Felix S. Klock II ced5a701ff New ActiveBorrows dataflow for two-phase &mut; not yet borrowed-checked.
High-level picture: The old `Borrows` analysis is now called
`Reservations` (implemented as a newtype wrapper around `Borrows`);
this continues to compute whether a `Rvalue::Ref` can reach a
statement without an intervening `EndRegion`. In addition, we also
track what `Place` each such `Rvalue::Ref` was immediately assigned
to in a given borrow (yay for MIR-structural properties!).

The new `ActiveBorrows` analysis then tracks the initial use of any of
those assigned `Places` for a given borrow. I.e. a borrow becomes
"active" immediately after it starts being "used" in some way. (This
is conservative in the sense that we will treat a copy `x = y;` as a
use of `y`; in principle one might further delay activation in such
cases.)

The new `ActiveBorrows` analysis needs to take the `Reservations`
results as an initial input, because the reservation state influences
the gen/kill sets for `ActiveBorrows`. In particular, a use of `a`
activates a borrow `a = &b` if and only if there exists a path (in the
control flow graph) from the borrow to that use. So we need to know if
the borrow reaches a given use to know if it really gets a gen-bit or
not.

 * Incorporating the output from one dataflow analysis into the input
   of another required more changes to the infrastructure than I had
   expected, and even after those changes, the resulting code is still
   a bit subtle.

 * In particular, Since we need to know the intrablock reservation
   state, we need to dynamically update a bitvector for the
   reservations as we are also trying to compute the gen/kills
   bitvector for the active borrows.

 * The way I ended up deciding to do this (after also toying with at
   least two other designs) is to put both the reservation state and
   the active borrow state into a single bitvector. That is why we now
   have separate (but related) `BorrowIndex` and
   `ReserveOrActivateIndex`: each borrow index maps to a pair of
   neighboring reservation and activation indexes.

As noted above, these changes are solely adding the active borrows
dataflow analysis (and updating the existing code to cope with the
switch from `Borrows` to `Reservations`). The code to process the
bitvector in the borrow checker currently just skips over all of the
active borrow bits.

But atop this commit, one *can* observe the analysis results by
looking at the graphviz output, e.g. via

```rust
 #[rustc_mir(borrowck_graphviz_preflow="pre_two_phase.dot",
             borrowck_graphviz_postflow="post_two_phase.dot")]
```

Includes doc for `FindPlaceUses`, as well as `Reservations` and
`ActiveBorrows` structs, which are wrappers are the `Borrows` struct
that dictate which flow analysis should be performed.
2017-12-13 15:48:15 -06:00
2017-11-28 18:15:28 -05:00
2017-12-04 11:35:08 -05:00

The Rust Programming Language

This is the main source code repository for Rust. It contains the compiler, standard library, and documentation.

Quick Start

Read "Installation" from The Book.

Building from Source

Building on *nix

  1. Make sure you have installed the dependencies:

    • g++ 4.7 or later or clang++ 3.x or later
    • python 2.7 (but not 3.x)
    • GNU make 3.81 or later
    • cmake 3.4.3 or later
    • curl
    • git
  2. Clone the source with git:

    $ git clone https://github.com/rust-lang/rust.git
    $ cd rust
    
  1. Build and install:

    $ ./x.py build && sudo ./x.py install
    

    Note: Install locations can be adjusted by copying the config file from ./config.toml.example to ./config.toml, and adjusting the prefix option under [install]. Various other options, such as enabling debug information, are also supported, and are documented in the config file.

    When complete, sudo ./x.py install will place several programs into /usr/local/bin: rustc, the Rust compiler, and rustdoc, the API-documentation tool. This install does not include Cargo, Rust's package manager, which you may also want to build.

Building on Windows

There are two prominent ABIs in use on Windows: the native (MSVC) ABI used by Visual Studio, and the GNU ABI used by the GCC toolchain. Which version of Rust you need depends largely on what C/C++ libraries you want to interoperate with: for interop with software produced by Visual Studio use the MSVC build of Rust; for interop with GNU software built using the MinGW/MSYS2 toolchain use the GNU build.

MinGW

MSYS2 can be used to easily build Rust on Windows:

  1. Grab the latest MSYS2 installer and go through the installer.

  2. Run mingw32_shell.bat or mingw64_shell.bat from wherever you installed MSYS2 (i.e. C:\msys64), depending on whether you want 32-bit or 64-bit Rust. (As of the latest version of MSYS2 you have to run msys2_shell.cmd -mingw32 or msys2_shell.cmd -mingw64 from the command line instead)

  3. From this terminal, install the required tools:

    # Update package mirrors (may be needed if you have a fresh install of MSYS2)
    $ pacman -Sy pacman-mirrors
    
    # Install build tools needed for Rust. If you're building a 32-bit compiler,
    # then replace "x86_64" below with "i686". If you've already got git, python,
    # or CMake installed and in PATH you can remove them from this list. Note
    # that it is important that you do **not** use the 'python2' and 'cmake'
    # packages from the 'msys2' subsystem. The build has historically been known
    # to fail with these packages.
    $ pacman -S git \
                make \
                diffutils \
                tar \
                mingw-w64-x86_64-python2 \
                mingw-w64-x86_64-cmake \
                mingw-w64-x86_64-gcc
    
  4. Navigate to Rust's source code (or clone it), then build it:

    $ ./x.py build && ./x.py install
    

MSVC

MSVC builds of Rust additionally require an installation of Visual Studio 2013 (or later) so rustc can use its linker. Make sure to check the “C++ tools” option.

With these dependencies installed, you can build the compiler in a cmd.exe shell with:

> python x.py build

Currently building Rust only works with some known versions of Visual Studio. If you have a more recent version installed the build system doesn't understand then you may need to force rustbuild to use an older version. This can be done by manually calling the appropriate vcvars file before running the bootstrap.

CALL "C:\Program Files (x86)\Microsoft Visual Studio 14.0\VC\bin\amd64\vcvars64.bat"
python x.py build

If you are seeing build failure when compiling rustc_binaryen, make sure the path length of the rust folder is not longer than 22 characters.

Specifying an ABI

Each specific ABI can also be used from either environment (for example, using the GNU ABI in powershell) by using an explicit build triple. The available Windows build triples are:

  • GNU ABI (using GCC)
    • i686-pc-windows-gnu
    • x86_64-pc-windows-gnu
  • The MSVC ABI
    • i686-pc-windows-msvc
    • x86_64-pc-windows-msvc

The build triple can be specified by either specifying --build=<triple> when invoking x.py commands, or by copying the config.toml file (as described in Building From Source), and modifying the build option under the [build] section.

Configure and Make

While it's not the recommended build system, this project also provides a configure script and makefile (the latter of which just invokes x.py).

$ ./configure
$ make && sudo make install

When using the configure script, the generated config.mk file may override the config.toml file. To go back to the config.toml file, delete the generated config.mk file.

Building Documentation

If youd like to build the documentation, its almost the same:

$ ./x.py doc

The generated documentation will appear under doc in the build directory for the ABI used. I.e., if the ABI was x86_64-pc-windows-msvc, the directory will be build\x86_64-pc-windows-msvc\doc.

Notes

Since the Rust compiler is written in Rust, it must be built by a precompiled "snapshot" version of itself (made in an earlier state of development). As such, source builds require a connection to the Internet, to fetch snapshots, and an OS that can execute the available snapshot binaries.

Snapshot binaries are currently built and tested on several platforms:

Platform / Architecture x86 x86_64
Windows (7, 8, Server 2008 R2)
Linux (2.6.18 or later)
OSX (10.7 Lion or later)

You may find that other platforms work, but these are our officially supported build environments that are most likely to work.

Rust currently needs between 600MiB and 1.5GiB of RAM to build, depending on platform. If it hits swap, it will take a very long time to build.

There is more advice about hacking on Rust in CONTRIBUTING.md.

Getting Help

The Rust community congregates in a few places:

Contributing

To contribute to Rust, please see CONTRIBUTING.

Rust has an IRC culture and most real-time collaboration happens in a variety of channels on Mozilla's IRC network, irc.mozilla.org. The most popular channel is #rust, a venue for general discussion about Rust. And a good place to ask for help would be #rust-beginners.

License

Rust is primarily distributed under the terms of both the MIT license and the Apache License (Version 2.0), with portions covered by various BSD-like licenses.

See LICENSE-APACHE, LICENSE-MIT, and COPYRIGHT for details.

Description
No description provided
Readme 1.4 GiB
Languages
Rust 96.2%
RenderScript 0.7%
JavaScript 0.6%
Shell 0.6%
Fluent 0.4%
Other 1.3%