rust/crates/ide_assists/src/assist_context.rs
2021-06-13 09:48:15 +05:30

303 lines
10 KiB
Rust

//! See [`AssistContext`].
use std::mem;
use hir::Semantics;
use ide_db::{
base_db::{AnchoredPathBuf, FileId, FileRange},
helpers::SnippetCap,
};
use ide_db::{
label::Label,
source_change::{FileSystemEdit, SourceChange},
RootDatabase,
};
use syntax::{
algo::{self, find_node_at_offset, find_node_at_range},
AstNode, AstToken, SourceFile, SyntaxElement, SyntaxKind, SyntaxNode, SyntaxNodePtr,
SyntaxToken, TextRange, TextSize, TokenAtOffset,
};
use text_edit::{TextEdit, TextEditBuilder};
use crate::{
assist_config::AssistConfig, Assist, AssistId, AssistKind, AssistResolveStrategy, GroupLabel,
};
/// `AssistContext` allows to apply an assist or check if it could be applied.
///
/// Assists use a somewhat over-engineered approach, given the current needs.
/// The assists workflow consists of two phases. In the first phase, a user asks
/// for the list of available assists. In the second phase, the user picks a
/// particular assist and it gets applied.
///
/// There are two peculiarities here:
///
/// * first, we ideally avoid computing more things then necessary to answer "is
/// assist applicable" in the first phase.
/// * second, when we are applying assist, we don't have a guarantee that there
/// weren't any changes between the point when user asked for assists and when
/// they applied a particular assist. So, when applying assist, we need to do
/// all the checks from scratch.
///
/// To avoid repeating the same code twice for both "check" and "apply"
/// functions, we use an approach reminiscent of that of Django's function based
/// views dealing with forms. Each assist receives a runtime parameter,
/// `resolve`. It first check if an edit is applicable (potentially computing
/// info required to compute the actual edit). If it is applicable, and
/// `resolve` is `true`, it then computes the actual edit.
///
/// So, to implement the original assists workflow, we can first apply each edit
/// with `resolve = false`, and then applying the selected edit again, with
/// `resolve = true` this time.
///
/// Note, however, that we don't actually use such two-phase logic at the
/// moment, because the LSP API is pretty awkward in this place, and it's much
/// easier to just compute the edit eagerly :-)
pub(crate) struct AssistContext<'a> {
pub(crate) config: &'a AssistConfig,
pub(crate) sema: Semantics<'a, RootDatabase>,
pub(crate) frange: FileRange,
source_file: SourceFile,
}
impl<'a> AssistContext<'a> {
pub(crate) fn new(
sema: Semantics<'a, RootDatabase>,
config: &'a AssistConfig,
frange: FileRange,
) -> AssistContext<'a> {
let source_file = sema.parse(frange.file_id);
AssistContext { config, sema, frange, source_file }
}
pub(crate) fn db(&self) -> &RootDatabase {
self.sema.db
}
// NB, this ignores active selection.
pub(crate) fn offset(&self) -> TextSize {
self.frange.range.start()
}
pub(crate) fn token_at_offset(&self) -> TokenAtOffset<SyntaxToken> {
self.source_file.syntax().token_at_offset(self.offset())
}
pub(crate) fn find_token_syntax_at_offset(&self, kind: SyntaxKind) -> Option<SyntaxToken> {
self.token_at_offset().find(|it| it.kind() == kind)
}
pub(crate) fn find_token_at_offset<T: AstToken>(&self) -> Option<T> {
self.token_at_offset().find_map(T::cast)
}
pub(crate) fn find_node_at_offset<N: AstNode>(&self) -> Option<N> {
find_node_at_offset(self.source_file.syntax(), self.offset())
}
pub(crate) fn find_node_at_range<N: AstNode>(&self) -> Option<N> {
find_node_at_range(self.source_file.syntax(), self.frange.range)
}
pub(crate) fn find_node_at_offset_with_descend<N: AstNode>(&self) -> Option<N> {
self.sema.find_node_at_offset_with_descend(self.source_file.syntax(), self.offset())
}
pub(crate) fn covering_element(&self) -> SyntaxElement {
self.source_file.syntax().covering_element(self.frange.range)
}
// FIXME: remove
pub(crate) fn covering_node_for_range(&self, range: TextRange) -> SyntaxElement {
self.source_file.syntax().covering_element(range)
}
}
pub(crate) struct Assists {
file: FileId,
resolve: AssistResolveStrategy,
buf: Vec<Assist>,
allowed: Option<Vec<AssistKind>>,
}
impl Assists {
pub(crate) fn new(ctx: &AssistContext, resolve: AssistResolveStrategy) -> Assists {
Assists {
resolve,
file: ctx.frange.file_id,
buf: Vec::new(),
allowed: ctx.config.allowed.clone(),
}
}
pub(crate) fn finish(mut self) -> Vec<Assist> {
self.buf.sort_by_key(|assist| assist.target.len());
self.buf
}
pub(crate) fn add(
&mut self,
id: AssistId,
label: impl Into<String>,
target: TextRange,
f: impl FnOnce(&mut AssistBuilder),
) -> Option<()> {
if !self.is_allowed(&id) {
return None;
}
let label = Label::new(label.into());
let assist = Assist { id, label, group: None, target, source_change: None };
self.add_impl(assist, f)
}
pub(crate) fn add_group(
&mut self,
group: &GroupLabel,
id: AssistId,
label: impl Into<String>,
target: TextRange,
f: impl FnOnce(&mut AssistBuilder),
) -> Option<()> {
if !self.is_allowed(&id) {
return None;
}
let label = Label::new(label.into());
let assist = Assist { id, label, group: Some(group.clone()), target, source_change: None };
self.add_impl(assist, f)
}
fn add_impl(&mut self, mut assist: Assist, f: impl FnOnce(&mut AssistBuilder)) -> Option<()> {
let source_change = if self.resolve.should_resolve(&assist.id) {
let mut builder = AssistBuilder::new(self.file);
f(&mut builder);
Some(builder.finish())
} else {
None
};
assist.source_change = source_change;
self.buf.push(assist);
Some(())
}
fn is_allowed(&self, id: &AssistId) -> bool {
match &self.allowed {
Some(allowed) => allowed.iter().any(|kind| kind.contains(id.1)),
None => true,
}
}
}
pub(crate) struct AssistBuilder {
edit: TextEditBuilder,
file_id: FileId,
source_change: SourceChange,
/// Maps the original, immutable `SyntaxNode` to a `clone_for_update` twin.
mutated_tree: Option<TreeMutator>,
}
pub(crate) struct TreeMutator {
immutable: SyntaxNode,
mutable_clone: SyntaxNode,
}
impl TreeMutator {
pub(crate) fn new(immutable: &SyntaxNode) -> TreeMutator {
let immutable = immutable.ancestors().last().unwrap();
let mutable_clone = immutable.clone_for_update();
TreeMutator { immutable, mutable_clone }
}
pub(crate) fn make_mut<N: AstNode>(&self, node: &N) -> N {
N::cast(self.make_syntax_mut(node.syntax())).unwrap()
}
pub(crate) fn make_syntax_mut(&self, node: &SyntaxNode) -> SyntaxNode {
let ptr = SyntaxNodePtr::new(node);
ptr.to_node(&self.mutable_clone)
}
}
impl AssistBuilder {
pub(crate) fn new(file_id: FileId) -> AssistBuilder {
AssistBuilder {
edit: TextEdit::builder(),
file_id,
source_change: SourceChange::default(),
mutated_tree: None,
}
}
pub(crate) fn edit_file(&mut self, file_id: FileId) {
self.commit();
self.file_id = file_id;
}
fn commit(&mut self) {
if let Some(tm) = self.mutated_tree.take() {
algo::diff(&tm.immutable, &tm.mutable_clone).into_text_edit(&mut self.edit)
}
let edit = mem::take(&mut self.edit).finish();
if !edit.is_empty() {
self.source_change.insert_source_edit(self.file_id, edit);
}
}
pub(crate) fn make_mut<N: AstNode>(&mut self, node: N) -> N {
self.mutated_tree.get_or_insert_with(|| TreeMutator::new(node.syntax())).make_mut(&node)
}
/// Returns a copy of the `node`, suitable for mutation.
///
/// Syntax trees in rust-analyzer are typically immutable, and mutating
/// operations panic at runtime. However, it is possible to make a copy of
/// the tree and mutate the copy freely. Mutation is based on interior
/// mutability, and different nodes in the same tree see the same mutations.
///
/// The typical pattern for an assist is to find specific nodes in the read
/// phase, and then get their mutable couterparts using `make_mut` in the
/// mutable state.
pub(crate) fn make_syntax_mut(&mut self, node: SyntaxNode) -> SyntaxNode {
self.mutated_tree.get_or_insert_with(|| TreeMutator::new(&node)).make_syntax_mut(&node)
}
/// Remove specified `range` of text.
pub(crate) fn delete(&mut self, range: TextRange) {
self.edit.delete(range)
}
/// Append specified `text` at the given `offset`
pub(crate) fn insert(&mut self, offset: TextSize, text: impl Into<String>) {
self.edit.insert(offset, text.into())
}
/// Append specified `snippet` at the given `offset`
pub(crate) fn insert_snippet(
&mut self,
_cap: SnippetCap,
offset: TextSize,
snippet: impl Into<String>,
) {
self.source_change.is_snippet = true;
self.insert(offset, snippet);
}
/// Replaces specified `range` of text with a given string.
pub(crate) fn replace(&mut self, range: TextRange, replace_with: impl Into<String>) {
self.edit.replace(range, replace_with.into())
}
/// Replaces specified `range` of text with a given `snippet`.
pub(crate) fn replace_snippet(
&mut self,
_cap: SnippetCap,
range: TextRange,
snippet: impl Into<String>,
) {
self.source_change.is_snippet = true;
self.replace(range, snippet);
}
pub(crate) fn replace_ast<N: AstNode>(&mut self, old: N, new: N) {
algo::diff(old.syntax(), new.syntax()).into_text_edit(&mut self.edit)
}
pub(crate) fn create_file(&mut self, dst: AnchoredPathBuf, content: impl Into<String>) {
let file_system_edit = FileSystemEdit::CreateFile { dst, initial_contents: content.into() };
self.source_change.push_file_system_edit(file_system_edit);
}
fn finish(mut self) -> SourceChange {
self.commit();
mem::take(&mut self.source_change)
}
}