rust/src/rustc/middle/ty.rs
2012-07-06 13:37:56 -07:00

3044 lines
90 KiB
Rust

import std::{map, smallintmap};
import result::result;
import std::map::hashmap;
import driver::session;
import session::session;
import syntax::{ast, ast_map};
import syntax::ast_util;
import syntax::ast_util::{is_local, local_def, split_class_items,
new_def_hash};
import syntax::codemap::span;
import metadata::csearch;
import util::ppaux::region_to_str;
import util::ppaux::vstore_to_str;
import middle::lint::{get_warning_level, vecs_not_implicitly_copyable,
ignore};
import syntax::ast::*;
import syntax::print::pprust::*;
import util::ppaux::{ty_to_str, tys_to_str, ty_constr_to_str};
export tv_vid, tvi_vid, region_vid, vid;
export br_hashmap;
export is_instantiable;
export node_id_to_type;
export node_id_to_type_params;
export arg;
export args_eq;
export ast_constr_to_constr;
export block_ty;
export class_items_as_fields, class_items_as_mutable_fields;
export constr;
export constr_general;
export constr_table;
export ctxt;
export deref, deref_sty;
export index, index_sty;
export def_has_ty_params;
export expr_has_ty_params;
export expr_ty;
export expr_ty_params_and_ty;
export expr_is_lval;
export field_ty;
export fold_ty, fold_sty_to_ty, fold_region, fold_regions;
export fold_regions_and_ty, walk_regions_and_ty;
export field;
export field_idx;
export get_field;
export get_fields;
export get_element_type;
export has_dtor;
export is_binopable;
export is_pred_ty;
export lookup_class_field, lookup_class_fields;
export lookup_class_method_by_name;
export lookup_field_type;
export lookup_item_type;
export lookup_public_fields;
export method;
export method_idx;
export mk_class;
export mk_ctxt;
export mk_with_id, type_def_id;
export mt;
export node_type_table;
export pat_ty;
export sequence_element_type;
export stmt_node_id;
export sty;
export subst, subst_tps, substs_is_noop, substs_to_str, substs;
export t;
export new_ty_hash;
export enum_variants, substd_enum_variants, enum_is_univariant;
export trait_methods, store_trait_methods, impl_trait;
export enum_variant_with_id;
export ty_dtor;
export ty_param_bounds_and_ty;
export ty_bool, mk_bool, type_is_bool;
export ty_bot, mk_bot, type_is_bot;
export ty_box, mk_box, mk_imm_box, type_is_box, type_is_boxed;
export ty_constr, mk_constr;
export ty_opaque_closure_ptr, mk_opaque_closure_ptr;
export ty_opaque_box, mk_opaque_box;
export ty_constr_arg;
export ty_float, mk_float, mk_mach_float, type_is_fp;
export ty_fn, fn_ty, mk_fn;
export ty_fn_proto, ty_fn_ret, ty_fn_ret_style, tys_in_fn_ty;
export ty_int, mk_int, mk_mach_int, mk_char;
export mk_i8, mk_u8, mk_i16, mk_u16, mk_i32, mk_u32, mk_i64, mk_u64;
export ty_str, mk_str, type_is_str;
export ty_vec, mk_vec, type_is_vec;
export ty_estr, mk_estr;
export ty_evec, mk_evec;
export ty_unboxed_vec, mk_unboxed_vec, mk_mut_unboxed_vec;
export vstore, vstore_fixed, vstore_uniq, vstore_box, vstore_slice;
export ty_nil, mk_nil, type_is_nil;
export ty_trait, mk_trait;
export ty_param, mk_param, ty_params_to_tys;
export ty_ptr, mk_ptr, mk_mut_ptr, mk_imm_ptr, mk_nil_ptr, type_is_unsafe_ptr;
export ty_rptr, mk_rptr;
export ty_rec, mk_rec;
export ty_enum, mk_enum, type_is_enum;
export ty_tup, mk_tup;
export ty_type, mk_type;
export ty_uint, mk_uint, mk_mach_uint;
export ty_uniq, mk_uniq, mk_imm_uniq, type_is_unique_box;
export ty_var, mk_var, type_is_var;
export ty_var_integral, mk_var_integral, type_is_var_integral;
export ty_self, mk_self, type_has_self;
export ty_class;
export region, bound_region, encl_region;
export re_bound, re_free, re_scope, re_static, re_var;
export br_self, br_anon, br_named;
export get, type_has_params, type_needs_infer, type_has_regions;
export type_has_resources, type_id;
export tbox_has_flag;
export ty_var_id;
export ty_to_def_id;
export ty_fn_args;
export type_constr;
export kind, kind_implicitly_copyable, kind_sendable, kind_copyable;
export kind_noncopyable, kind_const;
export kind_can_be_copied, kind_can_be_sent, kind_can_be_implicitly_copied;
export proto_kind, kind_lteq, type_kind;
export operators;
export type_err, terr_vstore_kind;
export type_err_to_str;
export type_needs_drop;
export type_allows_implicit_copy;
export type_is_integral;
export type_is_numeric;
export type_is_pod;
export type_is_scalar;
export type_is_immediate;
export type_is_sequence;
export type_is_signed;
export type_is_structural;
export type_is_copyable;
export type_is_slice;
export type_is_unique;
export type_is_c_like_enum;
export type_structurally_contains;
export type_structurally_contains_uniques;
export type_autoderef, deref, deref_sty;
export type_param;
export type_needs_unwind_cleanup;
export canon_mode;
export resolved_mode;
export arg_mode;
export unify_mode;
export set_default_mode;
export variant_info;
export walk_ty, maybe_walk_ty;
export occurs_check;
export closure_kind;
export ck_block;
export ck_box;
export ck_uniq;
export param_bound, param_bounds, bound_copy, bound_send, bound_trait;
export param_bounds_to_kind;
export default_arg_mode_for_ty;
export item_path;
export item_path_str;
export ast_ty_to_ty_cache_entry;
export atttce_unresolved, atttce_resolved;
export mach_sty;
export ty_sort_str;
export normalize_ty;
export to_str;
export borrow, serialize_borrow, deserialize_borrow;
// Data types
// Note: after typeck, you should use resolved_mode() to convert this mode
// into an rmode, which will take into account the results of mode inference.
type arg = {mode: ast::mode, ty: t};
type field = {ident: ast::ident, mt: mt};
type param_bounds = @~[param_bound];
type method = {ident: ast::ident,
tps: @~[param_bounds],
fty: fn_ty,
purity: ast::purity,
vis: ast::visibility};
type constr_table = hashmap<ast::node_id, ~[constr]>;
type mt = {ty: t, mutbl: ast::mutability};
enum vstore {
vstore_fixed(uint),
vstore_uniq,
vstore_box,
vstore_slice(region)
}
type field_ty = {
ident: ident,
id: def_id,
vis: ast::visibility,
mutability: ast::class_mutability
};
// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
type creader_cache = hashmap<{cnum: int, pos: uint, len: uint}, t>;
type intern_key = {struct: sty, o_def_id: option<ast::def_id>};
enum ast_ty_to_ty_cache_entry {
atttce_unresolved, /* not resolved yet */
atttce_resolved(t) /* resolved to a type, irrespective of region */
}
#[auto_serialize]
type borrow = {
scope_id: ast::node_id,
mutbl: ast::mutability
};
type ctxt =
@{diag: syntax::diagnostic::span_handler,
interner: hashmap<intern_key, t_box>,
mut next_id: uint,
vecs_implicitly_copyable: bool,
cstore: metadata::cstore::cstore,
sess: session::session,
def_map: resolve::def_map,
region_map: middle::region::region_map,
// Stores the types for various nodes in the AST. Note that this table
// is not guaranteed to be populated until after typeck. See
// typeck::fn_ctxt for details.
node_types: node_type_table,
// Stores the type parameters which were substituted to obtain the type
// of this node. This only applies to nodes that refer to entities
// parameterized by type parameters, such as generic fns, types, or
// other items.
node_type_substs: hashmap<node_id, ~[t]>,
items: ast_map::map,
intrinsic_traits: hashmap<ast::ident, (ast::def_id, t)>,
freevars: freevars::freevar_map,
tcache: type_cache,
rcache: creader_cache,
short_names_cache: hashmap<t, @str>,
needs_drop_cache: hashmap<t, bool>,
needs_unwind_cleanup_cache: hashmap<t, bool>,
kind_cache: hashmap<t, kind>,
ast_ty_to_ty_cache: hashmap<@ast::ty, ast_ty_to_ty_cache_entry>,
enum_var_cache: hashmap<def_id, @~[variant_info]>,
trait_method_cache: hashmap<def_id, @~[method]>,
ty_param_bounds: hashmap<ast::node_id, param_bounds>,
inferred_modes: hashmap<ast::node_id, ast::mode>,
// maps the id of borrowed expr to scope of borrowed ptr
borrowings: hashmap<ast::node_id, borrow>,
normalized_cache: hashmap<t, t>};
enum tbox_flag {
has_params = 1,
has_self = 2,
needs_infer = 4,
has_regions = 8,
has_resources = 16,
// a meta-flag: subst may be required if the type has parameters, a self
// type, or references bound regions
needs_subst = 1 | 2 | 8
}
type t_box = @{struct: sty,
id: uint,
flags: uint,
o_def_id: option<ast::def_id>};
// To reduce refcounting cost, we're representing types as unsafe pointers
// throughout the compiler. These are simply casted t_box values. Use ty::get
// to cast them back to a box. (Without the cast, compiler performance suffers
// ~15%.) This does mean that a t value relies on the ctxt to keep its box
// alive, and using ty::get is unsafe when the ctxt is no longer alive.
enum t_opaque {}
type t = *t_opaque;
pure fn get(t: t) -> t_box unsafe {
let t2 = unsafe::reinterpret_cast::<t, t_box>(t);
let t3 = t2;
unsafe::forget(t2);
t3
}
fn tbox_has_flag(tb: t_box, flag: tbox_flag) -> bool {
(tb.flags & (flag as uint)) != 0u
}
fn type_has_params(t: t) -> bool { tbox_has_flag(get(t), has_params) }
fn type_has_self(t: t) -> bool { tbox_has_flag(get(t), has_self) }
fn type_needs_infer(t: t) -> bool { tbox_has_flag(get(t), needs_infer) }
fn type_has_regions(t: t) -> bool { tbox_has_flag(get(t), has_regions) }
fn type_has_resources(t: t) -> bool { tbox_has_flag(get(t), has_resources) }
fn type_def_id(t: t) -> option<ast::def_id> { get(t).o_def_id }
fn type_id(t: t) -> uint { get(t).id }
enum closure_kind {
ck_block,
ck_box,
ck_uniq,
}
type fn_ty = {purity: ast::purity,
proto: ast::proto,
inputs: ~[arg],
output: t,
ret_style: ret_style,
constraints: ~[@constr]};
// See discussion at head of region.rs
enum region {
re_bound(bound_region),
re_free(node_id, bound_region),
re_scope(node_id),
re_var(region_vid),
re_static // effectively `top` in the region lattice
}
enum bound_region {
br_self, // The self region for classes, impls
br_anon, // The anonymous region parameter for a given function.
br_named(ast::ident) // A named region parameter.
}
type opt_region = option<region>;
// The type substs represents the kinds of things that can be substituted into
// a type. There may be at most one region parameter (self_r), along with
// some number of type parameters (tps).
//
// The region parameter is present on nominative types (enums, resources,
// classes) that are declared as having a region parameter. If the type is
// declared as `enum foo&`, then self_r should always be non-none. If the
// type is declared as `enum foo`, then self_r will always be none. In the
// latter case, typeck::ast_ty_to_ty() will reject any references to `&T` or
// `&self.T` within the type and report an error.
type substs = {
self_r: opt_region,
self_ty: option<ty::t>,
tps: ~[t]
};
// NB: If you change this, you'll probably want to change the corresponding
// AST structure in libsyntax/ast.rs as well.
enum sty {
ty_nil,
ty_bot,
ty_bool,
ty_int(ast::int_ty),
ty_uint(ast::uint_ty),
ty_float(ast::float_ty),
ty_str,
ty_estr(vstore),
ty_enum(def_id, substs),
ty_box(mt),
ty_uniq(mt),
ty_vec(mt),
ty_evec(mt, vstore),
ty_ptr(mt),
ty_rptr(region, mt),
ty_rec(~[field]),
ty_fn(fn_ty),
ty_trait(def_id, substs),
ty_class(def_id, substs),
ty_tup(~[t]),
ty_var(tv_vid), // type variable during typechecking
ty_var_integral(tvi_vid), // type variable during typechecking, for
// integral types only
ty_param(uint, def_id), // type parameter
ty_self, // special, implicit `self` type parameter
ty_constr(t, ~[@type_constr]),
// "Fake" types, used for trans purposes
ty_type, // type_desc*
ty_opaque_box, // used by monomorphizer to represent any @ box
ty_opaque_closure_ptr(closure_kind), // ptr to env for fn, fn@, fn~
ty_unboxed_vec(mt),
}
// In the middle end, constraints have a def_id attached, referring
// to the definition of the operator in the constraint.
type constr_general<ARG> = spanned<constr_general_<ARG, def_id>>;
type type_constr = constr_general<@path>;
type constr = constr_general<uint>;
enum terr_vstore_kind {
terr_vec, terr_str
}
// Data structures used in type unification
enum type_err {
terr_mismatch,
terr_ret_style_mismatch(ast::ret_style, ast::ret_style),
terr_purity_mismatch(purity, purity),
terr_mutability,
terr_proto_mismatch(ast::proto, ast::proto),
terr_box_mutability,
terr_ptr_mutability,
terr_ref_mutability,
terr_vec_mutability,
terr_tuple_size(uint, uint),
terr_ty_param_size(uint, uint),
terr_record_size(uint, uint),
terr_record_mutability,
terr_record_fields(ast::ident, ast::ident),
terr_arg_count,
terr_mode_mismatch(mode, mode),
terr_constr_len(uint, uint),
terr_constr_mismatch(@type_constr, @type_constr),
terr_regions_differ(region, region),
terr_vstores_differ(terr_vstore_kind, vstore, vstore),
terr_in_field(@type_err, ast::ident),
terr_sorts(t, t),
terr_self_substs,
terr_no_integral_type,
}
enum param_bound {
bound_copy,
bound_send,
bound_const,
bound_trait(t),
}
enum tv_vid = uint;
enum tvi_vid = uint;
enum region_vid = uint;
iface vid {
fn to_uint() -> uint;
fn to_str() -> str;
}
impl of vid for tv_vid {
fn to_uint() -> uint { *self }
fn to_str() -> str { #fmt["<V%u>", self.to_uint()] }
}
impl of vid for tvi_vid {
fn to_uint() -> uint { *self }
fn to_str() -> str { #fmt["<VI%u>", self.to_uint()] }
}
impl of vid for region_vid {
fn to_uint() -> uint { *self }
fn to_str() -> str { #fmt["<R%u>", self.to_uint()] }
}
impl of to_str::to_str for purity {
fn to_str() -> str {
purity_to_str(self)
}
}
fn param_bounds_to_kind(bounds: param_bounds) -> kind {
let mut kind = kind_noncopyable();
for vec::each(*bounds) |bound| {
alt bound {
bound_copy {
kind = raise_kind(kind, kind_implicitly_copyable());
}
bound_send { kind = raise_kind(kind, kind_send_only()); }
bound_const { kind = raise_kind(kind, kind_const()); }
bound_trait(_) {}
}
}
kind
}
type ty_param_bounds_and_ty = {bounds: @~[param_bounds],
rp: ast::region_param,
ty: t};
type type_cache = hashmap<ast::def_id, ty_param_bounds_and_ty>;
type node_type_table = @smallintmap::smallintmap<t>;
fn mk_rcache() -> creader_cache {
type val = {cnum: int, pos: uint, len: uint};
fn hash_cache_entry(k: val) -> uint {
ret (k.cnum as uint) + k.pos + k.len;
}
fn eq_cache_entries(a: val, b: val) -> bool {
ret a.cnum == b.cnum && a.pos == b.pos && a.len == b.len;
}
ret map::hashmap(hash_cache_entry, eq_cache_entries);
}
fn new_ty_hash<V: copy>() -> map::hashmap<t, V> {
map::hashmap(|&&t: t| type_id(t),
|&&a: t, &&b: t| type_id(a) == type_id(b))
}
fn mk_ctxt(s: session::session, dm: resolve::def_map, amap: ast_map::map,
freevars: freevars::freevar_map,
region_map: middle::region::region_map) -> ctxt {
let interner = map::hashmap(|&&k: intern_key| {
hash_type_structure(k.struct) +
option::map_default(k.o_def_id, 0u, ast_util::hash_def)
}, |&&a, &&b| a == b);
let vecs_implicitly_copyable =
get_warning_level(s.warning_settings.default_settings,
vecs_not_implicitly_copyable) == ignore;
@{diag: s.diagnostic(),
interner: interner,
mut next_id: 0u,
vecs_implicitly_copyable: vecs_implicitly_copyable,
cstore: s.cstore,
sess: s,
def_map: dm,
region_map: region_map,
node_types: @smallintmap::mk(),
node_type_substs: map::int_hash(),
items: amap,
intrinsic_traits: map::box_str_hash(),
freevars: freevars,
tcache: ast_util::new_def_hash(),
rcache: mk_rcache(),
short_names_cache: new_ty_hash(),
needs_drop_cache: new_ty_hash(),
needs_unwind_cleanup_cache: new_ty_hash(),
kind_cache: new_ty_hash(),
ast_ty_to_ty_cache: map::hashmap(
ast_util::hash_ty, ast_util::eq_ty),
enum_var_cache: new_def_hash(),
trait_method_cache: new_def_hash(),
ty_param_bounds: map::int_hash(),
inferred_modes: map::int_hash(),
borrowings: map::int_hash(),
normalized_cache: new_ty_hash()}
}
// Type constructors
fn mk_t(cx: ctxt, st: sty) -> t { mk_t_with_id(cx, st, none) }
// Interns a type/name combination, stores the resulting box in cx.interner,
// and returns the box as cast to an unsafe ptr (see comments for t above).
fn mk_t_with_id(cx: ctxt, st: sty, o_def_id: option<ast::def_id>) -> t {
let key = {struct: st, o_def_id: o_def_id};
alt cx.interner.find(key) {
some(t) { unsafe { ret unsafe::reinterpret_cast(t); } }
_ {}
}
let mut flags = 0u;
fn rflags(r: region) -> uint {
(has_regions as uint) | {
alt r {
ty::re_var(_) {needs_infer as uint}
_ {0u}
}
}
}
fn sflags(substs: substs) -> uint {
let mut f = 0u;
for substs.tps.each |tt| { f |= get(tt).flags; }
substs.self_r.iter(|r| f |= rflags(r));
ret f;
}
alt st {
ty_estr(vstore_slice(r)) {
flags |= rflags(r);
}
ty_evec(mt, vstore_slice(r)) {
flags |= rflags(r);
flags |= get(mt.ty).flags;
}
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_float(_) | ty_uint(_) |
ty_str | ty_estr(_) | ty_type | ty_opaque_closure_ptr(_) |
ty_opaque_box {}
ty_param(_, _) { flags |= has_params as uint; }
ty_var(_) | ty_var_integral(_) { flags |= needs_infer as uint; }
ty_self { flags |= has_self as uint; }
ty_enum(_, substs) | ty_class(_, substs) | ty_trait(_, substs) {
flags |= sflags(substs);
}
ty_box(m) | ty_uniq(m) | ty_vec(m) | ty_evec(m, _) |
ty_ptr(m) | ty_unboxed_vec(m) {
flags |= get(m.ty).flags;
}
ty_rptr(r, m) {
flags |= rflags(r);
flags |= get(m.ty).flags;
}
ty_rec(flds) {
for flds.each |f| { flags |= get(f.mt.ty).flags; }
}
ty_tup(ts) {
for ts.each |tt| { flags |= get(tt).flags; }
}
ty_fn(f) {
for f.inputs.each |a| { flags |= get(a.ty).flags; }
flags |= get(f.output).flags;
}
ty_constr(tt, _) {
flags |= get(tt).flags;
}
}
let t = @{struct: st, id: cx.next_id, flags: flags, o_def_id: o_def_id};
cx.interner.insert(key, t);
cx.next_id += 1u;
unsafe { unsafe::reinterpret_cast(t) }
}
fn mk_nil(cx: ctxt) -> t { mk_t(cx, ty_nil) }
fn mk_bot(cx: ctxt) -> t { mk_t(cx, ty_bot) }
fn mk_bool(cx: ctxt) -> t { mk_t(cx, ty_bool) }
fn mk_int(cx: ctxt) -> t { mk_t(cx, ty_int(ast::ty_i)) }
fn mk_i8(cx: ctxt) -> t { mk_t(cx, ty_int(ast::ty_i8)) }
fn mk_i16(cx: ctxt) -> t { mk_t(cx, ty_int(ast::ty_i16)) }
fn mk_i32(cx: ctxt) -> t { mk_t(cx, ty_int(ast::ty_i32)) }
fn mk_i64(cx: ctxt) -> t { mk_t(cx, ty_int(ast::ty_i64)) }
fn mk_float(cx: ctxt) -> t { mk_t(cx, ty_float(ast::ty_f)) }
fn mk_uint(cx: ctxt) -> t { mk_t(cx, ty_uint(ast::ty_u)) }
fn mk_u8(cx: ctxt) -> t { mk_t(cx, ty_uint(ast::ty_u8)) }
fn mk_u16(cx: ctxt) -> t { mk_t(cx, ty_uint(ast::ty_u16)) }
fn mk_u32(cx: ctxt) -> t { mk_t(cx, ty_uint(ast::ty_u32)) }
fn mk_u64(cx: ctxt) -> t { mk_t(cx, ty_uint(ast::ty_u64)) }
fn mk_mach_int(cx: ctxt, tm: ast::int_ty) -> t { mk_t(cx, ty_int(tm)) }
fn mk_mach_uint(cx: ctxt, tm: ast::uint_ty) -> t { mk_t(cx, ty_uint(tm)) }
fn mk_mach_float(cx: ctxt, tm: ast::float_ty) -> t { mk_t(cx, ty_float(tm)) }
fn mk_char(cx: ctxt) -> t { mk_t(cx, ty_int(ast::ty_char)) }
fn mk_str(cx: ctxt) -> t { mk_t(cx, ty_str) }
fn mk_estr(cx: ctxt, t: vstore) -> t {
mk_t(cx, ty_estr(t))
}
fn mk_enum(cx: ctxt, did: ast::def_id, substs: substs) -> t {
mk_t(cx, ty_enum(did, substs))
}
fn mk_box(cx: ctxt, tm: mt) -> t { mk_t(cx, ty_box(tm)) }
fn mk_imm_box(cx: ctxt, ty: t) -> t { mk_box(cx, {ty: ty,
mutbl: ast::m_imm}) }
fn mk_uniq(cx: ctxt, tm: mt) -> t { mk_t(cx, ty_uniq(tm)) }
fn mk_imm_uniq(cx: ctxt, ty: t) -> t { mk_uniq(cx, {ty: ty,
mutbl: ast::m_imm}) }
fn mk_ptr(cx: ctxt, tm: mt) -> t { mk_t(cx, ty_ptr(tm)) }
fn mk_rptr(cx: ctxt, r: region, tm: mt) -> t { mk_t(cx, ty_rptr(r, tm)) }
fn mk_mut_ptr(cx: ctxt, ty: t) -> t { mk_ptr(cx, {ty: ty,
mutbl: ast::m_mutbl}) }
fn mk_imm_ptr(cx: ctxt, ty: t) -> t {
mk_ptr(cx, {ty: ty, mutbl: ast::m_imm})
}
fn mk_nil_ptr(cx: ctxt) -> t {
mk_ptr(cx, {ty: mk_nil(cx), mutbl: ast::m_imm})
}
fn mk_vec(cx: ctxt, tm: mt) -> t { mk_evec(cx, tm, vstore_uniq) }
fn mk_evec(cx: ctxt, tm: mt, t: vstore) -> t {
mk_t(cx, ty_evec(tm, t))
}
fn mk_unboxed_vec(cx: ctxt, tm: mt) -> t {
mk_t(cx, ty_unboxed_vec(tm))
}
fn mk_mut_unboxed_vec(cx: ctxt, ty: t) -> t {
mk_t(cx, ty_unboxed_vec({ty: ty, mutbl: ast::m_imm}))
}
fn mk_rec(cx: ctxt, fs: ~[field]) -> t { mk_t(cx, ty_rec(fs)) }
fn mk_constr(cx: ctxt, t: t, cs: ~[@type_constr]) -> t {
mk_t(cx, ty_constr(t, cs))
}
fn mk_tup(cx: ctxt, ts: ~[t]) -> t { mk_t(cx, ty_tup(ts)) }
fn mk_fn(cx: ctxt, fty: fn_ty) -> t { mk_t(cx, ty_fn(fty)) }
fn mk_trait(cx: ctxt, did: ast::def_id, substs: substs) -> t {
mk_t(cx, ty_trait(did, substs))
}
fn mk_class(cx: ctxt, class_id: ast::def_id, substs: substs) -> t {
mk_t(cx, ty_class(class_id, substs))
}
fn mk_var(cx: ctxt, v: tv_vid) -> t { mk_t(cx, ty_var(v)) }
fn mk_var_integral(cx: ctxt, v: tvi_vid) -> t {
mk_t(cx, ty_var_integral(v))
}
fn mk_self(cx: ctxt) -> t { mk_t(cx, ty_self) }
fn mk_param(cx: ctxt, n: uint, k: def_id) -> t { mk_t(cx, ty_param(n, k)) }
fn mk_type(cx: ctxt) -> t { mk_t(cx, ty_type) }
fn mk_opaque_closure_ptr(cx: ctxt, ck: closure_kind) -> t {
mk_t(cx, ty_opaque_closure_ptr(ck))
}
fn mk_opaque_box(cx: ctxt) -> t { mk_t(cx, ty_opaque_box) }
fn mk_with_id(cx: ctxt, base: t, def_id: ast::def_id) -> t {
mk_t_with_id(cx, get(base).struct, some(def_id))
}
// Converts s to its machine type equivalent
pure fn mach_sty(cfg: @session::config, t: t) -> sty {
alt get(t).struct {
ty_int(ast::ty_i) { ty_int(cfg.int_type) }
ty_uint(ast::ty_u) { ty_uint(cfg.uint_type) }
ty_float(ast::ty_f) { ty_float(cfg.float_type) }
s { s }
}
}
fn default_arg_mode_for_ty(ty: ty::t) -> ast::rmode {
if ty::type_is_immediate(ty) { ast::by_val }
else { ast::by_ref }
}
// Returns the narrowest lifetime enclosing the evaluation of the expression
// with id `id`.
fn encl_region(cx: ctxt, id: ast::node_id) -> ty::region {
alt cx.region_map.find(id) {
some(encl_scope) {ty::re_scope(encl_scope)}
none {ty::re_static}
}
}
fn walk_ty(ty: t, f: fn(t)) {
maybe_walk_ty(ty, |t| { f(t); true });
}
fn maybe_walk_ty(ty: t, f: fn(t) -> bool) {
if !f(ty) { ret; }
alt get(ty).struct {
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_uint(_) | ty_float(_) |
ty_str | ty_estr(_) | ty_type | ty_opaque_box | ty_self |
ty_opaque_closure_ptr(_) | ty_var(_) | ty_var_integral(_) |
ty_param(_, _) {
}
ty_box(tm) | ty_vec(tm) | ty_evec(tm, _) | ty_unboxed_vec(tm) |
ty_ptr(tm) | ty_rptr(_, tm) {
maybe_walk_ty(tm.ty, f);
}
ty_enum(_, substs) | ty_class(_, substs) |
ty_trait(_, substs) {
for substs.tps.each |subty| { maybe_walk_ty(subty, f); }
}
ty_rec(fields) {
for fields.each |fl| { maybe_walk_ty(fl.mt.ty, f); }
}
ty_tup(ts) { for ts.each |tt| { maybe_walk_ty(tt, f); } }
ty_fn(ft) {
for ft.inputs.each |a| { maybe_walk_ty(a.ty, f); }
maybe_walk_ty(ft.output, f);
}
ty_constr(sub, _) { maybe_walk_ty(sub, f); }
ty_uniq(tm) { maybe_walk_ty(tm.ty, f); }
}
}
fn fold_sty_to_ty(tcx: ty::ctxt, sty: sty, foldop: fn(t) -> t) -> t {
mk_t(tcx, fold_sty(sty, foldop))
}
fn fold_sty(sty: sty, fldop: fn(t) -> t) -> sty {
fn fold_substs(substs: substs, fldop: fn(t) -> t) -> substs {
{self_r: substs.self_r,
self_ty: substs.self_ty.map(|t| fldop(t)),
tps: substs.tps.map(|t| fldop(t))}
}
alt sty {
ty_box(tm) {
ty_box({ty: fldop(tm.ty), mutbl: tm.mutbl})
}
ty_uniq(tm) {
ty_uniq({ty: fldop(tm.ty), mutbl: tm.mutbl})
}
ty_ptr(tm) {
ty_ptr({ty: fldop(tm.ty), mutbl: tm.mutbl})
}
ty_vec(tm) {
ty_vec({ty: fldop(tm.ty), mutbl: tm.mutbl})
}
ty_unboxed_vec(tm) {
ty_unboxed_vec({ty: fldop(tm.ty), mutbl: tm.mutbl})
}
ty_evec(tm, vst) {
ty_evec({ty: fldop(tm.ty), mutbl: tm.mutbl}, vst)
}
ty_enum(tid, substs) {
ty_enum(tid, fold_substs(substs, fldop))
}
ty_trait(did, substs) {
ty_trait(did, fold_substs(substs, fldop))
}
ty_rec(fields) {
let new_fields = do vec::map(fields) |fl| {
let new_ty = fldop(fl.mt.ty);
let new_mt = {ty: new_ty, mutbl: fl.mt.mutbl};
{ident: fl.ident, mt: new_mt}
};
ty_rec(new_fields)
}
ty_tup(ts) {
let new_ts = vec::map(ts, |tt| fldop(tt));
ty_tup(new_ts)
}
ty_fn(f) {
let new_args = vec::map(f.inputs, |a| {
let new_ty = fldop(a.ty);
{mode: a.mode, ty: new_ty}
});
let new_output = fldop(f.output);
ty_fn({inputs: new_args, output: new_output with f})
}
ty_rptr(r, tm) {
ty_rptr(r, {ty: fldop(tm.ty), mutbl: tm.mutbl})
}
ty_constr(subty, cs) {
ty_constr(fldop(subty), cs)
}
ty_class(did, substs) {
ty_class(did, fold_substs(substs, fldop))
}
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_uint(_) | ty_float(_) |
ty_str | ty_estr(_) | ty_type | ty_opaque_closure_ptr(_) |
ty_opaque_box | ty_var(_) | ty_var_integral(_) | ty_param(*) | ty_self {
sty
}
}
}
// Folds types from the bottom up.
fn fold_ty(cx: ctxt, t0: t, fldop: fn(t) -> t) -> t {
let sty = fold_sty(get(t0).struct, |t| fold_ty(cx, fldop(t), fldop));
fldop(mk_t(cx, sty))
}
fn walk_regions_and_ty(
cx: ctxt,
ty: t,
walkr: fn(r: region),
walkt: fn(t: t) -> bool) {
if (walkt(ty)) {
fold_regions_and_ty(
cx, ty,
|r| { walkr(r); r },
|t| { walkt(t); walk_regions_and_ty(cx, t, walkr, walkt); t },
|t| { walkt(t); walk_regions_and_ty(cx, t, walkr, walkt); t });
}
}
fn fold_regions_and_ty(
cx: ctxt,
ty: t,
fldr: fn(r: region) -> region,
fldfnt: fn(t: t) -> t,
fldt: fn(t: t) -> t) -> t {
fn fold_substs(
substs: substs,
fldr: fn(r: region) -> region,
fldt: fn(t: t) -> t) -> substs {
{self_r: substs.self_r.map(|r| fldr(r)),
self_ty: substs.self_ty.map(|t| fldt(t)),
tps: substs.tps.map(|t| fldt(t))}
}
let tb = ty::get(ty);
alt tb.struct {
ty::ty_rptr(r, mt) {
let m_r = fldr(r);
let m_t = fldt(mt.ty);
ty::mk_rptr(cx, m_r, {ty: m_t, mutbl: mt.mutbl})
}
ty_estr(vstore_slice(r)) {
let m_r = fldr(r);
ty::mk_estr(cx, vstore_slice(m_r))
}
ty_evec(mt, vstore_slice(r)) {
let m_r = fldr(r);
let m_t = fldt(mt.ty);
ty::mk_evec(cx, {ty: m_t, mutbl: mt.mutbl}, vstore_slice(m_r))
}
ty_enum(def_id, substs) {
ty::mk_enum(cx, def_id, fold_substs(substs, fldr, fldt))
}
ty_class(def_id, substs) {
ty::mk_class(cx, def_id, fold_substs(substs, fldr, fldt))
}
ty_trait(def_id, substs) {
ty::mk_trait(cx, def_id, fold_substs(substs, fldr, fldt))
}
sty @ ty_fn(_) {
fold_sty_to_ty(cx, sty, |t| fldfnt(t))
}
sty {
fold_sty_to_ty(cx, sty, |t| fldt(t))
}
}
}
// n.b. this function is intended to eventually replace fold_region() below,
// that is why its name is so similar.
fn fold_regions(
cx: ctxt,
ty: t,
fldr: fn(r: region, in_fn: bool) -> region) -> t {
fn do_fold(cx: ctxt, ty: t, in_fn: bool,
fldr: fn(region, bool) -> region) -> t {
if !type_has_regions(ty) { ret ty; }
fold_regions_and_ty(
cx, ty,
|r| fldr(r, in_fn),
|t| do_fold(cx, t, true, fldr),
|t| do_fold(cx, t, in_fn, fldr))
}
do_fold(cx, ty, false, fldr)
}
fn fold_region(cx: ctxt, t0: t, fldop: fn(region, bool) -> region) -> t {
fn do_fold(cx: ctxt, t0: t, under_r: bool,
fldop: fn(region, bool) -> region) -> t {
let tb = get(t0);
if !tbox_has_flag(tb, has_regions) { ret t0; }
alt tb.struct {
ty_rptr(r, {ty: t1, mutbl: m}) {
let m_r = fldop(r, under_r);
let m_t1 = do_fold(cx, t1, true, fldop);
ty::mk_rptr(cx, m_r, {ty: m_t1, mutbl: m})
}
ty_estr(vstore_slice(r)) {
let m_r = fldop(r, under_r);
ty::mk_estr(cx, vstore_slice(m_r))
}
ty_evec({ty: t1, mutbl: m}, vstore_slice(r)) {
let m_r = fldop(r, under_r);
let m_t1 = do_fold(cx, t1, true, fldop);
ty::mk_evec(cx, {ty: m_t1, mutbl: m}, vstore_slice(m_r))
}
ty_fn(_) {
// do not recurse into functions, which introduce fresh bindings
t0
}
sty {
do fold_sty_to_ty(cx, sty) |t| {
do_fold(cx, t, under_r, fldop)
}
}
}
}
do_fold(cx, t0, false, fldop)
}
// Substitute *only* type parameters. Used in trans where regions are erased.
fn subst_tps(cx: ctxt, tps: ~[t], typ: t) -> t {
if tps.len() == 0u { ret typ; }
let tb = ty::get(typ);
if !tbox_has_flag(tb, has_params) { ret typ; }
alt tb.struct {
ty_param(idx, _) { tps[idx] }
sty { fold_sty_to_ty(cx, sty, |t| subst_tps(cx, tps, t)) }
}
}
fn substs_is_noop(substs: substs) -> bool {
substs.tps.len() == 0u &&
substs.self_r.is_none() &&
substs.self_ty.is_none()
}
fn substs_to_str(cx: ctxt, substs: substs) -> str {
#fmt["substs(self_r=%s, self_ty=%s, tps=%?)",
substs.self_r.map_default("none", |r| region_to_str(cx, r)),
substs.self_ty.map_default("none", |t| ty_to_str(cx, t)),
substs.tps.map(|t| ty_to_str(cx, t))]
}
fn subst(cx: ctxt,
substs: substs,
typ: t) -> t {
#debug["subst(substs=%s, typ=%s)",
substs_to_str(cx, substs),
ty_to_str(cx, typ)];
if substs_is_noop(substs) { ret typ; }
let r = do_subst(cx, substs, typ);
#debug[" r = %s", ty_to_str(cx, r)];
ret r;
fn do_subst(cx: ctxt,
substs: substs,
typ: t) -> t {
let tb = get(typ);
if !tbox_has_flag(tb, needs_subst) { ret typ; }
alt tb.struct {
ty_param(idx, _) {substs.tps[idx]}
ty_self {substs.self_ty.get()}
_ {
fold_regions_and_ty(
cx, typ,
|r| alt r {
re_bound(br_self) {substs.self_r.get()}
_ {r}
},
|t| do_subst(cx, substs, t),
|t| do_subst(cx, substs, t))
}
}
}
}
// Type utilities
fn type_is_nil(ty: t) -> bool { get(ty).struct == ty_nil }
fn type_is_bot(ty: t) -> bool { get(ty).struct == ty_bot }
fn type_is_var(ty: t) -> bool {
alt get(ty).struct {
ty_var(_) { true }
_ { false }
}
}
fn type_is_var_integral(ty: t) -> bool {
alt get(ty).struct {
ty_var_integral(_) { true }
_ { false }
}
}
fn type_is_bool(ty: t) -> bool { get(ty).struct == ty_bool }
fn type_is_structural(ty: t) -> bool {
alt get(ty).struct {
ty_rec(_) | ty_class(*) | ty_tup(_) | ty_enum(*) | ty_fn(_) |
ty_trait(*) |
ty_evec(_, vstore_fixed(_)) | ty_estr(vstore_fixed(_)) |
ty_evec(_, vstore_slice(_)) | ty_estr(vstore_slice(_))
{ true }
_ { false }
}
}
fn type_is_copyable(cx: ctxt, ty: t) -> bool {
ret kind_can_be_copied(type_kind(cx, ty));
}
fn type_is_sequence(ty: t) -> bool {
alt get(ty).struct {
ty_str | ty_estr(_) | ty_vec(_) | ty_evec(_, _) { true }
_ { false }
}
}
fn type_is_str(ty: t) -> bool {
alt get(ty).struct {
ty_str | ty_estr(_) { true }
_ { false }
}
}
fn sequence_element_type(cx: ctxt, ty: t) -> t {
alt get(ty).struct {
ty_str | ty_estr(_) { ret mk_mach_uint(cx, ast::ty_u8); }
ty_vec(mt) | ty_evec(mt, _) | ty_unboxed_vec(mt) { ret mt.ty; }
_ { cx.sess.bug("sequence_element_type called on non-sequence value"); }
}
}
fn get_element_type(ty: t, i: uint) -> t {
alt get(ty).struct {
ty_rec(flds) { ret flds[i].mt.ty; }
ty_tup(ts) { ret ts[i]; }
_ { fail "get_element_type called on invalid type"; }
}
}
pure fn type_is_box(ty: t) -> bool {
alt get(ty).struct {
ty_box(_) { ret true; }
_ { ret false; }
}
}
pure fn type_is_boxed(ty: t) -> bool {
alt get(ty).struct {
ty_box(_) | ty_opaque_box |
ty_evec(_, vstore_box) | ty_estr(vstore_box) { true }
_ { false }
}
}
pure fn type_is_region_ptr(ty: t) -> bool {
alt get(ty).struct {
ty_rptr(_, _) { true }
_ { false }
}
}
pure fn type_is_slice(ty: t) -> bool {
alt get(ty).struct {
ty_evec(_, vstore_slice(_)) | ty_estr(vstore_slice(_)) { true }
_ { ret false; }
}
}
pure fn type_is_unique_box(ty: t) -> bool {
alt get(ty).struct {
ty_uniq(_) { ret true; }
_ { ret false; }
}
}
pure fn type_is_unsafe_ptr(ty: t) -> bool {
alt get(ty).struct {
ty_ptr(_) { ret true; }
_ { ret false; }
}
}
pure fn type_is_vec(ty: t) -> bool {
ret alt get(ty).struct {
ty_vec(_) | ty_evec(_, _) | ty_unboxed_vec(_) { true }
ty_str | ty_estr(_) { true }
_ { false }
};
}
pure fn type_is_unique(ty: t) -> bool {
alt get(ty).struct {
ty_uniq(_) { ret true; }
ty_vec(_) | ty_evec(_, vstore_uniq) { true }
ty_str | ty_estr(vstore_uniq) { true }
_ { ret false; }
}
}
pure fn type_is_scalar(ty: t) -> bool {
alt get(ty).struct {
ty_nil | ty_bool | ty_int(_) | ty_float(_) | ty_uint(_) |
ty_var_integral(_) | ty_type | ty_ptr(_) | ty_rptr(_, _) { true }
_ { false }
}
}
fn type_is_immediate(ty: t) -> bool {
ret type_is_scalar(ty) || type_is_boxed(ty) ||
type_is_unique(ty) || type_is_region_ptr(ty);
}
fn type_needs_drop(cx: ctxt, ty: t) -> bool {
alt cx.needs_drop_cache.find(ty) {
some(result) { ret result; }
none {/* fall through */ }
}
let mut accum = false;
let result = alt get(ty).struct {
// scalar types
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_float(_) | ty_uint(_) |
ty_type | ty_ptr(_) | ty_rptr(_, _) |
ty_estr(vstore_fixed(_)) | ty_estr(vstore_slice(_)) |
ty_evec(_, vstore_slice(_)) { false }
ty_evec(mt, vstore_fixed(_)) { type_needs_drop(cx, mt.ty) }
ty_unboxed_vec(mt) { type_needs_drop(cx, mt.ty) }
ty_rec(flds) {
for flds.each |f| {
if type_needs_drop(cx, f.mt.ty) { accum = true; }
}
accum
}
ty_class(did, substs) {
// Any class with a dtor needs a drop
option::is_some(ty_dtor(cx, did)) || {
for vec::each(ty::class_items_as_fields(cx, did, substs)) |f| {
if type_needs_drop(cx, f.mt.ty) { accum = true; }
}
accum
}
}
ty_tup(elts) {
for elts.each |m| { if type_needs_drop(cx, m) { accum = true; } }
accum
}
ty_enum(did, substs) {
let variants = enum_variants(cx, did);
for vec::each(*variants) |variant| {
for variant.args.each |aty| {
// Perform any type parameter substitutions.
let arg_ty = subst(cx, substs, aty);
if type_needs_drop(cx, arg_ty) { accum = true; }
}
if accum { break; }
}
accum
}
ty_fn(fty) {
alt fty.proto {
proto_bare | proto_any | proto_block { false }
_ { true }
}
}
_ { true }
};
cx.needs_drop_cache.insert(ty, result);
ret result;
}
// Some things don't need cleanups during unwinding because the
// task can free them all at once later. Currently only things
// that only contain scalars and shared boxes can avoid unwind
// cleanups.
fn type_needs_unwind_cleanup(cx: ctxt, ty: t) -> bool {
alt cx.needs_unwind_cleanup_cache.find(ty) {
some(result) { ret result; }
none { }
}
let tycache = new_ty_hash();
let needs_unwind_cleanup =
type_needs_unwind_cleanup_(cx, ty, tycache, false);
cx.needs_unwind_cleanup_cache.insert(ty, needs_unwind_cleanup);
ret needs_unwind_cleanup;
}
fn type_needs_unwind_cleanup_(cx: ctxt, ty: t,
tycache: map::hashmap<t, ()>,
encountered_box: bool) -> bool {
// Prevent infinite recursion
alt tycache.find(ty) {
some(_) { ret false; }
none { tycache.insert(ty, ()); }
}
let mut encountered_box = encountered_box;
let mut needs_unwind_cleanup = false;
do maybe_walk_ty(ty) |ty| {
let old_encountered_box = encountered_box;
let result = alt get(ty).struct {
ty_box(_) | ty_opaque_box {
encountered_box = true;
true
}
ty_nil | ty_bot | ty_bool |
ty_int(_) | ty_uint(_) | ty_float(_) |
ty_rec(_) | ty_tup(_) | ty_ptr(_) {
true
}
ty_enum(did, substs) {
for vec::each(*enum_variants(cx, did)) |v| {
for v.args.each |aty| {
let t = subst(cx, substs, aty);
needs_unwind_cleanup |=
type_needs_unwind_cleanup_(cx, t, tycache,
encountered_box);
}
}
!needs_unwind_cleanup
}
ty_uniq(_) | ty_str | ty_vec(_) |
ty_estr(vstore_uniq) |
ty_estr(vstore_box) |
ty_evec(_, vstore_uniq) |
ty_evec(_, vstore_box)
{
// Once we're inside a box, the annihilator will find
// it and destroy it.
if !encountered_box {
needs_unwind_cleanup = true;
false
} else {
true
}
}
_ {
needs_unwind_cleanup = true;
false
}
};
encountered_box = old_encountered_box;
result
}
ret needs_unwind_cleanup;
}
enum kind { kind_(u32) }
// *ALL* implicitly copiable things must be copiable
const KIND_MASK_COPY : u32 = 0b00000000000000000000000000000001u32;
const KIND_MASK_SEND : u32 = 0b00000000000000000000000000000010u32;
const KIND_MASK_CONST : u32 = 0b00000000000000000000000000000100u32;
const KIND_MASK_IMPLICIT : u32 = 0b00000000000000000000000000001000u32;
fn kind_noncopyable() -> kind {
kind_(0u32)
}
fn kind_copyable() -> kind {
kind_(KIND_MASK_COPY)
}
fn kind_implicitly_copyable() -> kind {
kind_(KIND_MASK_IMPLICIT | KIND_MASK_COPY)
}
fn kind_implicitly_sendable() -> kind {
kind_(KIND_MASK_IMPLICIT | KIND_MASK_COPY | KIND_MASK_SEND)
}
fn kind_sendable() -> kind {
kind_(KIND_MASK_COPY | KIND_MASK_SEND)
}
fn kind_send_only() -> kind {
kind_(KIND_MASK_SEND)
}
fn kind_const() -> kind {
kind_(KIND_MASK_CONST)
}
fn kind_top() -> kind {
kind_(0xffffffffu32)
}
fn remove_const(k: kind) -> kind {
k - kind_const()
}
fn remove_implicit(k: kind) -> kind {
k - kind_(KIND_MASK_IMPLICIT)
}
fn remove_copyable(k: kind) -> kind {
k - kind_(KIND_MASK_COPY)
}
impl operators for kind {
fn &(other: kind) -> kind {
lower_kind(self, other)
}
fn |(other: kind) -> kind {
raise_kind(self, other)
}
fn -(other: kind) -> kind {
kind_(*self & !*other)
}
}
// Using these query functions is preferable to direct comparison or matching
// against the kind constants, as we may modify the kind hierarchy in the
// future.
pure fn kind_can_be_implicitly_copied(k: kind) -> bool {
*k & KIND_MASK_IMPLICIT != 0u32
}
pure fn kind_can_be_copied(k: kind) -> bool {
*k & KIND_MASK_COPY != 0u32
}
pure fn kind_can_be_sent(k: kind) -> bool {
*k & KIND_MASK_SEND != 0u32
}
fn proto_kind(p: proto) -> kind {
alt p {
ast::proto_any { kind_noncopyable() }
ast::proto_block { kind_noncopyable() }
ast::proto_box { kind_implicitly_copyable() }
ast::proto_uniq { kind_sendable() }
ast::proto_bare { kind_implicitly_sendable() | kind_const() }
}
}
fn kind_lteq(a: kind, b: kind) -> bool {
*a & *b == *a
}
fn lower_kind(a: kind, b: kind) -> kind {
kind_(*a & *b)
}
fn raise_kind(a: kind, b: kind) -> kind {
kind_(*a | *b)
}
#[test]
fn test_kinds() {
// The kind "lattice" is defined by the subset operation on the
// set of permitted operations.
assert kind_lteq(kind_sendable(), kind_sendable());
assert kind_lteq(kind_copyable(), kind_sendable());
assert kind_lteq(kind_copyable(), kind_copyable());
assert kind_lteq(kind_noncopyable(), kind_sendable());
assert kind_lteq(kind_noncopyable(), kind_copyable());
assert kind_lteq(kind_noncopyable(), kind_noncopyable());
assert kind_lteq(kind_copyable(), kind_implicitly_copyable());
assert kind_lteq(kind_copyable(), kind_implicitly_sendable());
assert kind_lteq(kind_sendable(), kind_implicitly_sendable());
assert !kind_lteq(kind_sendable(), kind_implicitly_copyable());
assert !kind_lteq(kind_copyable(), kind_send_only());
}
// Return the most permissive kind that a composite object containing a field
// with the given mutability can have.
// This is used to prevent objects containing mutable state from being
// implicitly copied and to compute whether things have const kind.
fn mutability_kind(m: mutability) -> kind {
alt (m) {
m_mutbl { remove_const(remove_implicit(kind_top())) }
m_const { remove_implicit(kind_top()) }
m_imm { kind_top() }
}
}
fn mutable_type_kind(cx: ctxt, ty: mt) -> kind {
lower_kind(mutability_kind(ty.mutbl), type_kind(cx, ty.ty))
}
fn type_kind(cx: ctxt, ty: t) -> kind {
alt cx.kind_cache.find(ty) {
some(result) { ret result; }
none {/* fall through */ }
}
// Insert a default in case we loop back on self recursively.
cx.kind_cache.insert(ty, kind_top());
let result = alt get(ty).struct {
// Scalar and unique types are sendable
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_uint(_) | ty_float(_) |
ty_ptr(_) { kind_implicitly_sendable() | kind_const() }
// Implicit copyability of strs is configurable
ty_str | ty_estr(vstore_uniq) {
if cx.vecs_implicitly_copyable {
kind_implicitly_sendable() | kind_const()
} else { kind_sendable() | kind_const() }
}
ty_fn(f) { proto_kind(f.proto) }
// Those with refcounts raise noncopyable to copyable,
// lower sendable to copyable. Therefore just set result to copyable.
ty_box(tm) {
if tm.mutbl == ast::m_mutbl {
kind_implicitly_copyable()
}
else {
let k = type_kind(cx, tm.ty);
if kind_lteq(kind_const(), k) {
kind_implicitly_copyable() | kind_const()
}
else { kind_implicitly_copyable() }
}
}
ty_trait(_, _) { kind_implicitly_copyable() }
ty_rptr(_, _) { kind_implicitly_copyable() }
// Unique boxes and vecs have the kind of their contained type,
// but unique boxes can't be implicitly copyable.
ty_uniq(tm) {
remove_implicit(mutable_type_kind(cx, tm))
}
// Implicit copyability of vecs is configurable
ty_vec(tm) | ty_evec(tm, vstore_uniq) {
if cx.vecs_implicitly_copyable {
mutable_type_kind(cx, tm)
} else { remove_implicit(mutable_type_kind(cx, tm)) }
}
// Slices, refcounted evecs are copyable; uniques depend on the their
// contained type, but aren't implicitly copyable. Fixed vectors have
// the kind of the element they contain, taking mutability into account.
ty_evec(tm, vstore_box) |
ty_evec(tm, vstore_slice(_)) {
if kind_lteq(kind_const(), type_kind(cx, tm.ty)) {
kind_implicitly_copyable() | kind_const()
}
else {
kind_implicitly_copyable()
}
}
ty_evec(tm, vstore_fixed(_)) {
mutable_type_kind(cx, tm)
}
// All estrs are copyable; uniques and interiors are sendable.
ty_estr(vstore_box) |
ty_estr(vstore_slice(_)) { kind_implicitly_copyable() | kind_const() }
ty_estr(vstore_fixed(_)) { kind_implicitly_sendable() | kind_const() }
// Records lower to the lowest of their members.
ty_rec(flds) {
let mut lowest = kind_top();
for flds.each |f| {
lowest = lower_kind(lowest, mutable_type_kind(cx, f.mt));
}
lowest
}
ty_class(did, substs) {
// Classes are sendable if all their fields are sendable,
// likewise for copyable...
// also factor out this code, copied from the records case
let mut lowest = kind_top();
let flds = class_items_as_fields(cx, did, substs);
for flds.each |f| {
lowest = lower_kind(lowest, mutable_type_kind(cx, f.mt));
}
// ...but classes with dtors are never copyable (they can be
// sendable)
if ty::has_dtor(cx, did) {
lowest = remove_copyable(lowest);
}
lowest
}
// Tuples lower to the lowest of their members.
ty_tup(tys) {
let mut lowest = kind_top();
for tys.each |ty| { lowest = lower_kind(lowest, type_kind(cx, ty)); }
lowest
}
// Enums lower to the lowest of their variants.
ty_enum(did, substs) {
let mut lowest = kind_top();
let variants = enum_variants(cx, did);
if vec::len(*variants) == 0u {
lowest = kind_send_only();
} else {
for vec::each(*variants) |variant| {
for variant.args.each |aty| {
// Perform any type parameter substitutions.
let arg_ty = subst(cx, substs, aty);
lowest = lower_kind(lowest, type_kind(cx, arg_ty));
if lowest == kind_noncopyable() { break; }
}
}
}
lowest
}
ty_param(_, did) {
param_bounds_to_kind(cx.ty_param_bounds.get(did.node))
}
ty_constr(t, _) { type_kind(cx, t) }
// FIXME (#2663): is self ever const?
ty_self { kind_noncopyable() }
ty_var(_) | ty_var_integral(_) {
cx.sess.bug("Asked to compute kind of a type variable");
}
ty_type | ty_opaque_closure_ptr(_) | ty_opaque_box | ty_unboxed_vec(_) {
cx.sess.bug("Asked to compute kind of fictitious type");
}
};
cx.kind_cache.insert(ty, result);
ret result;
}
// True if instantiating an instance of `ty` requires an instance of `r_ty`.
fn is_instantiable(cx: ctxt, r_ty: t) -> bool {
fn type_requires(cx: ctxt, seen: @mut ~[def_id],
r_ty: t, ty: t) -> bool {
#debug["type_requires(%s, %s)?",
ty_to_str(cx, r_ty),
ty_to_str(cx, ty)];
let r = {
get(r_ty).struct == get(ty).struct ||
subtypes_require(cx, seen, r_ty, ty)
};
#debug["type_requires(%s, %s)? %b",
ty_to_str(cx, r_ty),
ty_to_str(cx, ty),
r];
ret r;
}
fn subtypes_require(cx: ctxt, seen: @mut ~[def_id],
r_ty: t, ty: t) -> bool {
#debug["subtypes_require(%s, %s)?",
ty_to_str(cx, r_ty),
ty_to_str(cx, ty)];
let r = alt get(ty).struct {
ty_nil |
ty_bot |
ty_bool |
ty_int(_) |
ty_uint(_) |
ty_float(_) |
ty_str |
ty_estr(_) |
ty_fn(_) |
ty_var(_) |
ty_var_integral(_) |
ty_param(_, _) |
ty_self |
ty_type |
ty_opaque_box |
ty_opaque_closure_ptr(_) |
ty_evec(_, _) |
ty_unboxed_vec(_) |
ty_vec(_) {
false
}
ty_constr(t, _) {
type_requires(cx, seen, r_ty, t)
}
ty_box(mt) |
ty_uniq(mt) |
ty_rptr(_, mt) {
ret type_requires(cx, seen, r_ty, mt.ty);
}
ty_ptr(mt) {
false // unsafe ptrs can always be NULL
}
ty_rec(fields) {
do vec::any(fields) |field| {
type_requires(cx, seen, r_ty, field.mt.ty)
}
}
ty_trait(_, _) {
false
}
ty_class(did, _) if vec::contains(*seen, did) {
false
}
ty_class(did, substs) {
vec::push(*seen, did);
let r = vec::any(class_items_as_fields(cx, did, substs),
|f| type_requires(cx, seen, r_ty, f.mt.ty));
vec::pop(*seen);
r
}
ty_tup(ts) {
vec::any(ts, |t| type_requires(cx, seen, r_ty, t))
}
ty_enum(did, _) if vec::contains(*seen, did) {
false
}
ty_enum(did, substs) {
vec::push(*seen, did);
let vs = enum_variants(cx, did);
let r = vec::len(*vs) > 0u && vec::all(*vs, |variant| {
vec::any(variant.args, |aty| {
let sty = subst(cx, substs, aty);
type_requires(cx, seen, r_ty, sty)
})
});
vec::pop(*seen);
r
}
};
#debug["subtypes_require(%s, %s)? %b",
ty_to_str(cx, r_ty),
ty_to_str(cx, ty),
r];
ret r;
}
let seen = @mut ~[];
!subtypes_require(cx, seen, r_ty, r_ty)
}
fn type_structurally_contains(cx: ctxt, ty: t, test: fn(sty) -> bool) ->
bool {
let sty = get(ty).struct;
#debug("type_structurally_contains: %s", ty_to_str(cx, ty));
if test(sty) { ret true; }
alt sty {
ty_enum(did, substs) {
for vec::each(*enum_variants(cx, did)) |variant| {
for variant.args.each |aty| {
let sty = subst(cx, substs, aty);
if type_structurally_contains(cx, sty, test) { ret true; }
}
}
ret false;
}
ty_rec(fields) {
for fields.each |field| {
if type_structurally_contains(cx, field.mt.ty, test) { ret true; }
}
ret false;
}
ty_class(did, substs) {
for lookup_class_fields(cx, did).each |field| {
let ft = lookup_field_type(cx, did, field.id, substs);
if type_structurally_contains(cx, ft, test) { ret true; }
}
ret false;
}
ty_tup(ts) {
for ts.each |tt| {
if type_structurally_contains(cx, tt, test) { ret true; }
}
ret false;
}
ty_evec(mt, vstore_fixed(_)) {
ret type_structurally_contains(cx, mt.ty, test);
}
_ { ret false; }
}
}
// Returns true for noncopyable types and types where a copy of a value can be
// distinguished from the value itself. I.e. types with mut content that's
// not shared through a pointer.
fn type_allows_implicit_copy(cx: ctxt, ty: t) -> bool {
ret !type_structurally_contains(cx, ty, |sty| {
alt sty {
ty_param(_, _) { true }
ty_evec(_, _) | ty_estr(_) {
cx.sess.unimpl("estr/evec in type_allows_implicit_copy");
}
ty_vec(mt) {
mt.mutbl != ast::m_imm
}
ty_rec(fields) {
vec::any(fields, |f| f.mt.mutbl != ast::m_imm)
}
_ { false }
}
}) && type_kind(cx, ty) != kind_noncopyable();
}
fn type_structurally_contains_uniques(cx: ctxt, ty: t) -> bool {
ret type_structurally_contains(cx, ty, |sty| {
alt sty {
ty_uniq(_) |
ty_vec(_) |
ty_evec(_, vstore_uniq) |
ty_str |
ty_estr(vstore_uniq) { true }
_ { false }
}
});
}
fn type_is_integral(ty: t) -> bool {
alt get(ty).struct {
ty_var_integral(_) | ty_int(_) | ty_uint(_) | ty_bool { true }
_ { false }
}
}
fn type_is_fp(ty: t) -> bool {
alt get(ty).struct {
ty_float(_) { true }
_ { false }
}
}
fn type_is_numeric(ty: t) -> bool {
ret type_is_integral(ty) || type_is_fp(ty);
}
fn type_is_signed(ty: t) -> bool {
alt get(ty).struct {
ty_int(_) { true }
_ { false }
}
}
// Whether a type is Plain Old Data -- meaning it does not contain pointers
// that the cycle collector might care about.
fn type_is_pod(cx: ctxt, ty: t) -> bool {
let mut result = true;
alt get(ty).struct {
// Scalar types
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_float(_) | ty_uint(_) |
ty_type | ty_ptr(_) { result = true; }
// Boxed types
ty_str | ty_box(_) | ty_uniq(_) | ty_vec(_) | ty_fn(_) |
ty_estr(vstore_uniq) | ty_estr(vstore_box) |
ty_evec(_, vstore_uniq) | ty_evec(_, vstore_box) |
ty_trait(_, _) | ty_rptr(_,_) | ty_opaque_box { result = false; }
// Structural types
ty_enum(did, substs) {
let variants = enum_variants(cx, did);
for vec::each(*variants) |variant| {
let tup_ty = mk_tup(cx, variant.args);
// Perform any type parameter substitutions.
let tup_ty = subst(cx, substs, tup_ty);
if !type_is_pod(cx, tup_ty) { result = false; }
}
}
ty_rec(flds) {
for flds.each |f| {
if !type_is_pod(cx, f.mt.ty) { result = false; }
}
}
ty_tup(elts) {
for elts.each |elt| { if !type_is_pod(cx, elt) { result = false; } }
}
ty_estr(vstore_fixed(_)) { result = true; }
ty_evec(mt, vstore_fixed(_)) | ty_unboxed_vec(mt) {
result = type_is_pod(cx, mt.ty);
}
ty_constr(subt, _) { result = type_is_pod(cx, subt); }
ty_param(_, _) { result = false; }
ty_opaque_closure_ptr(_) { result = true; }
ty_class(did, substs) {
result = vec::any(lookup_class_fields(cx, did), |f| {
let fty = ty::lookup_item_type(cx, f.id);
let sty = subst(cx, substs, fty.ty);
type_is_pod(cx, sty)
});
}
ty_estr(vstore_slice(*)) | ty_evec(_, vstore_slice(*)) {
result = false;
}
ty_var(*) | ty_var_integral(*) | ty_self(*) {
cx.sess.bug("non concrete type in type_is_pod");
}
}
ret result;
}
fn type_is_enum(ty: t) -> bool {
alt get(ty).struct {
ty_enum(_, _) { ret true; }
_ { ret false;}
}
}
// Whether a type is enum like, that is a enum type with only nullary
// constructors
fn type_is_c_like_enum(cx: ctxt, ty: t) -> bool {
alt get(ty).struct {
ty_enum(did, substs) {
let variants = enum_variants(cx, did);
let some_n_ary = vec::any(*variants, |v| vec::len(v.args) > 0u);
ret !some_n_ary;
}
_ { ret false;}
}
}
fn type_param(ty: t) -> option<uint> {
alt get(ty).struct {
ty_param(id, _) { ret some(id); }
_ {/* fall through */ }
}
ret none;
}
// Returns the type and mutability of *t.
//
// The parameter `expl` indicates if this is an *explicit* dereference. Some
// types---notably unsafe ptrs---can only be dereferenced explicitly.
fn deref(cx: ctxt, t: t, expl: bool) -> option<mt> {
deref_sty(cx, get(t).struct, expl)
}
fn deref_sty(cx: ctxt, sty: sty, expl: bool) -> option<mt> {
alt sty {
ty_rptr(_, mt) | ty_box(mt) | ty_uniq(mt) {
some(mt)
}
ty_ptr(mt) if expl {
some(mt)
}
ty_enum(did, substs) {
let variants = enum_variants(cx, did);
if vec::len(*variants) == 1u && vec::len(variants[0].args) == 1u {
let v_t = subst(cx, substs, variants[0].args[0]);
some({ty: v_t, mutbl: ast::m_imm})
} else {
none
}
}
_ { none }
}
}
fn type_autoderef(cx: ctxt, t: t) -> t {
let mut t = t;
loop {
alt deref(cx, t, false) {
none { ret t; }
some(mt) { t = mt.ty; }
}
}
}
// Returns the type and mutability of t[i]
fn index(cx: ctxt, t: t) -> option<mt> {
index_sty(cx, get(t).struct)
}
fn index_sty(cx: ctxt, sty: sty) -> option<mt> {
alt sty {
ty_vec(mt) | ty_evec(mt, _) { some(mt) }
ty_str | ty_estr(_) { some({ty: mk_u8(cx), mutbl: ast::m_imm}) }
_ { none }
}
}
fn hash_bound_region(br: bound_region) -> uint {
alt br { // no idea if this is any good
ty::br_self { 0u }
ty::br_anon { 1u }
ty::br_named(str) { str::hash(*str) }
}
}
fn br_hashmap<V:copy>() -> hashmap<bound_region, V> {
map::hashmap(hash_bound_region,
|&&a: bound_region, &&b: bound_region| a == b)
}
// Type hashing.
fn hash_type_structure(st: sty) -> uint {
fn hash_uint(id: uint, n: uint) -> uint { (id << 2u) + n }
fn hash_def(id: uint, did: ast::def_id) -> uint {
let h = (id << 2u) + (did.crate as uint);
(h << 2u) + (did.node as uint)
}
fn hash_subty(id: uint, subty: t) -> uint { (id << 2u) + type_id(subty) }
fn hash_subtys(id: uint, subtys: ~[t]) -> uint {
let mut h = id;
for subtys.each |s| { h = (h << 2u) + type_id(s) }
h
}
fn hash_type_constr(id: uint, c: @type_constr) -> uint {
let mut h = id;
h = (h << 2u) + hash_def(h, c.node.id);
for c.node.args.each |a| {
alt a.node {
carg_base { h += h << 2u; }
carg_lit(_) { fail "lit args not implemented yet"; }
carg_ident(p) { h += h << 2u; }
}
}
h
}
fn hash_region(r: region) -> uint {
alt r { // no idea if this is any good
re_bound(br) { (hash_bound_region(br)) << 2u | 0u }
re_free(id, br) { ((id as uint) << 4u) |
(hash_bound_region(br)) << 2u | 1u }
re_scope(id) { ((id as uint) << 2u) | 2u }
re_var(id) { (id.to_uint() << 2u) | 3u }
re_bot { 4u }
}
}
fn hash_substs(h: uint, substs: substs) -> uint {
let h = hash_subtys(h, substs.tps);
h + substs.self_r.map_default(0u, hash_region)
}
alt st {
ty_nil { 0u } ty_bool { 1u }
ty_int(t) {
alt t {
ast::ty_i { 2u } ast::ty_char { 3u } ast::ty_i8 { 4u }
ast::ty_i16 { 5u } ast::ty_i32 { 6u } ast::ty_i64 { 7u }
}
}
ty_uint(t) {
alt t {
ast::ty_u { 8u } ast::ty_u8 { 9u } ast::ty_u16 { 10u }
ast::ty_u32 { 11u } ast::ty_u64 { 12u }
}
}
ty_float(t) {
alt t { ast::ty_f { 13u } ast::ty_f32 { 14u } ast::ty_f64 { 15u } }
}
ty_estr(_) { 16u }
ty_str { 17u }
ty_enum(did, substs) {
let mut h = hash_def(18u, did);
hash_substs(h, substs)
}
ty_box(mt) { hash_subty(19u, mt.ty) }
ty_evec(mt, _) { hash_subty(20u, mt.ty) }
ty_vec(mt) { hash_subty(21u, mt.ty) }
ty_unboxed_vec(mt) { hash_subty(22u, mt.ty) }
ty_tup(ts) { hash_subtys(25u, ts) }
ty_rec(fields) {
let mut h = 26u;
for fields.each |f| { h = hash_subty(h, f.mt.ty); }
h
}
ty_fn(f) {
let mut h = 27u;
for f.inputs.each |a| { h = hash_subty(h, a.ty); }
hash_subty(h, f.output)
}
ty_self { 28u }
ty_var(v) { hash_uint(29u, v.to_uint()) }
ty_var_integral(v) { hash_uint(30u, v.to_uint()) }
ty_param(pid, did) { hash_def(hash_uint(31u, pid), did) }
ty_type { 32u }
ty_bot { 34u }
ty_ptr(mt) { hash_subty(35u, mt.ty) }
ty_constr(t, cs) {
let mut h = hash_subty(36u, t);
for cs.each |c| { h = (h << 2u) + hash_type_constr(h, c); }
h
}
ty_uniq(mt) { hash_subty(37u, mt.ty) }
ty_trait(did, substs) {
let mut h = hash_def(40u, did);
hash_substs(h, substs)
}
ty_opaque_closure_ptr(ck_block) { 41u }
ty_opaque_closure_ptr(ck_box) { 42u }
ty_opaque_closure_ptr(ck_uniq) { 43u }
ty_opaque_box { 44u }
ty_class(did, substs) {
let mut h = hash_def(45u, did);
hash_substs(h, substs)
}
ty_rptr(region, mt) {
let mut h = (46u << 2u) + hash_region(region);
hash_subty(h, mt.ty)
}
}
}
fn arg_eq<T>(eq: fn(T, T) -> bool,
a: @sp_constr_arg<T>,
b: @sp_constr_arg<T>)
-> bool {
alt a.node {
ast::carg_base {
alt b.node { ast::carg_base { ret true; } _ { ret false; } }
}
ast::carg_ident(s) {
alt b.node { ast::carg_ident(t) { ret eq(s, t); } _ { ret false; } }
}
ast::carg_lit(l) {
alt b.node {
ast::carg_lit(m) { ret const_eval::lit_eq(l, m); } _ { ret false; }
}
}
}
}
fn args_eq<T>(eq: fn(T, T) -> bool,
a: ~[@sp_constr_arg<T>],
b: ~[@sp_constr_arg<T>]) -> bool {
let mut i: uint = 0u;
for a.each |arg| {
if !arg_eq(eq, arg, b[i]) { ret false; }
i += 1u;
}
ret true;
}
fn constr_eq(c: @constr, d: @constr) -> bool {
fn eq_int(&&x: uint, &&y: uint) -> bool { ret x == y; }
ret path_to_str(c.node.path) == path_to_str(d.node.path) &&
args_eq(eq_int, c.node.args, d.node.args);
}
fn constrs_eq(cs: ~[@constr], ds: ~[@constr]) -> bool {
if vec::len(cs) != vec::len(ds) { ret false; }
let mut i = 0u;
for cs.each |c| { if !constr_eq(c, ds[i]) { ret false; } i += 1u; }
ret true;
}
fn node_id_to_type(cx: ctxt, id: ast::node_id) -> t {
alt smallintmap::find(*cx.node_types, id as uint) {
some(t) { t }
none { cx.sess.bug(#fmt("node_id_to_type: unbound node ID %s",
ast_map::node_id_to_str(cx.items, id))); }
}
}
fn node_id_to_type_params(cx: ctxt, id: ast::node_id) -> ~[t] {
alt cx.node_type_substs.find(id) {
none { ret ~[]; }
some(ts) { ret ts; }
}
}
fn node_id_has_type_params(cx: ctxt, id: ast::node_id) -> bool {
ret cx.node_type_substs.contains_key(id);
}
// Type accessors for substructures of types
fn ty_fn_args(fty: t) -> ~[arg] {
alt get(fty).struct {
ty_fn(f) { f.inputs }
_ { fail "ty_fn_args() called on non-fn type"; }
}
}
fn ty_fn_proto(fty: t) -> ast::proto {
alt get(fty).struct {
ty_fn(f) { f.proto }
_ { fail "ty_fn_proto() called on non-fn type"; }
}
}
pure fn ty_fn_ret(fty: t) -> t {
alt get(fty).struct {
ty_fn(f) { f.output }
_ { fail "ty_fn_ret() called on non-fn type"; }
}
}
fn ty_fn_ret_style(fty: t) -> ast::ret_style {
alt get(fty).struct {
ty_fn(f) { f.ret_style }
_ { fail "ty_fn_ret_style() called on non-fn type"; }
}
}
fn is_fn_ty(fty: t) -> bool {
alt get(fty).struct {
ty_fn(_) { ret true; }
_ { ret false; }
}
}
// Returns a vec of all the input and output types of fty.
fn tys_in_fn_ty(fty: fn_ty) -> ~[t] {
vec::append_one(fty.inputs.map(|a| a.ty), fty.output)
}
// Just checks whether it's a fn that returns bool,
// not its purity.
fn is_pred_ty(fty: t) -> bool {
is_fn_ty(fty) && type_is_bool(ty_fn_ret(fty))
}
fn ty_var_id(typ: t) -> tv_vid {
alt get(typ).struct {
ty_var(vid) { ret vid; }
_ { #error("ty_var_id called on non-var ty"); fail; }
}
}
fn ty_var_integral_id(typ: t) -> tvi_vid {
alt get(typ).struct {
ty_var_integral(vid) { ret vid; }
_ { #error("ty_var_integral_id called on ty other than \
ty_var_integral");
fail; }
}
}
// Type accessors for AST nodes
fn block_ty(cx: ctxt, b: ast::blk) -> t {
ret node_id_to_type(cx, b.node.id);
}
// Returns the type of a pattern as a monotype. Like @expr_ty, this function
// doesn't provide type parameter substitutions.
fn pat_ty(cx: ctxt, pat: @ast::pat) -> t {
ret node_id_to_type(cx, pat.id);
}
// Returns the type of an expression as a monotype.
//
// NB: This type doesn't provide type parameter substitutions; e.g. if you
// ask for the type of "id" in "id(3)", it will return "fn(&int) -> int"
// instead of "fn(t) -> T with T = int". If this isn't what you want, see
// expr_ty_params_and_ty() below.
fn expr_ty(cx: ctxt, expr: @ast::expr) -> t {
ret node_id_to_type(cx, expr.id);
}
fn expr_ty_params_and_ty(cx: ctxt,
expr: @ast::expr) -> {params: ~[t], ty: t} {
ret {params: node_id_to_type_params(cx, expr.id),
ty: node_id_to_type(cx, expr.id)};
}
fn expr_has_ty_params(cx: ctxt, expr: @ast::expr) -> bool {
ret node_id_has_type_params(cx, expr.id);
}
fn expr_is_lval(method_map: typeck::method_map, e: @ast::expr) -> bool {
alt e.node {
ast::expr_path(_) | ast::expr_unary(ast::deref, _) { true }
ast::expr_field(_, _, _) | ast::expr_index(_, _) {
!method_map.contains_key(e.id)
}
_ { false }
}
}
fn stmt_node_id(s: @ast::stmt) -> ast::node_id {
alt s.node {
ast::stmt_decl(_, id) | stmt_expr(_, id) | stmt_semi(_, id) {
ret id;
}
}
}
fn field_idx(id: ast::ident, fields: ~[field]) -> option<uint> {
let mut i = 0u;
for fields.each |f| { if f.ident == id { ret some(i); } i += 1u; }
ret none;
}
fn get_field(rec_ty: t, id: ast::ident) -> field {
alt check vec::find(get_fields(rec_ty), |f| str::eq(*f.ident, *id)) {
some(f) { f }
}
}
fn get_fields(rec_ty:t) -> ~[field] {
alt check get(rec_ty).struct {
ty_rec(fields) { fields }
}
}
fn method_idx(id: ast::ident, meths: ~[method]) -> option<uint> {
let mut i = 0u;
for meths.each |m| { if m.ident == id { ret some(i); } i += 1u; }
ret none;
}
fn occurs_check(tcx: ctxt, sp: span, vid: tv_vid, rt: t) {
// Returns a vec of all the type variables occurring in `ty`. It may
// contain duplicates. (Integral type vars aren't counted.)
fn vars_in_type(ty: t) -> ~[tv_vid] {
let mut rslt = ~[];
do walk_ty(ty) |ty| {
alt get(ty).struct { ty_var(v) { vec::push(rslt, v); } _ { } }
}
rslt
}
// Fast path
if !type_needs_infer(rt) { ret; }
// Occurs check!
if vec::contains(vars_in_type(rt), vid) {
// Maybe this should be span_err -- however, there's an
// assertion later on that the type doesn't contain
// variables, so in this case we have to be sure to die.
tcx.sess.span_fatal
(sp, "type inference failed because I \
could not find a type\n that's both of the form "
+ ty_to_str(tcx, mk_var(tcx, vid)) +
" and of the form " + ty_to_str(tcx, rt) +
" - such a type would have to be infinitely large.");
}
}
// Maintains a little union-set tree for inferred modes. `canon()` returns
// the current head value for `m0`.
fn canon<T:copy>(tbl: hashmap<ast::node_id, ast::inferable<T>>,
m0: ast::inferable<T>) -> ast::inferable<T> {
alt m0 {
ast::infer(id) {
alt tbl.find(id) {
none { m0 }
some(m1) {
let cm1 = canon(tbl, m1);
// path compression:
if cm1 != m1 { tbl.insert(id, cm1); }
cm1
}
}
}
_ { m0 }
}
}
// Maintains a little union-set tree for inferred modes. `resolve_mode()`
// returns the current head value for `m0`.
fn canon_mode(cx: ctxt, m0: ast::mode) -> ast::mode {
canon(cx.inferred_modes, m0)
}
// Returns the head value for mode, failing if `m` was a infer(_) that
// was never inferred. This should be safe for use after typeck.
fn resolved_mode(cx: ctxt, m: ast::mode) -> ast::rmode {
alt canon_mode(cx, m) {
ast::infer(_) {
cx.sess.bug(#fmt["mode %? was never resolved", m]);
}
ast::expl(m0) { m0 }
}
}
fn arg_mode(cx: ctxt, a: arg) -> ast::rmode { resolved_mode(cx, a.mode) }
// Unifies `m1` and `m2`. Returns unified value or failure code.
fn unify_mode(cx: ctxt, m1: ast::mode, m2: ast::mode)
-> result<ast::mode, type_err> {
alt (canon_mode(cx, m1), canon_mode(cx, m2)) {
(m1, m2) if (m1 == m2) {
result::ok(m1)
}
(ast::infer(id1), ast::infer(id2)) {
cx.inferred_modes.insert(id2, m1);
result::ok(m1)
}
(ast::infer(id), m) | (m, ast::infer(id)) {
cx.inferred_modes.insert(id, m);
result::ok(m1)
}
(m1, m2) {
result::err(terr_mode_mismatch(m1, m2))
}
}
}
// If `m` was never unified, unifies it with `m_def`. Returns the final value
// for `m`.
fn set_default_mode(cx: ctxt, m: ast::mode, m_def: ast::rmode) {
alt canon_mode(cx, m) {
ast::infer(id) {
cx.inferred_modes.insert(id, ast::expl(m_def));
}
ast::expl(_) { }
}
}
fn ty_sort_str(cx: ctxt, t: t) -> str {
alt get(t).struct {
ty_nil | ty_bot | ty_bool | ty_int(_) |
ty_uint(_) | ty_float(_) | ty_estr(_) | ty_str |
ty_type | ty_opaque_box | ty_opaque_closure_ptr(_) {
ty_to_str(cx, t)
}
ty_enum(id, _) { #fmt["enum %s", item_path_str(cx, id)] }
ty_box(_) { "@-ptr" }
ty_uniq(_) { "~-ptr" }
ty_evec(_, _) | ty_vec(_) { "vector" }
ty_unboxed_vec(_) { "unboxed vector" }
ty_ptr(_) { "*-ptr" }
ty_rptr(_, _) { "&-ptr" }
ty_rec(_) { "record" }
ty_fn(_) { "fn" }
ty_trait(id, _) { #fmt["trait %s", item_path_str(cx, id)] }
ty_class(id, _) { #fmt["class %s", item_path_str(cx, id)] }
ty_tup(_) { "tuple" }
ty_var(_) { "variable" }
ty_var_integral(_) { "integral variable" }
ty_param(_, _) { "type parameter" }
ty_self { "self" }
ty_constr(t, _) { ty_sort_str(cx, t) }
}
}
fn type_err_to_str(cx: ctxt, err: type_err) -> str {
fn terr_vstore_kind_to_str(k: terr_vstore_kind) -> str {
alt k { terr_vec { "[]" } terr_str { "str" } }
}
alt err {
terr_mismatch { ret "types differ"; }
terr_ret_style_mismatch(expect, actual) {
fn to_str(s: ast::ret_style) -> str {
alt s {
ast::noreturn { "non-returning" }
ast::return_val { "return-by-value" }
}
}
ret to_str(actual) + " function found where " + to_str(expect) +
" function was expected";
}
terr_purity_mismatch(f1, f2) {
ret #fmt["expected %s fn but found %s fn", f1.to_str(), f2.to_str()];
}
terr_proto_mismatch(e, a) {
ret #fmt["closure protocol mismatch (%s vs %s)",
proto_to_str(e), proto_to_str(a)];
}
terr_mutability { ret "values differ in mutability"; }
terr_box_mutability { ret "boxed values differ in mutability"; }
terr_vec_mutability { ret "vectors differ in mutability"; }
terr_ptr_mutability { ret "pointers differ in mutability"; }
terr_ref_mutability { ret "references differ in mutability"; }
terr_ty_param_size(e_sz, a_sz) {
ret "expected a type with " + uint::to_str(e_sz, 10u) +
" type params but found one with " + uint::to_str(a_sz, 10u) +
" type params";
}
terr_tuple_size(e_sz, a_sz) {
ret "expected a tuple with " + uint::to_str(e_sz, 10u) +
" elements but found one with " + uint::to_str(a_sz, 10u) +
" elements";
}
terr_record_size(e_sz, a_sz) {
ret "expected a record with " + uint::to_str(e_sz, 10u) +
" fields but found one with " + uint::to_str(a_sz, 10u) +
" fields";
}
terr_record_mutability { ret "record elements differ in mutability"; }
terr_record_fields(e_fld, a_fld) {
ret "expected a record with field `" + *e_fld +
"` but found one with field `" + *a_fld + "`";
}
terr_arg_count { ret "incorrect number of function parameters"; }
terr_mode_mismatch(e_mode, a_mode) {
ret "expected argument mode " + mode_to_str(e_mode) + " but found " +
mode_to_str(a_mode);
}
terr_constr_len(e_len, a_len) {
ret "expected a type with " + uint::str(e_len) +
" constraints, but found one with " + uint::str(a_len) +
" constraints";
}
terr_constr_mismatch(e_constr, a_constr) {
ret "expected a type with constraint " + ty_constr_to_str(e_constr) +
" but found one with constraint " +
ty_constr_to_str(a_constr);
}
terr_regions_differ(subregion, superregion) {
ret #fmt("references with lifetime %s do not necessarily \
outlive references with lifetime %s",
region_to_str(cx, subregion),
region_to_str(cx, superregion));
}
terr_vstores_differ(k, e_vs, a_vs) {
ret #fmt("%s storage differs: expected %s but found %s",
terr_vstore_kind_to_str(k),
vstore_to_str(cx, e_vs),
vstore_to_str(cx, a_vs));
}
terr_in_field(err, fname) {
ret #fmt("in field `%s`, %s", *fname, type_err_to_str(cx, *err));
}
terr_sorts(exp, act) {
ret #fmt("%s vs %s", ty_sort_str(cx, exp), ty_sort_str(cx, act));
}
terr_self_substs {
ret "inconsistent self substitution"; // XXX this is more of a bug
}
terr_no_integral_type {
ret "couldn't determine an appropriate integral type for integer \
literal";
}
}
}
fn def_has_ty_params(def: ast::def) -> bool {
alt def {
ast::def_fn(_, _) | ast::def_variant(_, _) | ast::def_class(_)
{ true }
_ { false }
}
}
fn store_trait_methods(cx: ctxt, id: ast::node_id, ms: @~[method]) {
cx.trait_method_cache.insert(ast_util::local_def(id), ms);
}
fn trait_methods(cx: ctxt, id: ast::def_id) -> @~[method] {
alt cx.trait_method_cache.find(id) {
some(ms) { ret ms; }
_ {}
}
// Local interfaces are supposed to have been added explicitly.
assert id.crate != ast::local_crate;
let result = csearch::get_trait_methods(cx, id);
cx.trait_method_cache.insert(id, result);
result
}
fn impl_trait(cx: ctxt, id: ast::def_id) -> option<t> {
if id.crate == ast::local_crate {
#debug("(impl_trait) searching for trait impl %?", id);
alt cx.items.find(id.node) {
some(ast_map::node_item(@{node: ast::item_impl(
_, _, some(@{id: id, _}), _, _), _}, _)) {
some(node_id_to_type(cx, id))
}
some(ast_map::node_item(@{node: ast::item_class(_, _, _, _, _, _),
_},_)) {
alt cx.def_map.find(id.node) {
some(def_ty(trait_id)) {
// XXX: Doesn't work cross-crate.
#debug("(impl_trait) found trait id %?", trait_id);
some(node_id_to_type(cx, trait_id.node))
}
some(x) {
cx.sess.bug(#fmt("impl_trait: trait ref is in trait map \
but is bound to %?", x));
}
none {
none
}
}
}
_ { none }
}
} else {
csearch::get_impl_trait(cx, id)
}
}
fn ty_to_def_id(ty: t) -> option<ast::def_id> {
alt get(ty).struct {
ty_trait(id, _) | ty_class(id, _) | ty_enum(id, _) {
some(id)
}
_ { none }
}
}
// Enum information
type variant_info = @{args: ~[t], ctor_ty: t, name: ast::ident,
id: ast::def_id, disr_val: int};
fn substd_enum_variants(cx: ctxt,
id: ast::def_id,
substs: substs) -> ~[variant_info] {
do vec::map(*enum_variants(cx, id)) |variant_info| {
let substd_args = vec::map(variant_info.args,
|aty| subst(cx, substs, aty));
let substd_ctor_ty = subst(cx, substs, variant_info.ctor_ty);
@{args: substd_args, ctor_ty: substd_ctor_ty with *variant_info}
}
}
fn item_path_str(cx: ctxt, id: ast::def_id) -> str {
ast_map::path_to_str(item_path(cx, id))
}
/* If class_id names a class with a dtor, return some(the dtor's id).
Otherwise return none. */
fn ty_dtor(cx: ctxt, class_id: def_id) -> option<def_id> {
if is_local(class_id) {
alt cx.items.find(class_id.node) {
some(ast_map::node_item(@{node: ast::item_class(_, _, _, _,
some(dtor), _), _}, _))
{ some(local_def(dtor.node.id)) }
_ { none }
}
}
else {
csearch::class_dtor(cx.sess.cstore, class_id)
}
}
fn has_dtor(cx: ctxt, class_id: def_id) -> bool {
option::is_some(ty_dtor(cx, class_id))
}
fn item_path(cx: ctxt, id: ast::def_id) -> ast_map::path {
if id.crate != ast::local_crate {
csearch::get_item_path(cx, id)
} else {
let node = cx.items.get(id.node);
alt node {
ast_map::node_item(item, path) {
let item_elt = alt item.node {
item_mod(_) | item_foreign_mod(_) {
ast_map::path_mod(item.ident)
}
_ {
ast_map::path_name(item.ident)
}
};
vec::append_one(*path, item_elt)
}
ast_map::node_foreign_item(nitem, _, path) {
vec::append_one(*path, ast_map::path_name(nitem.ident))
}
ast_map::node_method(method, _, path) {
vec::append_one(*path, ast_map::path_name(method.ident))
}
ast_map::node_variant(variant, _, path) {
vec::append_one(vec::init(*path),
ast_map::path_name(variant.node.name))
}
ast_map::node_ctor(nm, _, _, _, path) {
vec::append_one(*path, ast_map::path_name(nm))
}
ast_map::node_dtor(_, _, _, path) {
vec::append_one(*path, ast_map::path_name(@"dtor"))
}
ast_map::node_expr(_) | ast_map::node_arg(_, _) |
ast_map::node_local(_) | ast_map::node_export(_, _) |
ast_map::node_block(_) {
cx.sess.bug(#fmt["cannot find item_path for node %?", node]);
}
}
}
}
fn enum_is_univariant(cx: ctxt, id: ast::def_id) -> bool {
vec::len(*enum_variants(cx, id)) == 1u
}
fn enum_variants(cx: ctxt, id: ast::def_id) -> @~[variant_info] {
alt cx.enum_var_cache.find(id) {
some(variants) { ret variants; }
_ { /* fallthrough */ }
}
let result = if ast::local_crate != id.crate {
@csearch::get_enum_variants(cx, id)
} else {
/*
Although both this code and check_enum_variants in typeck/check
call eval_const_expr, it should never get called twice for the same
expr, since check_enum_variants also updates the enum_var_cache
*/
alt cx.items.get(id.node) {
ast_map::node_item(@{node: ast::item_enum(variants, _, _), _}, _) {
let mut disr_val = -1;
@vec::map(variants, |variant| {
let ctor_ty = node_id_to_type(cx, variant.node.id);
let arg_tys = {
if vec::len(variant.node.args) > 0u {
ty_fn_args(ctor_ty).map(|a| a.ty)
} else { ~[] }
};
alt variant.node.disr_expr {
some (ex) {
// FIXME: issue #1417
disr_val = alt const_eval::eval_const_expr(cx, ex) {
const_eval::const_int(val) {val as int}
_ { cx.sess.bug("tag_variants: bad disr expr"); }
}
}
_ {disr_val += 1;}
}
@{args: arg_tys,
ctor_ty: ctor_ty,
name: variant.node.name,
id: ast_util::local_def(variant.node.id),
disr_val: disr_val
}
})
}
_ { cx.sess.bug("tag_variants: id not bound to an enum"); }
}
};
cx.enum_var_cache.insert(id, result);
result
}
// Returns information about the enum variant with the given ID:
fn enum_variant_with_id(cx: ctxt, enum_id: ast::def_id,
variant_id: ast::def_id) -> variant_info {
let variants = enum_variants(cx, enum_id);
let mut i = 0u;
while i < vec::len::<variant_info>(*variants) {
let variant = variants[i];
if ast_util::def_eq(variant.id, variant_id) { ret variant; }
i += 1u;
}
cx.sess.bug("enum_variant_with_id(): no variant exists with that ID");
}
// If the given item is in an external crate, looks up its type and adds it to
// the type cache. Returns the type parameters and type.
fn lookup_item_type(cx: ctxt, did: ast::def_id) -> ty_param_bounds_and_ty {
alt cx.tcache.find(did) {
some(tpt) { ret tpt; }
none {
// The item is in this crate. The caller should have added it to the
// type cache already
assert did.crate != ast::local_crate;
let tyt = csearch::get_type(cx, did);
cx.tcache.insert(did, tyt);
ret tyt;
}
}
}
// Look up a field ID, whether or not it's local
// Takes a list of type substs in case the class is generic
fn lookup_field_type(tcx: ctxt, class_id: def_id, id: def_id,
substs: substs) -> ty::t {
let t = if id.crate == ast::local_crate {
node_id_to_type(tcx, id.node)
}
else {
alt tcx.tcache.find(id) {
some(tpt) { tpt.ty }
none {
let tpt = csearch::get_field_type(tcx, class_id, id);
tcx.tcache.insert(id, tpt);
tpt.ty
}
}
};
subst(tcx, substs, t)
}
// Look up the list of field names and IDs for a given class
// Fails if the id is not bound to a class.
fn lookup_class_fields(cx: ctxt, did: ast::def_id) -> ~[field_ty] {
if did.crate == ast::local_crate {
alt cx.items.find(did.node) {
some(ast_map::node_item(i,_)) {
alt i.node {
ast::item_class(_, _, items, _, _, _) {
class_field_tys(items)
}
_ { cx.sess.bug("class ID bound to non-class"); }
}
}
_ {
cx.sess.bug(#fmt("class ID not bound to an item: %s",
ast_map::node_id_to_str(cx.items, did.node)));
}
}
}
else {
ret csearch::get_class_fields(cx, did);
}
}
fn lookup_class_field(cx: ctxt, parent: ast::def_id, field_id: ast::def_id)
-> field_ty {
alt vec::find(lookup_class_fields(cx, parent),
|f| f.id.node == field_id.node) {
some(t) { t }
none { cx.sess.bug("class ID not found in parent's fields"); }
}
}
fn lookup_public_fields(cx: ctxt, did: ast::def_id) -> ~[field_ty] {
vec::filter(lookup_class_fields(cx, did), is_public)
}
pure fn is_public(f: field_ty) -> bool {
alt f.vis {
public { true }
private { false }
}
}
// Look up the list of method names and IDs for a given class
// Fails if the id is not bound to a class.
fn lookup_class_method_ids(cx: ctxt, did: ast::def_id)
: is_local(did) -> ~[{name: ident, id: node_id, vis: visibility}] {
alt cx.items.find(did.node) {
some(ast_map::node_item(@{node: item_class(_,_,items,_,_,_), _}, _)) {
let (_,ms) = split_class_items(items);
vec::map(ms, |m| {name: m.ident, id: m.id,
vis: m.vis})
}
_ {
cx.sess.bug("lookup_class_method_ids: id not bound to a class");
}
}
}
/* Given a class def_id and a method name, return the method's
def_id. Needed so we can do static dispatch for methods
Doesn't care about the method's privacy. (It's assumed that
the caller already checked that.)
*/
fn lookup_class_method_by_name(cx:ctxt, did: ast::def_id, name: ident,
sp: span) -> def_id {
if check is_local(did) {
let ms = lookup_class_method_ids(cx, did);
for ms.each |m| {
if m.name == name {
ret ast_util::local_def(m.id);
}
}
cx.sess.span_fatal(sp, #fmt("Class doesn't have a method \
named %s", *name));
}
else {
csearch::get_class_method(cx.sess.cstore, did, name)
}
}
fn class_field_tys(items: ~[@class_member]) -> ~[field_ty] {
let mut rslt = ~[];
for items.each |it| {
alt it.node {
instance_var(nm, _, cm, id, vis) {
vec::push(rslt, {ident: nm, id: ast_util::local_def(id),
vis: vis, mutability: cm});
}
class_method(_) { }
}
}
rslt
}
// Return a list of fields corresponding to the class's items
// (as if the class was a record). trans uses this
// Takes a list of substs with which to instantiate field types
// Keep in mind that this function reports that all fields are
// mutable, regardless of how they were declared. It's meant to
// be used in trans.
fn class_items_as_mutable_fields(cx:ctxt, did: ast::def_id,
substs: substs) -> ~[field] {
class_item_fields(cx, did, substs, |_mt| m_mutbl)
}
// Same as class_items_as_mutable_fields, but doesn't change
// mutability.
fn class_items_as_fields(cx:ctxt, did: ast::def_id,
substs: substs) -> ~[field] {
class_item_fields(cx, did, substs, |mt| alt mt {
class_mutable { m_mutbl }
class_immutable { m_imm }})
}
fn class_item_fields(cx:ctxt, did: ast::def_id,
substs: substs, frob_mutability: fn(class_mutability) -> mutability)
-> ~[field] {
let mut rslt = ~[];
for lookup_class_fields(cx, did).each |f| {
// consider all instance vars mut, because the
// constructor may mutate all vars
vec::push(rslt, {ident: f.ident, mt:
{ty: lookup_field_type(cx, did, f.id, substs),
mutbl: frob_mutability(f.mutability)}});
}
rslt
}
fn is_binopable(_cx: ctxt, ty: t, op: ast::binop) -> bool {
const tycat_other: int = 0;
const tycat_bool: int = 1;
const tycat_int: int = 2;
const tycat_float: int = 3;
const tycat_str: int = 4;
const tycat_vec: int = 5;
const tycat_struct: int = 6;
const tycat_bot: int = 7;
const opcat_add: int = 0;
const opcat_sub: int = 1;
const opcat_mult: int = 2;
const opcat_shift: int = 3;
const opcat_rel: int = 4;
const opcat_eq: int = 5;
const opcat_bit: int = 6;
const opcat_logic: int = 7;
fn opcat(op: ast::binop) -> int {
alt op {
ast::add { opcat_add }
ast::subtract { opcat_sub }
ast::mul { opcat_mult }
ast::div { opcat_mult }
ast::rem { opcat_mult }
ast::and { opcat_logic }
ast::or { opcat_logic }
ast::bitxor { opcat_bit }
ast::bitand { opcat_bit }
ast::bitor { opcat_bit }
ast::shl { opcat_shift }
ast::shr { opcat_shift }
ast::eq { opcat_eq }
ast::ne { opcat_eq }
ast::lt { opcat_rel }
ast::le { opcat_rel }
ast::ge { opcat_rel }
ast::gt { opcat_rel }
}
}
fn tycat(ty: t) -> int {
alt get(ty).struct {
ty_bool { tycat_bool }
ty_int(_) | ty_uint(_) | ty_var_integral(_) { tycat_int }
ty_float(_) { tycat_float }
ty_str { tycat_str }
ty_vec(_) { tycat_vec }
ty_rec(_) | ty_tup(_) | ty_enum(_, _) { tycat_struct }
ty_bot { tycat_bot }
_ { tycat_other }
}
}
const t: bool = true;
const f: bool = false;
let tbl = ~[
/*. add, shift, bit
. sub, rel, logic
. mult, eq, */
/*other*/ ~[f, f, f, f, t, t, f, f],
/*bool*/ ~[f, f, f, f, t, t, t, t],
/*int*/ ~[t, t, t, t, t, t, t, f],
/*float*/ ~[t, t, t, f, t, t, f, f],
/*str*/ ~[f, f, f, f, t, t, f, f],
/*vec*/ ~[f, f, f, f, t, t, f, f],
/*bot*/ ~[f, f, f, f, t, t, f, f],
/*struct*/ ~[t, t, t, t, t, t, t, t]];
ret tbl[tycat(ty)][opcat(op)];
}
fn ast_constr_to_constr<T>(tcx: ctxt, c: @ast::constr_general<T>) ->
@constr_general<T> {
alt tcx.def_map.find(c.node.id) {
some(ast::def_fn(pred_id, ast::pure_fn)) {
ret @ast_util::respan(c.span,
{path: c.node.path,
args: c.node.args,
id: pred_id});
}
_ {
tcx.sess.span_fatal(c.span,
"predicate " + path_to_str(c.node.path) +
" is unbound or bound to a non-function or an \
impure function");
}
}
}
fn ty_params_to_tys(tcx: ty::ctxt, tps: ~[ast::ty_param]) -> ~[t] {
vec::from_fn(tps.len(), |i| {
ty::mk_param(tcx, i, ast_util::local_def(tps[i].id))
})
}
/// Returns an equivalent type with all the typedefs and self regions removed.
fn normalize_ty(cx: ctxt, t: t) -> t {
alt cx.normalized_cache.find(t) {
some(t) { ret t; }
none { }
}
let t = alt get(t).struct {
ty_enum(did, r) {
alt r.self_r {
some(_) {
// This enum has a self region. Get rid of it
mk_enum(cx, did, {self_r: none, self_ty: none, tps: r.tps})
}
none { t }
}
}
ty_class(did, r) {
alt r.self_r {
some(_) {
// Ditto.
mk_class(cx, did, {self_r: none, self_ty: none, tps: r.tps})
}
none { t }
}
}
_ { t }
};
// FIXME #2187: This also reduced int types to their compatible machine
// types, which isn't necessary after #2187
let t = mk_t(cx, mach_sty(cx.sess.targ_cfg, t));
let sty = fold_sty(get(t).struct, |t| { normalize_ty(cx, t) });
let t_norm = mk_t(cx, sty);
cx.normalized_cache.insert(t, t_norm);
ret t_norm;
}
// Local Variables:
// mode: rust
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// End: