec);
assert_eq!(vec.slice_to(2), &[1, 2]);
assert_eq!(vec.slice_to(0), &[]);
}
#[test]
fn test_pop() {
let mut v = ~[5];
let e = v.pop();
assert_eq!(v.len(), 0);
assert_eq!(e, Some(5));
let f = v.pop();
assert_eq!(f, None);
let g = v.pop();
assert_eq!(g, None);
}
#[test]
fn test_swap_remove() {
let mut v = ~[1, 2, 3, 4, 5];
let mut e = v.swap_remove(0);
assert_eq!(v.len(), 4);
assert_eq!(e, 1);
assert_eq!(v[0], 5);
e = v.swap_remove(3);
assert_eq!(v.len(), 3);
assert_eq!(e, 4);
assert_eq!(v[0], 5);
assert_eq!(v[1], 2);
assert_eq!(v[2], 3);
}
#[test]
fn test_swap_remove_noncopyable() {
// Tests that we don't accidentally run destructors twice.
let mut v = ~[::unstable::sync::Exclusive::new(()),
::unstable::sync::Exclusive::new(()),
::unstable::sync::Exclusive::new(())];
let mut _e = v.swap_remove(0);
assert_eq!(v.len(), 2);
_e = v.swap_remove(1);
assert_eq!(v.len(), 1);
_e = v.swap_remove(0);
assert_eq!(v.len(), 0);
}
#[test]
fn test_push() {
// Test on-stack push().
let mut v = ~[];
v.push(1);
assert_eq!(v.len(), 1u);
assert_eq!(v[0], 1);
// Test on-heap push().
v.push(2);
assert_eq!(v.len(), 2u);
assert_eq!(v[0], 1);
assert_eq!(v[1], 2);
}
#[test]
fn test_grow() {
// Test on-stack grow().
let mut v = ~[];
v.grow(2u, &1);
assert_eq!(v.len(), 2u);
assert_eq!(v[0], 1);
assert_eq!(v[1], 1);
// Test on-heap grow().
v.grow(3u, &2);
assert_eq!(v.len(), 5u);
assert_eq!(v[0], 1);
assert_eq!(v[1], 1);
assert_eq!(v[2], 2);
assert_eq!(v[3], 2);
assert_eq!(v[4], 2);
}
#[test]
fn test_grow_fn() {
let mut v = ~[];
v.grow_fn(3u, square);
assert_eq!(v.len(), 3u);
assert_eq!(v[0], 0u);
assert_eq!(v[1], 1u);
assert_eq!(v[2], 4u);
}
#[test]
fn test_grow_set() {
let mut v = ~[1, 2, 3];
v.grow_set(4u, &4, 5);
assert_eq!(v.len(), 5u);
assert_eq!(v[0], 1);
assert_eq!(v[1], 2);
assert_eq!(v[2], 3);
assert_eq!(v[3], 4);
assert_eq!(v[4], 5);
}
#[test]
fn test_truncate() {
let mut v = ~[~6,~5,~4];
v.truncate(1);
assert_eq!(v.len(), 1);
assert_eq!(*(v[0]), 6);
// If the unsafe block didn't drop things properly, we blow up here.
}
#[test]
fn test_clear() {
let mut v = ~[~6,~5,~4];
v.clear();
assert_eq!(v.len(), 0);
// If the unsafe block didn't drop things properly, we blow up here.
}
#[test]
fn test_dedup() {
fn case(a: ~[uint], b: ~[uint]) {
let mut v = a;
v.dedup();
assert_eq!(v, b);
}
case(~[], ~[]);
case(~[1], ~[1]);
case(~[1,1], ~[1]);
case(~[1,2,3], ~[1,2,3]);
case(~[1,1,2,3], ~[1,2,3]);
case(~[1,2,2,3], ~[1,2,3]);
case(~[1,2,3,3], ~[1,2,3]);
case(~[1,1,2,2,2,3,3], ~[1,2,3]);
}
#[test]
fn test_dedup_unique() {
let mut v0 = ~[~1, ~1, ~2, ~3];
v0.dedup();
let mut v1 = ~[~1, ~2, ~2, ~3];
v1.dedup();
let mut v2 = ~[~1, ~2, ~3, ~3];
v2.dedup();
/*
* If the ~pointers were leaked or otherwise misused, valgrind and/or
* rustrt should raise errors.
*/
}
#[test]
fn test_dedup_shared() {
let mut v0 = ~[~1, ~1, ~2, ~3];
v0.dedup();
let mut v1 = ~[~1, ~2, ~2, ~3];
v1.dedup();
let mut v2 = ~[~1, ~2, ~3, ~3];
v2.dedup();
/*
* If the pointers were leaked or otherwise misused, valgrind and/or
* rustrt should raise errors.
*/
}
#[test]
fn test_map() {
// Test on-stack map.
let v = &[1u, 2u, 3u];
let mut w = v.map(square_ref);
assert_eq!(w.len(), 3u);
assert_eq!(w[0], 1u);
assert_eq!(w[1], 4u);
assert_eq!(w[2], 9u);
// Test on-heap map.
let v = ~[1u, 2u, 3u, 4u, 5u];
w = v.map(square_ref);
assert_eq!(w.len(), 5u);
assert_eq!(w[0], 1u);
assert_eq!(w[1], 4u);
assert_eq!(w[2], 9u);
assert_eq!(w[3], 16u);
assert_eq!(w[4], 25u);
}
#[test]
fn test_retain() {
let mut v = ~[1, 2, 3, 4, 5];
v.retain(is_odd);
assert_eq!(v, ~[1, 3, 5]);
}
#[test]
fn test_zip_unzip() {
let z1 = ~[(1, 4), (2, 5), (3, 6)];
let (left, right) = unzip(z1.iter().map(|&x| x));
assert_eq!((1, 4), (left[0], right[0]));
assert_eq!((2, 5), (left[1], right[1]));
assert_eq!((3, 6), (left[2], right[2]));
}
#[test]
fn test_element_swaps() {
let mut v = [1, 2, 3];
for (i, (a, b)) in ElementSwaps::new(v.len()).enumerate() {
v.swap(a, b);
match i {
0 => assert_eq!(v, [1, 3, 2]),
1 => assert_eq!(v, [3, 1, 2]),
2 => assert_eq!(v, [3, 2, 1]),
3 => assert_eq!(v, [2, 3, 1]),
4 => assert_eq!(v, [2, 1, 3]),
5 => assert_eq!(v, [1, 2, 3]),
_ => fail!(),
}
}
}
#[test]
fn test_permutations() {
use hashmap;
{
let v: [int, ..0] = [];
let mut it = v.permutations();
assert_eq!(it.next(), None);
}
{
let v = [~"Hello"];
let mut it = v.permutations();
assert_eq!(it.next(), None);
}
{
let v = [1, 2, 3];
let mut it = v.permutations();
assert_eq!(it.next(), Some(~[1,2,3]));
assert_eq!(it.next(), Some(~[1,3,2]));
assert_eq!(it.next(), Some(~[3,1,2]));
assert_eq!(it.next(), Some(~[3,2,1]));
assert_eq!(it.next(), Some(~[2,3,1]));
assert_eq!(it.next(), Some(~[2,1,3]));
assert_eq!(it.next(), None);
}
{
// check that we have N! unique permutations
let mut set = hashmap::HashSet::new();
let v = ['A', 'B', 'C', 'D', 'E', 'F'];
for perm in v.permutations() {
set.insert(perm);
}
assert_eq!(set.len(), 2 * 3 * 4 * 5 * 6);
}
}
#[test]
fn test_position_elem() {
assert!([].position_elem(&1).is_none());
let v1 = ~[1, 2, 3, 3, 2, 5];
assert_eq!(v1.position_elem(&1), Some(0u));
assert_eq!(v1.position_elem(&2), Some(1u));
assert_eq!(v1.position_elem(&5), Some(5u));
assert!(v1.position_elem(&4).is_none());
}
#[test]
fn test_bsearch_elem() {
assert_eq!([1,2,3,4,5].bsearch_elem(&5), Some(4));
assert_eq!([1,2,3,4,5].bsearch_elem(&4), Some(3));
assert_eq!([1,2,3,4,5].bsearch_elem(&3), Some(2));
assert_eq!([1,2,3,4,5].bsearch_elem(&2), Some(1));
assert_eq!([1,2,3,4,5].bsearch_elem(&1), Some(0));
assert_eq!([2,4,6,8,10].bsearch_elem(&1), None);
assert_eq!([2,4,6,8,10].bsearch_elem(&5), None);
assert_eq!([2,4,6,8,10].bsearch_elem(&4), Some(1));
assert_eq!([2,4,6,8,10].bsearch_elem(&10), Some(4));
assert_eq!([2,4,6,8].bsearch_elem(&1), None);
assert_eq!([2,4,6,8].bsearch_elem(&5), None);
assert_eq!([2,4,6,8].bsearch_elem(&4), Some(1));
assert_eq!([2,4,6,8].bsearch_elem(&8), Some(3));
assert_eq!([2,4,6].bsearch_elem(&1), None);
assert_eq!([2,4,6].bsearch_elem(&5), None);
assert_eq!([2,4,6].bsearch_elem(&4), Some(1));
assert_eq!([2,4,6].bsearch_elem(&6), Some(2));
assert_eq!([2,4].bsearch_elem(&1), None);
assert_eq!([2,4].bsearch_elem(&5), None);
assert_eq!([2,4].bsearch_elem(&2), Some(0));
assert_eq!([2,4].bsearch_elem(&4), Some(1));
assert_eq!([2].bsearch_elem(&1), None);
assert_eq!([2].bsearch_elem(&5), None);
assert_eq!([2].bsearch_elem(&2), Some(0));
assert_eq!([].bsearch_elem(&1), None);
assert_eq!([].bsearch_elem(&5), None);
assert!([1,1,1,1,1].bsearch_elem(&1) != None);
assert!([1,1,1,1,2].bsearch_elem(&1) != None);
assert!([1,1,1,2,2].bsearch_elem(&1) != None);
assert!([1,1,2,2,2].bsearch_elem(&1) != None);
assert_eq!([1,2,2,2,2].bsearch_elem(&1), Some(0));
assert_eq!([1,2,3,4,5].bsearch_elem(&6), None);
assert_eq!([1,2,3,4,5].bsearch_elem(&0), None);
}
#[test]
fn test_reverse() {
let mut v: ~[int] = ~[10, 20];
assert_eq!(v[0], 10);
assert_eq!(v[1], 20);
v.reverse();
assert_eq!(v[0], 20);
assert_eq!(v[1], 10);
let mut v3: ~[int] = ~[];
v3.reverse();
assert!(v3.is_empty());
}
#[test]
fn test_sort() {
for len in range(4u, 25) {
for _ in range(0, 100) {
let mut v = task_rng().gen_vec::<uint>(len);
let mut v1 = v.clone();
v.sort();
assert!(v.windows(2).all(|w| w[0] <= w[1]));
v1.sort_by(|a, b| a.cmp(b));
assert!(v1.windows(2).all(|w| w[0] <= w[1]));
v1.sort_by(|a, b| b.cmp(a));
assert!(v1.windows(2).all(|w| w[0] >= w[1]));
}
}
// shouldn't fail/crash
let mut v: [uint, .. 0] = [];
v.sort();
let mut v = [0xDEADBEEF];
v.sort();
assert_eq!(v, [0xDEADBEEF]);
}
#[test]
fn test_sort_stability() {
for len in range(4, 25) {
for _ in range(0 , 10) {
let mut counts = [0, .. 10];
// create a vector like [(6, 1), (5, 1), (6, 2), ...],
// where the first item of each tuple is random, but
// the second item represents which occurrence of that
// number this element is, i.e. the second elements
// will occur in sorted order.
let mut v = range(0, len).map(|_| {
let n = task_rng().gen::<uint>() % 10;
counts[n] += 1;
(n, counts[n])
}).to_owned_vec();
// only sort on the first element, so an unstable sort
// may mix up the counts.
v.sort_by(|&(a,_), &(b,_)| a.cmp(&b));
// this comparison includes the count (the second item
// of the tuple), so elements with equal first items
// will need to be ordered with increasing
// counts... i.e. exactly asserting that this sort is
// stable.
assert!(v.windows(2).all(|w| w[0] <= w[1]));
}
}
}
#[test]
fn test_partition() {
assert_eq!((~[]).partition(|x: &int| *x < 3), (~[], ~[]));
assert_eq!((~[1, 2, 3]).partition(|x: &int| *x < 4), (~[1, 2, 3], ~[]));
assert_eq!((~[1, 2, 3]).partition(|x: &int| *x < 2), (~[1], ~[2, 3]));
assert_eq!((~[1, 2, 3]).partition(|x: &int| *x < 0), (~[], ~[1, 2, 3]));
}
#[test]
fn test_partitioned() {
assert_eq!(([]).partitioned(|x: &int| *x < 3), (~[], ~[]))
assert_eq!(([1, 2, 3]).partitioned(|x: &int| *x < 4), (~[1, 2, 3], ~[]));
assert_eq!(([1, 2, 3]).partitioned(|x: &int| *x < 2), (~[1], ~[2, 3]));
assert_eq!(([1, 2, 3]).partitioned(|x: &int| *x < 0), (~[], ~[1, 2, 3]));
}
#[test]
fn test_concat() {
let v: [~[int], ..0] = [];
assert_eq!(v.concat_vec(), ~[]);
assert_eq!([~[1], ~[2,3]].concat_vec(), ~[1, 2, 3]);
assert_eq!([&[1], &[2,3]].concat_vec(), ~[1, 2, 3]);
}
#[test]
fn test_connect() {
let v: [~[int], ..0] = [];
assert_eq!(v.connect_vec(&0), ~[]);
assert_eq!([~[1], ~[2, 3]].connect_vec(&0), ~[1, 0, 2, 3]);
assert_eq!([~[1], ~[2], ~[3]].connect_vec(&0), ~[1, 0, 2, 0, 3]);
assert_eq!(v.connect_vec(&0), ~[]);
assert_eq!([&[1], &[2, 3]].connect_vec(&0), ~[1, 0, 2, 3]);
assert_eq!([&[1], &[2], &[3]].connect_vec(&0), ~[1, 0, 2, 0, 3]);
}
#[test]
fn test_shift() {
let mut x = ~[1, 2, 3];
assert_eq!(x.shift(), Some(1));
assert_eq!(&x, &~[2, 3]);
assert_eq!(x.shift(), Some(2));
assert_eq!(x.shift(), Some(3));
assert_eq!(x.shift(), None);
assert_eq!(x.len(), 0);
}
#[test]
fn test_unshift() {
let mut x = ~[1, 2, 3];
x.unshift(0);
assert_eq!(x, ~[0, 1, 2, 3]);
}
#[test]
fn test_insert() {
let mut a = ~[1, 2, 4];
a.insert(2, 3);
assert_eq!(a, ~[1, 2, 3, 4]);
let mut a = ~[1, 2, 3];
a.insert(0, 0);
assert_eq!(a, ~[0, 1, 2, 3]);
let mut a = ~[1, 2, 3];
a.insert(3, 4);
assert_eq!(a, ~[1, 2, 3, 4]);
let mut a = ~[];
a.insert(0, 1);
assert_eq!(a, ~[1]);
}
#[test]
#[should_fail]
fn test_insert_oob() {
let mut a = ~[1, 2, 3];
a.insert(4, 5);
}
#[test]
fn test_remove() {
let mut a = ~[1,2,3,4];
assert_eq!(a.remove(2), Some(3));
assert_eq!(a, ~[1,2,4]);
assert_eq!(a.remove(2), Some(4));
assert_eq!(a, ~[1,2]);
assert_eq!(a.remove(2), None);
assert_eq!(a, ~[1,2]);
assert_eq!(a.remove(0), Some(1));
assert_eq!(a, ~[2]);
assert_eq!(a.remove(0), Some(2));
assert_eq!(a, ~[]);
assert_eq!(a.remove(0), None);
assert_eq!(a.remove(10), None);
}
#[test]
fn test_capacity() {
let mut v = ~[0u64];
v.reserve_exact(10u);
assert_eq!(v.capacity(), 10u);
let mut v = ~[0u32];
v.reserve_exact(10u);
assert_eq!(v.capacity(), 10u);
}
#[test]
fn test_slice_2() {
let v = ~[1, 2, 3, 4, 5];
let v = v.slice(1u, 3u);
assert_eq!(v.len(), 2u);
assert_eq!(v[0], 2);
assert_eq!(v[1], 3);
}
#[test]
#[should_fail]
fn test_from_fn_fail() {
from_fn(100, |v| {
if v == 50 { fail!() }
~0
});
}
#[test]
#[should_fail]
fn test_from_elem_fail() {
use cast;
use rc::Rc;
struct S {
f: int,
boxes: (~int, Rc<int>)
}
impl Clone for S {
fn clone(&self) -> S {
let s = unsafe { cast::transmute_mut(self) };
s.f += 1;
if s.f == 10 { fail!() }
S { f: s.f, boxes: s.boxes.clone() }
}
}
let s = S { f: 0, boxes: (~0, Rc::new(0)) };
let _ = from_elem(100, s);
}
#[test]
#[should_fail]
fn test_build_fail() {
use rc::Rc;
build(None, |push| {
push((~0, Rc::new(0)));
push((~0, Rc::new(0)));
push((~0, Rc::new(0)));
push((~0, Rc::new(0)));
fail!();
});
}
#[test]
#[should_fail]
fn test_grow_fn_fail() {
use rc::Rc;
let mut v = ~[];
v.grow_fn(100, |i| {
if i == 50 {
fail!()
}
(~0, Rc::new(0))
})
}
#[test]
#[should_fail]
fn test_map_fail() {
use rc::Rc;
let v = [(~0, Rc::new(0)), (~0, Rc::new(0)), (~0, Rc::new(0)), (~0, Rc::new(0))];
let mut i = 0;
v.map(|_elt| {
if i == 2 {
fail!()
}
i += 1;
~[(~0, Rc::new(0))]
});
}
#[test]
#[should_fail]
fn test_flat_map_fail() {
use rc::Rc;
let v = [(~0, Rc::new(0)), (~0, Rc::new(0)), (~0, Rc::new(0)), (~0, Rc::new(0))];
let mut i = 0;
flat_map(v, |_elt| {
if i == 2 {
fail!()
}
i += 1;
~[(~0, Rc::new(0))]
});
}
#[test]
#[should_fail]
fn test_permute_fail() {
use rc::Rc;
let v = [(~0, Rc::new(0)), (~0, Rc::new(0)), (~0, Rc::new(0)), (~0, Rc::new(0))];
let mut i = 0;
for _ in v.permutations() {
if i == 2 {
fail!()
}
i += 1;
}
}
#[test]
#[should_fail]
fn test_copy_memory_oob() {
unsafe {
let mut a = [1, 2, 3, 4];
let b = [1, 2, 3, 4, 5];
a.copy_memory(b);
}
}
#[test]
fn test_total_ord() {
[1, 2, 3, 4].cmp(& &[1, 2, 3]) == Greater;
[1, 2, 3].cmp(& &[1, 2, 3, 4]) == Less;
[1, 2, 3, 4].cmp(& &[1, 2, 3, 4]) == Equal;
[1, 2, 3, 4, 5, 5, 5, 5].cmp(& &[1, 2, 3, 4, 5, 6]) == Less;
[2, 2].cmp(& &[1, 2, 3, 4]) == Greater;
}
#[test]
fn test_iterator() {
use iter::*;
let xs = [1, 2, 5, 10, 11];
let mut it = xs.iter();
assert_eq!(it.size_hint(), (5, Some(5)));
assert_eq!(it.next().unwrap(), &1);
assert_eq!(it.size_hint(), (4, Some(4)));
assert_eq!(it.next().unwrap(), &2);
assert_eq!(it.size_hint(), (3, Some(3)));
assert_eq!(it.next().unwrap(), &5);
assert_eq!(it.size_hint(), (2, Some(2)));
assert_eq!(it.next().unwrap(), &10);
assert_eq!(it.size_hint(), (1, Some(1)));
assert_eq!(it.next().unwrap(), &11);
assert_eq!(it.size_hint(), (0, Some(0)));
assert!(it.next().is_none());
}
#[test]
fn test_random_access_iterator() {
use iter::*;
let xs = [1, 2, 5, 10, 11];
let mut it = xs.iter();
assert_eq!(it.indexable(), 5);
assert_eq!(it.idx(0).unwrap(), &1);
assert_eq!(it.idx(2).unwrap(), &5);
assert_eq!(it.idx(4).unwrap(), &11);
assert!(it.idx(5).is_none());
assert_eq!(it.next().unwrap(), &1);
assert_eq!(it.indexable(), 4);
assert_eq!(it.idx(0).unwrap(), &2);
assert_eq!(it.idx(3).unwrap(), &11);
assert!(it.idx(4).is_none());
assert_eq!(it.next().unwrap(), &2);
assert_eq!(it.indexable(), 3);
assert_eq!(it.idx(1).unwrap(), &10);
assert!(it.idx(3).is_none());
assert_eq!(it.next().unwrap(), &5);
assert_eq!(it.indexable(), 2);
assert_eq!(it.idx(1).unwrap(), &11);
assert_eq!(it.next().unwrap(), &10);
assert_eq!(it.indexable(), 1);
assert_eq!(it.idx(0).unwrap(), &11);
assert!(it.idx(1).is_none());
assert_eq!(it.next().unwrap(), &11);
assert_eq!(it.indexable(), 0);
assert!(it.idx(0).is_none());
assert!(it.next().is_none());
}
#[test]
fn test_iter_size_hints() {
use iter::*;
let mut xs = [1, 2, 5, 10, 11];
assert_eq!(xs.iter().size_hint(), (5, Some(5)));
assert_eq!(xs.rev_iter().size_hint(), (5, Some(5)));
assert_eq!(xs.mut_iter().size_hint(), (5, Some(5)));
assert_eq!(xs.mut_rev_iter().size_hint(), (5, Some(5)));
}
#[test]
fn test_iter_clone() {
let xs = [1, 2, 5];
let mut it = xs.iter();
it.next();
let mut jt = it.clone();
assert_eq!(it.next(), jt.next());
assert_eq!(it.next(), jt.next());
assert_eq!(it.next(), jt.next());
}
#[test]
fn test_mut_iterator() {
use iter::*;
let mut xs = [1, 2, 3, 4, 5];
for x in xs.mut_iter() {
*x += 1;
}
assert_eq!(xs, [2, 3, 4, 5, 6])
}
#[test]
fn test_rev_iterator() {
use iter::*;
let xs = [1, 2, 5, 10, 11];
let ys = [11, 10, 5, 2, 1];
let mut i = 0;
for &x in xs.rev_iter() {
assert_eq!(x, ys[i]);
i += 1;
}
assert_eq!(i, 5);
}
#[test]
fn test_mut_rev_iterator() {
use iter::*;
let mut xs = [1u, 2, 3, 4, 5];
for (i,x) in xs.mut_rev_iter().enumerate() {
*x += i;
}
assert_eq!(xs, [5, 5, 5, 5, 5])
}
#[test]
fn test_move_iterator() {
use iter::*;
let xs = ~[1u,2,3,4,5];
assert_eq!(xs.move_iter().fold(0, |a: uint, b: uint| 10*a + b), 12345);
}
#[test]
fn test_move_rev_iterator() {
use iter::*;
let xs = ~[1u,2,3,4,5];
assert_eq!(xs.move_rev_iter().fold(0, |a: uint, b: uint| 10*a + b), 54321);
}
#[test]
fn test_splitator() {
let xs = &[1i,2,3,4,5];
assert_eq!(xs.split(|x| *x % 2 == 0).collect::<~[&[int]]>(),
~[&[1], &[3], &[5]]);
assert_eq!(xs.split(|x| *x == 1).collect::<~[&[int]]>(),
~[&[], &[2,3,4,5]]);
assert_eq!(xs.split(|x| *x == 5).collect::<~[&[int]]>(),
~[&[1,2,3,4], &[]]);
assert_eq!(xs.split(|x| *x == 10).collect::<~[&[int]]>(),
~[&[1,2,3,4,5]]);
assert_eq!(xs.split(|_| true).collect::<~[&[int]]>(),
~[&[], &[], &[], &[], &[], &[]]);
let xs: &[int] = &[];
assert_eq!(xs.split(|x| *x == 5).collect::<~[&[int]]>(), ~[&[]]);
}
#[test]
fn test_splitnator() {
let xs = &[1i,2,3,4,5];
assert_eq!(xs.splitn(0, |x| *x % 2 == 0).collect::<~[&[int]]>(),
~[&[1,2,3,4,5]]);
assert_eq!(xs.splitn(1, |x| *x % 2 == 0).collect::<~[&[int]]>(),
~[&[1], &[3,4,5]]);
assert_eq!(xs.splitn(3, |_| true).collect::<~[&[int]]>(),
~[&[], &[], &[], &[4,5]]);
let xs: &[int] = &[];
assert_eq!(xs.splitn(1, |x| *x == 5).collect::<~[&[int]]>(), ~[&[]]);
}
#[test]
fn test_rsplitator() {
let xs = &[1i,2,3,4,5];
assert_eq!(xs.rsplit(|x| *x % 2 == 0).collect::<~[&[int]]>(),
~[&[5], &[3], &[1]]);
assert_eq!(xs.rsplit(|x| *x == 1).collect::<~[&[int]]>(),
~[&[2,3,4,5], &[]]);
assert_eq!(xs.rsplit(|x| *x == 5).collect::<~[&[int]]>(),
~[&[], &[1,2,3,4]]);
assert_eq!(xs.rsplit(|x| *x == 10).collect::<~[&[int]]>(),
~[&[1,2,3,4,5]]);
let xs: &[int] = &[];
assert_eq!(xs.rsplit(|x| *x == 5).collect::<~[&[int]]>(), ~[&[]]);
}
#[test]
fn test_rsplitnator() {
let xs = &[1,2,3,4,5];
assert_eq!(xs.rsplitn(0, |x| *x % 2 == 0).collect::<~[&[int]]>(),
~[&[1,2,3,4,5]]);
assert_eq!(xs.rsplitn(1, |x| *x % 2 == 0).collect::<~[&[int]]>(),
~[&[5], &[1,2,3]]);
assert_eq!(xs.rsplitn(3, |_| true).collect::<~[&[int]]>(),
~[&[], &[], &[], &[1,2]]);
let xs: &[int] = &[];
assert_eq!(xs.rsplitn(1, |x| *x == 5).collect::<~[&[int]]>(), ~[&[]]);
}
#[test]
fn test_windowsator() {
let v = &[1i,2,3,4];
assert_eq!(v.windows(2).collect::<~[&[int]]>(), ~[&[1,2], &[2,3], &[3,4]]);
assert_eq!(v.windows(3).collect::<~[&[int]]>(), ~[&[1i,2,3], &[2,3,4]]);
assert!(v.windows(6).next().is_none());
}
#[test]
#[should_fail]
fn test_windowsator_0() {
let v = &[1i,2,3,4];
let _it = v.windows(0);
}
#[test]
fn test_chunksator() {
let v = &[1i,2,3,4,5];
assert_eq!(v.chunks(2).collect::<~[&[int]]>(), ~[&[1i,2], &[3,4], &[5]]);
assert_eq!(v.chunks(3).collect::<~[&[int]]>(), ~[&[1i,2,3], &[4,5]]);
assert_eq!(v.chunks(6).collect::<~[&[int]]>(), ~[&[1i,2,3,4,5]]);
assert_eq!(v.chunks(2).rev().collect::<~[&[int]]>(), ~[&[5i], &[3,4], &[1,2]]);
let it = v.chunks(2);
assert_eq!(it.indexable(), 3);
assert_eq!(it.idx(0).unwrap(), &[1,2]);
assert_eq!(it.idx(1).unwrap(), &[3,4]);
assert_eq!(it.idx(2).unwrap(), &[5]);
assert_eq!(it.idx(3), None);
}
#[test]
#[should_fail]
fn test_chunksator_0() {
let v = &[1i,2,3,4];
let _it = v.chunks(0);
}
#[test]
fn test_move_from() {
let mut a = [1,2,3,4,5];
let b = ~[6,7,8];
assert_eq!(a.move_from(b, 0, 3), 3);
assert_eq!(a, [6,7,8,4,5]);
let mut a = [7,2,8,1];
let b = ~[3,1,4,1,5,9];
assert_eq!(a.move_from(b, 0, 6), 4);
assert_eq!(a, [3,1,4,1]);
let mut a = [1,2,3,4];
let b = ~[5,6,7,8,9,0];
assert_eq!(a.move_from(b, 2, 3), 1);
assert_eq!(a, [7,2,3,4]);
let mut a = [1,2,3,4,5];
let b = ~[5,6,7,8,9,0];
assert_eq!(a.mut_slice(2,4).move_from(b,1,6), 2);
assert_eq!(a, [1,2,6,7,5]);
}
#[test]
fn test_copy_from() {
let mut a = [1,2,3,4,5];
let b = [6,7,8];
assert_eq!(a.copy_from(b), 3);
assert_eq!(a, [6,7,8,4,5]);
let mut c = [7,2,8,1];
let d = [3,1,4,1,5,9];
assert_eq!(c.copy_from(d), 4);
assert_eq!(c, [3,1,4,1]);
}
#[test]
fn test_reverse_part() {
let mut values = [1,2,3,4,5];
values.mut_slice(1, 4).reverse();
assert_eq!(values, [1,4,3,2,5]);
}
#[test]
fn test_show() {
macro_rules! test_show_vec(
($x:expr, $x_str:expr) => ({
let (x, x_str) = ($x, $x_str);
assert_eq!(format!("{}", x), x_str);
assert_eq!(format!("{}", x.as_slice()), x_str);
})
)
let empty: ~[int] = ~[];
test_show_vec!(empty, ~"[]");
test_show_vec!(~[1], ~"[1]");
test_show_vec!(~[1, 2, 3], ~"[1, 2, 3]");
test_show_vec!(~[~[], ~[1u], ~[1u, 1u]], ~"[[], [1], [1, 1]]");
}
#[test]
fn test_vec_default() {
use default::Default;
macro_rules! t (
($ty:ty) => {{
let v: $ty = Default::default();
assert!(v.is_empty());
}}
);
t!(&[int]);
t!(~[int]);
}
#[test]
fn test_bytes_set_memory() {
use vec::bytes::MutableByteVector;
let mut values = [1u8,2,3,4,5];
values.mut_slice(0,5).set_memory(0xAB);
assert_eq!(values, [0xAB, 0xAB, 0xAB, 0xAB, 0xAB]);
values.mut_slice(2,4).set_memory(0xFF);
assert_eq!(values, [0xAB, 0xAB, 0xFF, 0xFF, 0xAB]);
}
#[test]
#[should_fail]
fn test_overflow_does_not_cause_segfault() {
let mut v = ~[];
v.reserve_exact(-1);
v.push(1);
v.push(2);
}
#[test]
#[should_fail]
fn test_overflow_does_not_cause_segfault_managed() {
use rc::Rc;
let mut v = ~[Rc::new(1)];
v.reserve_exact(-1);
v.push(Rc::new(2));
}
#[test]
fn test_mut_split_at() {
let mut values = [1u8,2,3,4,5];
{
let (left, right) = values.mut_split_at(2);
assert_eq!(left.slice(0, left.len()), [1, 2]);
for p in left.mut_iter() {
*p += 1;
}
assert_eq!(right.slice(0, right.len()), [3, 4, 5]);
for p in right.mut_iter() {
*p += 2;
}
}
assert_eq!(values, [2, 3, 5, 6, 7]);
}
#[deriving(Clone, Eq)]
struct Foo;
#[test]
fn test_iter_zero_sized() {
let mut v = ~[Foo, Foo, Foo];
assert_eq!(v.len(), 3);
let mut cnt = 0;
for f in v.iter() {
assert!(*f == Foo);
cnt += 1;
}
assert_eq!(cnt, 3);
for f in v.slice(1, 3).iter() {
assert!(*f == Foo);
cnt += 1;
}
assert_eq!(cnt, 5);
for f in v.mut_iter() {
assert!(*f == Foo);
cnt += 1;
}
assert_eq!(cnt, 8);
for f in v.move_iter() {
assert!(f == Foo);
cnt += 1;
}
assert_eq!(cnt, 11);
let xs = ~[Foo, Foo, Foo];
assert_eq!(format!("{:?}", xs.slice(0, 2).to_owned()),
~"~[vec::tests::Foo, vec::tests::Foo]");
let xs: [Foo, ..3] = [Foo, Foo, Foo];
assert_eq!(format!("{:?}", xs.slice(0, 2).to_owned()),
~"~[vec::tests::Foo, vec::tests::Foo]");
cnt = 0;
for f in xs.iter() {
assert!(*f == Foo);
cnt += 1;
}
assert!(cnt == 3);
}
#[test]
fn test_shrink_to_fit() {
let mut xs = ~[0, 1, 2, 3];
for i in range(4, 100) {
xs.push(i)
}
assert_eq!(xs.capacity(), 128);
xs.shrink_to_fit();
assert_eq!(xs.capacity(), 100);
assert_eq!(xs, range(0, 100).to_owned_vec());
}
#[test]
fn test_starts_with() {
assert!(bytes!("foobar").starts_with(bytes!("foo")));
assert!(!bytes!("foobar").starts_with(bytes!("oob")));
assert!(!bytes!("foobar").starts_with(bytes!("bar")));
assert!(!bytes!("foo").starts_with(bytes!("foobar")));
assert!(!bytes!("bar").starts_with(bytes!("foobar")));
assert!(bytes!("foobar").starts_with(bytes!("foobar")));
let empty: &[u8] = [];
assert!(empty.starts_with(empty));
assert!(!empty.starts_with(bytes!("foo")));
assert!(bytes!("foobar").starts_with(empty));
}
#[test]
fn test_ends_with() {
assert!(bytes!("foobar").ends_with(bytes!("bar")));
assert!(!bytes!("foobar").ends_with(bytes!("oba")));
assert!(!bytes!("foobar").ends_with(bytes!("foo")));
assert!(!bytes!("foo").ends_with(bytes!("foobar")));
assert!(!bytes!("bar").ends_with(bytes!("foobar")));
assert!(bytes!("foobar").ends_with(bytes!("foobar")));
let empty: &[u8] = [];
assert!(empty.ends_with(empty));
assert!(!empty.ends_with(bytes!("foo")));
assert!(bytes!("foobar").ends_with(empty));
}
#[test]
fn test_shift_ref() {
let mut x: &[int] = [1, 2, 3, 4, 5];
let h = x.shift_ref();
assert_eq!(*h.unwrap(), 1);
assert_eq!(x.len(), 4);
assert_eq!(x[0], 2);
assert_eq!(x[3], 5);
let mut y: &[int] = [];
assert_eq!(y.shift_ref(), None);
}
#[test]
fn test_pop_ref() {
let mut x: &[int] = [1, 2, 3, 4, 5];
let h = x.pop_ref();
assert_eq!(*h.unwrap(), 5);
assert_eq!(x.len(), 4);
assert_eq!(x[0], 1);
assert_eq!(x[3], 4);
let mut y: &[int] = [];
assert!(y.pop_ref().is_none());
}
#[test]
fn test_mut_splitator() {
let mut xs = [0,1,0,2,3,0,0,4,5,0];
assert_eq!(xs.mut_split(|x| *x == 0).len(), 6);
for slice in xs.mut_split(|x| *x == 0) {
slice.reverse();
}
assert_eq!(xs, [0,1,0,3,2,0,0,5,4,0]);
let mut xs = [0,1,0,2,3,0,0,4,5,0,6,7];
for slice in xs.mut_split(|x| *x == 0).take(5) {
slice.reverse();
}
assert_eq!(xs, [0,1,0,3,2,0,0,5,4,0,6,7]);
}
#[test]
fn test_mut_splitator_rev() {
let mut xs = [1,2,0,3,4,0,0,5,6,0];
for slice in xs.mut_split(|x| *x == 0).rev().take(4) {
slice.reverse();
}
assert_eq!(xs, [1,2,0,4,3,0,0,6,5,0]);
}
#[test]
fn test_mut_chunks() {
let mut v = [0u8, 1, 2, 3, 4, 5, 6];
for (i, chunk) in v.mut_chunks(3).enumerate() {
for x in chunk.mut_iter() {
*x = i as u8;
}
}
let result = [0u8, 0, 0, 1, 1, 1, 2];
assert_eq!(v, result);
}
#[test]
fn test_mut_chunks_rev() {
let mut v = [0u8, 1, 2, 3, 4, 5, 6];
for (i, chunk) in v.mut_chunks(3).rev().enumerate() {
for x in chunk.mut_iter() {
*x = i as u8;
}
}
let result = [2u8, 2, 2, 1, 1, 1, 0];
assert_eq!(v, result);
}
#[test]
#[should_fail]
fn test_mut_chunks_0() {
let mut v = [1, 2, 3, 4];
let _it = v.mut_chunks(0);
}
#[test]
fn test_mut_shift_ref() {
let mut x: &mut [int] = [1, 2, 3, 4, 5];
let h = x.mut_shift_ref();
assert_eq!(*h.unwrap(), 1);
assert_eq!(x.len(), 4);
assert_eq!(x[0], 2);
assert_eq!(x[3], 5);
let mut y: &mut [int] = [];
assert!(y.mut_shift_ref().is_none());
}
#[test]
fn test_mut_pop_ref() {
let mut x: &mut [int] = [1, 2, 3, 4, 5];
let h = x.mut_pop_ref();
assert_eq!(*h.unwrap(), 5);
assert_eq!(x.len(), 4);
assert_eq!(x[0], 1);
assert_eq!(x[3], 4);
let mut y: &mut [int] = [];
assert!(y.mut_pop_ref().is_none());
}
#[test]
fn test_mut_last() {
let mut x = [1, 2, 3, 4, 5];
let h = x.mut_last();
assert_eq!(*h.unwrap(), 5);
let y: &mut [int] = [];
assert!(y.mut_last().is_none());
}
}
#[cfg(test)]
mod bench {
use extra::test::BenchHarness;
use mem;
use prelude::*;
use ptr;
use rand::{weak_rng, Rng};
use vec;
#[bench]
fn iterator(bh: &mut BenchHarness) {
// peculiar numbers to stop LLVM from optimising the summation
// out.
let v = vec::from_fn(100, |i| i ^ (i << 1) ^ (i >> 1));
bh.iter(|| {
let mut sum = 0;
for x in v.iter() {
sum += *x;
}
// sum == 11806, to stop dead code elimination.
if sum == 0 {fail!()}
})
}
#[bench]
fn mut_iterator(bh: &mut BenchHarness) {
let mut v = vec::from_elem(100, 0);
bh.iter(|| {
let mut i = 0;
for x in v.mut_iter() {
*x = i;
i += 1;
}
})
}
#[bench]
fn add(bh: &mut BenchHarness) {
let xs: &[int] = [5, ..10];
let ys: &[int] = [5, ..10];
bh.iter(|| {
xs + ys;
});
}
#[bench]
fn concat(bh: &mut BenchHarness) {
let xss: &[~[uint]] = vec::from_fn(100, |i| range(0, i).collect());
bh.iter(|| {
let _ = xss.concat_vec();
});
}
#[bench]
fn connect(bh: &mut BenchHarness) {
let xss: &[~[uint]] = vec::from_fn(100, |i| range(0, i).collect());
bh.iter(|| {
let _ = xss.connect_vec(&0);
});
}
#[bench]
fn push(bh: &mut BenchHarness) {
let mut vec: ~[uint] = ~[0u];
bh.iter(|| {
vec.push(0);
&vec
})
}
#[bench]
fn starts_with_same_vector(bh: &mut BenchHarness) {
let vec: ~[uint] = vec::from_fn(100, |i| i);
bh.iter(|| {
vec.starts_with(vec)
})
}
#[bench]
fn starts_with_single_element(bh: &mut BenchHarness) {
let vec: ~[uint] = ~[0u];
bh.iter(|| {
vec.starts_with(vec)
})
}
#[bench]
fn starts_with_diff_one_element_at_end(bh: &mut BenchHarness) {
let vec: ~[uint] = vec::from_fn(100, |i| i);
let mut match_vec: ~[uint] = vec::from_fn(99, |i| i);
match_vec.push(0);
bh.iter(|| {
vec.starts_with(match_vec)
})
}
#[bench]
fn ends_with_same_vector(bh: &mut BenchHarness) {
let vec: ~[uint] = vec::from_fn(100, |i| i);
bh.iter(|| {
vec.ends_with(vec)
})
}
#[bench]
fn ends_with_single_element(bh: &mut BenchHarness) {
let vec: ~[uint] = ~[0u];
bh.iter(|| {
vec.ends_with(vec)
})
}
#[bench]
fn ends_with_diff_one_element_at_beginning(bh: &mut BenchHarness) {
let vec: ~[uint] = vec::from_fn(100, |i| i);
let mut match_vec: ~[uint] = vec::from_fn(100, |i| i);
match_vec[0] = 200;
bh.iter(|| {
vec.starts_with(match_vec)
})
}
#[bench]
fn contains_last_element(bh: &mut BenchHarness) {
let vec: ~[uint] = vec::from_fn(100, |i| i);
bh.iter(|| {
vec.contains(&99u)
})
}
#[bench]
fn zero_1kb_from_elem(bh: &mut BenchHarness) {
bh.iter(|| {
let _v: ~[u8] = vec::from_elem(1024, 0u8);
});
}
#[bench]
fn zero_1kb_set_memory(bh: &mut BenchHarness) {
bh.iter(|| {
let mut v: ~[u8] = vec::with_capacity(1024);
unsafe {
let vp = v.as_mut_ptr();
ptr::set_memory(vp, 0, 1024);
v.set_len(1024);
}
v
});
}
#[bench]
fn zero_1kb_fixed_repeat(bh: &mut BenchHarness) {
bh.iter(|| {
~[0u8, ..1024]
});
}
#[bench]
fn zero_1kb_loop_set(bh: &mut BenchHarness) {
// Slower because the { len, cap, [0 x T] }* repr allows a pointer to the length
// field to be aliased (in theory) and prevents LLVM from optimizing loads away.
bh.iter(|| {
let mut v: ~[u8] = vec::with_capacity(1024);
unsafe {
v.set_len(1024);
}
for i in range(0, 1024) {
v[i] = 0;
}
});
}
#[bench]
fn zero_1kb_mut_iter(bh: &mut BenchHarness) {
bh.iter(|| {
let mut v: ~[u8] = vec::with_capacity(1024);
unsafe {
v.set_len(1024);
}
for x in v.mut_iter() {
*x = 0;
}
v
});
}
#[bench]
fn random_inserts(bh: &mut BenchHarness) {
let mut rng = weak_rng();
bh.iter(|| {
let mut v = vec::from_elem(30, (0u, 0u));
for _ in range(0, 100) {
let l = v.len();
v.insert(rng.gen::<uint>() % (l + 1),
(1, 1));
}
})
}
#[bench]
fn random_removes(bh: &mut BenchHarness) {
let mut rng = weak_rng();
bh.iter(|| {
let mut v = vec::from_elem(130, (0u, 0u));
for _ in range(0, 100) {
let l = v.len();
v.remove(rng.gen::<uint>() % l);
}
})
}
#[bench]
fn sort_random_small(bh: &mut BenchHarness) {
let mut rng = weak_rng();
bh.iter(|| {
let mut v: ~[u64] = rng.gen_vec(5);
v.sort();
});
bh.bytes = 5 * mem::size_of::<u64>() as u64;
}
#[bench]
fn sort_random_medium(bh: &mut BenchHarness) {
let mut rng = weak_rng();
bh.iter(|| {
let mut v: ~[u64] = rng.gen_vec(100);
v.sort();
});
bh.bytes = 100 * mem::size_of::<u64>() as u64;
}
#[bench]
fn sort_random_large(bh: &mut BenchHarness) {
let mut rng = weak_rng();
bh.iter(|| {
let mut v: ~[u64] = rng.gen_vec(10000);
v.sort();
});
bh.bytes = 10000 * mem::size_of::<u64>() as u64;
}
#[bench]
fn sort_sorted(bh: &mut BenchHarness) {
let mut v = vec::from_fn(10000, |i| i);
bh.iter(|| {
v.sort();
});
bh.bytes = (v.len() * mem::size_of_val(&v[0])) as u64;
}
type BigSortable = (u64,u64,u64,u64);
#[bench]
fn sort_big_random_small(bh: &mut BenchHarness) {
let mut rng = weak_rng();
bh.iter(|| {
let mut v: ~[BigSortable] = rng.gen_vec(5);
v.sort();
});
bh.bytes = 5 * mem::size_of::<BigSortable>() as u64;
}
#[bench]
fn sort_big_random_medium(bh: &mut BenchHarness) {
let mut rng = weak_rng();
bh.iter(|| {
let mut v: ~[BigSortable] = rng.gen_vec(100);
v.sort();
});
bh.bytes = 100 * mem::size_of::<BigSortable>() as u64;
}
#[bench]
fn sort_big_random_large(bh: &mut BenchHarness) {
let mut rng = weak_rng();
bh.iter(|| {
let mut v: ~[BigSortable] = rng.gen_vec(10000);
v.sort();
});
bh.bytes = 10000 * mem::size_of::<BigSortable>() as u64;
}
#[bench]
fn sort_big_sorted(bh: &mut BenchHarness) {
let mut v = vec::from_fn(10000u, |i| (i, i, i, i));
bh.iter(|| {
v.sort();
});
bh.bytes = (v.len() * mem::size_of_val(&v[0])) as u64;
}
}