rust/src/librustc/middle/ty.rs

4638 lines
141 KiB
Rust

// Copyright 2012 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
#[warn(deprecated_pattern)];
use core::prelude::*;
use driver::session;
use metadata::csearch;
use metadata;
use middle::const_eval;
use middle::freevars;
use middle::lint::{get_lint_level, allow};
use middle::lint;
use middle::resolve::{Impl, MethodInfo};
use middle::resolve;
use middle::ty;
use middle::typeck;
use middle;
use session::Session;
use util::ppaux::{note_and_explain_region, bound_region_to_str};
use util::ppaux::{region_to_str, explain_region, vstore_to_str};
use util::ppaux::{ty_to_str, proto_ty_to_str, tys_to_str};
use core::cast;
use core::cmp;
use core::dvec::DVec;
use core::dvec;
use core::ops;
use core::option;
use core::ptr::to_unsafe_ptr;
use core::result::Result;
use core::result;
use core::to_bytes;
use core::uint;
use core::vec;
use std::map::HashMap;
use std::{map, smallintmap};
use syntax::ast::*;
use syntax::ast_util::{is_local, local_def};
use syntax::ast_util;
use syntax::codemap::span;
use syntax::print::pprust;
use syntax::{ast, ast_map};
use syntax;
// Data types
// Note: after typeck, you should use resolved_mode() to convert this mode
// into an rmode, which will take into account the results of mode inference.
#[deriving_eq]
pub struct arg {
mode: ast::mode,
ty: t
}
#[deriving_eq]
pub struct field {
ident: ast::ident,
mt: mt
}
pub type param_bounds = @~[param_bound];
pub type method = {
ident: ast::ident,
tps: @~[param_bounds],
fty: FnTy,
self_ty: ast::self_ty_,
vis: ast::visibility,
def_id: ast::def_id
};
pub struct mt {
ty: t,
mutbl: ast::mutability,
}
#[auto_encode]
#[auto_decode]
pub enum vstore {
vstore_fixed(uint),
vstore_uniq,
vstore_box,
vstore_slice(Region)
}
pub struct field_ty {
ident: ident,
id: def_id,
vis: ast::visibility,
mutability: ast::struct_mutability,
}
/// How an lvalue is to be used.
#[auto_encode]
#[auto_decode]
pub enum ValueMode {
ReadValue, // Non-destructively read the value; do not copy or move.
CopyValue, // Copy the value.
MoveValue, // Move the value.
}
// Contains information needed to resolve types and (in the future) look up
// the types of AST nodes.
#[deriving_eq]
pub struct creader_cache_key {
cnum: int,
pos: uint,
len: uint
}
type creader_cache = HashMap<creader_cache_key, t>;
impl creader_cache_key : to_bytes::IterBytes {
pure fn iter_bytes(&self, +lsb0: bool, f: to_bytes::Cb) {
to_bytes::iter_bytes_3(&self.cnum, &self.pos, &self.len, lsb0, f);
}
}
struct intern_key {
sty: *sty,
o_def_id: Option<ast::def_id>
}
// NB: Do not replace this with #[deriving_eq]. The automatically-derived
// implementation will not recurse through sty and you will get stack
// exhaustion.
impl intern_key : cmp::Eq {
pure fn eq(&self, other: &intern_key) -> bool {
unsafe {
*self.sty == *other.sty && self.o_def_id == other.o_def_id
}
}
pure fn ne(&self, other: &intern_key) -> bool {
!self.eq(other)
}
}
impl intern_key : to_bytes::IterBytes {
pure fn iter_bytes(&self, +lsb0: bool, f: to_bytes::Cb) {
unsafe {
to_bytes::iter_bytes_2(&*self.sty, &self.o_def_id, lsb0, f);
}
}
}
pub enum ast_ty_to_ty_cache_entry {
atttce_unresolved, /* not resolved yet */
atttce_resolved(t) /* resolved to a type, irrespective of region */
}
pub type opt_region_variance = Option<region_variance>;
#[auto_encode]
#[auto_decode]
pub enum region_variance { rv_covariant, rv_invariant, rv_contravariant }
impl region_variance : cmp::Eq {
pure fn eq(&self, other: &region_variance) -> bool {
match ((*self), (*other)) {
(rv_covariant, rv_covariant) => true,
(rv_invariant, rv_invariant) => true,
(rv_contravariant, rv_contravariant) => true,
(rv_covariant, _) => false,
(rv_invariant, _) => false,
(rv_contravariant, _) => false
}
}
pure fn ne(&self, other: &region_variance) -> bool { !(*self).eq(other) }
}
#[auto_encode]
#[auto_decode]
pub struct AutoAdjustment {
autoderefs: uint,
autoref: Option<AutoRef>
}
#[auto_encode]
#[auto_decode]
pub struct AutoRef {
kind: AutoRefKind,
region: Region,
mutbl: ast::mutability
}
#[auto_encode]
#[auto_decode]
pub enum AutoRefKind {
/// Convert from T to &T
AutoPtr,
/// Convert from @[]/~[] to &[] (or str)
AutoBorrowVec,
/// Convert from @[]/~[] to &&[] (or str)
AutoBorrowVecRef,
/// Convert from @fn()/~fn() to &fn()
AutoBorrowFn,
}
// Stores information about provided methods (a.k.a. default methods) in
// implementations.
//
// This is a map from ID of each implementation to the method info and trait
// method ID of each of the default methods belonging to the trait that that
// implementation implements.
pub type ProvidedMethodsMap = HashMap<def_id,@DVec<@ProvidedMethodInfo>>;
// Stores the method info and definition ID of the associated trait method for
// each instantiation of each provided method.
pub struct ProvidedMethodInfo {
method_info: @MethodInfo,
trait_method_def_id: def_id
}
pub struct ProvidedMethodSource {
method_id: ast::def_id,
impl_id: ast::def_id
}
pub struct InstantiatedTraitRef {
def_id: ast::def_id,
tpt: ty_param_substs_and_ty
}
pub type ctxt = @ctxt_;
struct ctxt_ {
diag: syntax::diagnostic::span_handler,
interner: HashMap<intern_key, t_box>,
mut next_id: uint,
vecs_implicitly_copyable: bool,
legacy_modes: bool,
legacy_records: bool,
cstore: metadata::cstore::CStore,
sess: session::Session,
def_map: resolve::DefMap,
region_map: middle::region::region_map,
region_paramd_items: middle::region::region_paramd_items,
// Stores the types for various nodes in the AST. Note that this table
// is not guaranteed to be populated until after typeck. See
// typeck::check::fn_ctxt for details.
node_types: node_type_table,
// Stores the type parameters which were substituted to obtain the type
// of this node. This only applies to nodes that refer to entities
// parameterized by type parameters, such as generic fns, types, or
// other items.
node_type_substs: HashMap<node_id, ~[t]>,
items: ast_map::map,
intrinsic_defs: HashMap<ast::ident, (ast::def_id, t)>,
freevars: freevars::freevar_map,
tcache: type_cache,
rcache: creader_cache,
ccache: constness_cache,
short_names_cache: HashMap<t, @~str>,
needs_drop_cache: HashMap<t, bool>,
needs_unwind_cleanup_cache: HashMap<t, bool>,
kind_cache: HashMap<t, Kind>,
ast_ty_to_ty_cache: HashMap<@ast::Ty, ast_ty_to_ty_cache_entry>,
enum_var_cache: HashMap<def_id, @~[VariantInfo]>,
trait_method_cache: HashMap<def_id, @~[method]>,
ty_param_bounds: HashMap<ast::node_id, param_bounds>,
inferred_modes: HashMap<ast::node_id, ast::mode>,
adjustments: HashMap<ast::node_id, @AutoAdjustment>,
normalized_cache: HashMap<t, t>,
lang_items: middle::lang_items::LanguageItems,
legacy_boxed_traits: HashMap<node_id, ()>,
// A mapping from an implementation ID to the method info and trait
// method ID of the provided (a.k.a. default) methods in the traits that
// that implementation implements.
provided_methods: ProvidedMethodsMap,
provided_method_sources: HashMap<ast::def_id, ProvidedMethodSource>,
supertraits: HashMap<ast::def_id, @~[InstantiatedTraitRef]>,
// A mapping from the def ID of an enum or struct type to the def ID
// of the method that implements its destructor. If the type is not
// present in this map, it does not have a destructor. This map is
// populated during the coherence phase of typechecking.
destructor_for_type: HashMap<ast::def_id, ast::def_id>,
// A method will be in this list if and only if it is a destructor.
destructors: HashMap<ast::def_id, ()>,
// Records the value mode (read, copy, or move) for every value.
value_modes: HashMap<ast::node_id, ValueMode>,
// Maps a trait onto a mapping from self-ty to impl
trait_impls: HashMap<ast::def_id, HashMap<t, @Impl>>
}
enum tbox_flag {
has_params = 1,
has_self = 2,
needs_infer = 4,
has_regions = 8,
has_ty_err = 16,
// a meta-flag: subst may be required if the type has parameters, a self
// type, or references bound regions
needs_subst = 1 | 2 | 8
}
type t_box = @{sty: sty,
id: uint,
flags: uint,
o_def_id: Option<ast::def_id>};
// To reduce refcounting cost, we're representing types as unsafe pointers
// throughout the compiler. These are simply casted t_box values. Use ty::get
// to cast them back to a box. (Without the cast, compiler performance suffers
// ~15%.) This does mean that a t value relies on the ctxt to keep its box
// alive, and using ty::get is unsafe when the ctxt is no longer alive.
enum t_opaque {}
pub type t = *t_opaque;
pub pure fn get(t: t) -> t_box {
unsafe {
let t2 = cast::reinterpret_cast::<t, t_box>(&t);
let t3 = t2;
cast::forget(move t2);
t3
}
}
pub pure fn tbox_has_flag(tb: t_box, flag: tbox_flag) -> bool {
(tb.flags & (flag as uint)) != 0u
}
pub pure fn type_has_params(t: t) -> bool { tbox_has_flag(get(t), has_params) }
pub pure fn type_has_self(t: t) -> bool { tbox_has_flag(get(t), has_self) }
pub pure fn type_needs_infer(t: t) -> bool {
tbox_has_flag(get(t), needs_infer)
}
pub pure fn type_has_regions(t: t) -> bool {
tbox_has_flag(get(t), has_regions)
}
pub pure fn type_contains_err(t: t) -> bool {
tbox_has_flag(get(t), has_ty_err)
}
pub pure fn type_def_id(t: t) -> Option<ast::def_id> { get(t).o_def_id }
pub pure fn type_id(t: t) -> uint { get(t).id }
/**
* Meta information about a closure.
*
* - `purity` is the function's effect (pure, impure, unsafe).
* - `proto` is the protocol (fn@, fn~, etc).
* - `onceness` indicates whether the function can be called one time or many
* times.
* - `region` is the region bound on the function's upvars (often &static).
* - `bounds` is the parameter bounds on the function's upvars. */
#[deriving_eq]
pub struct FnMeta {
purity: ast::purity,
proto: ast::Proto,
onceness: ast::Onceness,
region: Region,
bounds: @~[param_bound]
}
/**
* Signature of a function type, which I have arbitrarily
* decided to use to refer to the input/output types.
*
* - `inputs` is the list of arguments and their modes.
* - `output` is the return type. */
#[deriving_eq]
pub struct FnSig {
inputs: ~[arg],
output: t
}
/**
* Function type: combines the meta information and the
* type signature. This particular type is parameterized
* by the meta information because, in some cases, the
* meta information is inferred. */
#[deriving_eq]
pub struct FnTyBase<M> {
meta: M, // Either FnMeta or FnVid
sig: FnSig // Types of arguments/return type
}
impl<M: to_bytes::IterBytes> FnTyBase<M> : to_bytes::IterBytes {
pure fn iter_bytes(&self, +lsb0: bool, f: to_bytes::Cb) {
to_bytes::iter_bytes_2(&self.meta, &self.sig, lsb0, f)
}
}
pub type FnTy = FnTyBase<FnMeta>;
#[deriving_eq]
pub struct param_ty {
idx: uint,
def_id: def_id
}
impl param_ty : to_bytes::IterBytes {
pure fn iter_bytes(&self, +lsb0: bool, f: to_bytes::Cb) {
to_bytes::iter_bytes_2(&self.idx, &self.def_id, lsb0, f)
}
}
/// Representation of regions:
#[auto_encode]
#[auto_decode]
pub enum Region {
/// Bound regions are found (primarily) in function types. They indicate
/// region parameters that have yet to be replaced with actual regions
/// (analogous to type parameters, except that due to the monomorphic
/// nature of our type system, bound type parameters are always replaced
/// with fresh type variables whenever an item is referenced, so type
/// parameters only appear "free" in types. Regions in contrast can
/// appear free or bound.). When a function is called, all bound regions
/// tied to that function's node-id are replaced with fresh region
/// variables whose value is then inferred.
re_bound(bound_region),
/// When checking a function body, the types of all arguments and so forth
/// that refer to bound region parameters are modified to refer to free
/// region parameters.
re_free(node_id, bound_region),
/// A concrete region naming some expression within the current function.
re_scope(node_id),
/// Static data that has an "infinite" lifetime.
re_static,
/// A region variable. Should not exist after typeck.
re_infer(InferRegion)
}
#[auto_encode]
#[auto_decode]
pub enum bound_region {
/// The self region for structs, impls (&T in a type defn or &self/T)
br_self,
/// An anonymous region parameter for a given fn (&T)
br_anon(uint),
/// Named region parameters for functions (a in &a/T)
br_named(ast::ident),
/// Fresh bound identifiers created during GLB computations.
br_fresh(uint),
/**
* Handles capture-avoiding substitution in a rather subtle case. If you
* have a closure whose argument types are being inferred based on the
* expected type, and the expected type includes bound regions, then we
* will wrap those bound regions in a br_cap_avoid() with the id of the
* fn expression. This ensures that the names are not "captured" by the
* enclosing scope, which may define the same names. For an example of
* where this comes up, see src/test/compile-fail/regions-ret-borrowed.rs
* and regions-ret-borrowed-1.rs. */
br_cap_avoid(ast::node_id, @bound_region),
}
type opt_region = Option<Region>;
/**
* The type substs represents the kinds of things that can be substituted to
* convert a polytype into a monotype. Note however that substituting bound
* regions other than `self` is done through a different mechanism:
*
* - `tps` represents the type parameters in scope. They are indexed
* according to the order in which they were declared.
*
* - `self_r` indicates the region parameter `self` that is present on nominal
* types (enums, structs) declared as having a region parameter. `self_r`
* should always be none for types that are not region-parameterized and
* Some(_) for types that are. The only bound region parameter that should
* appear within a region-parameterized type is `self`.
*
* - `self_ty` is the type to which `self` should be remapped, if any. The
* `self` type is rather funny in that it can only appear on traits and is
* always substituted away to the implementing type for a trait. */
#[deriving_eq]
pub struct substs {
self_r: opt_region,
self_ty: Option<ty::t>,
tps: ~[t]
}
// NB: If you change this, you'll probably want to change the corresponding
// AST structure in libsyntax/ast.rs as well.
pub enum sty {
ty_nil,
ty_bot,
ty_bool,
ty_int(ast::int_ty),
ty_uint(ast::uint_ty),
ty_float(ast::float_ty),
ty_estr(vstore),
ty_enum(def_id, substs),
ty_box(mt),
ty_uniq(mt),
ty_evec(mt, vstore),
ty_ptr(mt),
ty_rptr(Region, mt),
ty_rec(~[field]),
ty_fn(FnTy),
ty_trait(def_id, substs, vstore),
ty_struct(def_id, substs),
ty_tup(~[t]),
ty_param(param_ty), // type parameter
ty_self, // special, implicit `self` type parameter
ty_infer(InferTy), // something used only during inference/typeck
ty_err, // Also only used during inference/typeck, to represent
// the type of an erroneous expression (helps cut down
// on non-useful type error messages)
// "Fake" types, used for trans purposes
ty_type, // type_desc*
ty_opaque_box, // used by monomorphizer to represent any @ box
ty_opaque_closure_ptr(ast::Proto), // ptr to env for fn, fn@, fn~
ty_unboxed_vec(mt),
}
#[deriving_eq]
pub enum IntVarValue {
IntType(ast::int_ty),
UintType(ast::uint_ty),
}
pub enum terr_vstore_kind {
terr_vec, terr_str, terr_fn, terr_trait
}
pub struct expected_found<T> {
expected: T,
found: T
}
// Data structures used in type unification
pub enum type_err {
terr_mismatch,
terr_purity_mismatch(expected_found<purity>),
terr_onceness_mismatch(expected_found<Onceness>),
terr_mutability,
terr_proto_mismatch(expected_found<ast::Proto>),
terr_box_mutability,
terr_ptr_mutability,
terr_ref_mutability,
terr_vec_mutability,
terr_tuple_size(expected_found<uint>),
terr_ty_param_size(expected_found<uint>),
terr_record_size(expected_found<uint>),
terr_record_mutability,
terr_record_fields(expected_found<ident>),
terr_arg_count,
terr_mode_mismatch(expected_found<mode>),
terr_regions_does_not_outlive(Region, Region),
terr_regions_not_same(Region, Region),
terr_regions_no_overlap(Region, Region),
terr_regions_insufficiently_polymorphic(bound_region, Region),
terr_regions_overly_polymorphic(bound_region, Region),
terr_vstores_differ(terr_vstore_kind, expected_found<vstore>),
terr_in_field(@type_err, ast::ident),
terr_sorts(expected_found<t>),
terr_self_substs,
terr_integer_as_char,
terr_int_mismatch(expected_found<IntVarValue>),
terr_float_mismatch(expected_found<ast::float_ty>)
}
pub enum param_bound {
bound_copy,
bound_durable,
bound_owned,
bound_const,
bound_trait(t),
}
#[deriving_eq]
pub enum TyVid = uint;
#[deriving_eq]
pub enum IntVid = uint;
#[deriving_eq]
pub enum FloatVid = uint;
#[deriving_eq]
#[auto_encode]
#[auto_decode]
pub enum RegionVid = uint;
#[deriving_eq]
pub enum InferTy {
TyVar(TyVid),
IntVar(IntVid),
FloatVar(FloatVid)
}
impl InferTy : to_bytes::IterBytes {
pure fn iter_bytes(&self, +lsb0: bool, f: to_bytes::Cb) {
match *self {
TyVar(ref tv) => to_bytes::iter_bytes_2(&0u8, tv, lsb0, f),
IntVar(ref iv) => to_bytes::iter_bytes_2(&1u8, iv, lsb0, f),
FloatVar(ref fv) => to_bytes::iter_bytes_2(&2u8, fv, lsb0, f),
}
}
}
#[auto_encode]
#[auto_decode]
pub enum InferRegion {
ReVar(RegionVid),
ReSkolemized(uint, bound_region)
}
impl InferRegion : to_bytes::IterBytes {
pure fn iter_bytes(&self, +lsb0: bool, f: to_bytes::Cb) {
match *self {
ReVar(ref rv) => to_bytes::iter_bytes_2(&0u8, rv, lsb0, f),
ReSkolemized(ref v, _) => to_bytes::iter_bytes_2(&1u8, v, lsb0, f)
}
}
}
impl InferRegion : cmp::Eq {
pure fn eq(&self, other: &InferRegion) -> bool {
match ((*self), *other) {
(ReVar(rva), ReVar(rvb)) => {
rva == rvb
}
(ReSkolemized(rva, _), ReSkolemized(rvb, _)) => {
rva == rvb
}
_ => false
}
}
pure fn ne(&self, other: &InferRegion) -> bool {
!((*self) == (*other))
}
}
impl param_bound : to_bytes::IterBytes {
pure fn iter_bytes(&self, +lsb0: bool, f: to_bytes::Cb) {
match *self {
bound_copy => 0u8.iter_bytes(lsb0, f),
bound_durable => 1u8.iter_bytes(lsb0, f),
bound_owned => 2u8.iter_bytes(lsb0, f),
bound_const => 3u8.iter_bytes(lsb0, f),
bound_trait(ref t) =>
to_bytes::iter_bytes_2(&4u8, t, lsb0, f)
}
}
}
pub trait Vid {
pure fn to_uint() -> uint;
}
pub impl TyVid: Vid {
pure fn to_uint() -> uint { *self }
}
pub impl TyVid: ToStr {
pure fn to_str() -> ~str { fmt!("<V%u>", self.to_uint()) }
}
pub impl IntVid: Vid {
pure fn to_uint() -> uint { *self }
}
pub impl IntVid: ToStr {
pure fn to_str() -> ~str { fmt!("<VI%u>", self.to_uint()) }
}
pub impl FloatVid: Vid {
pure fn to_uint() -> uint { *self }
}
pub impl FloatVid: ToStr {
pure fn to_str() -> ~str { fmt!("<VF%u>", self.to_uint()) }
}
pub impl RegionVid: Vid {
pure fn to_uint() -> uint { *self }
}
pub impl RegionVid: ToStr {
pure fn to_str() -> ~str { fmt!("%?", self) }
}
pub impl FnSig : ToStr {
pure fn to_str() -> ~str {
// grr, without tcx not much we can do.
return ~"(...)";
}
}
pub impl InferTy: ToStr {
pure fn to_str() -> ~str {
match self {
TyVar(ref v) => v.to_str(),
IntVar(ref v) => v.to_str(),
FloatVar(ref v) => v.to_str()
}
}
}
pub impl IntVarValue : ToStr {
pure fn to_str() -> ~str {
match self {
IntType(ref v) => v.to_str(),
UintType(ref v) => v.to_str(),
}
}
}
pub impl TyVid : to_bytes::IterBytes {
pure fn iter_bytes(&self, +lsb0: bool, f: to_bytes::Cb) {
self.to_uint().iter_bytes(lsb0, f)
}
}
pub impl IntVid : to_bytes::IterBytes {
pure fn iter_bytes(&self, +lsb0: bool, f: to_bytes::Cb) {
self.to_uint().iter_bytes(lsb0, f)
}
}
pub impl FloatVid : to_bytes::IterBytes {
pure fn iter_bytes(&self, +lsb0: bool, f: to_bytes::Cb) {
self.to_uint().iter_bytes(lsb0, f)
}
}
pub impl RegionVid : to_bytes::IterBytes {
pure fn iter_bytes(&self, +lsb0: bool, f: to_bytes::Cb) {
self.to_uint().iter_bytes(lsb0, f)
}
}
pub fn param_bounds_to_kind(bounds: param_bounds) -> Kind {
let mut kind = kind_noncopyable();
for vec::each(*bounds) |bound| {
match *bound {
bound_copy => {
kind = raise_kind(kind, kind_implicitly_copyable());
}
bound_durable => {
kind = raise_kind(kind, kind_durable());
}
bound_owned => {
kind = raise_kind(kind, kind_owned_only() | kind_durable());
}
bound_const => {
kind = raise_kind(kind, kind_const());
}
bound_trait(_) => ()
}
}
kind
}
/// A polytype.
///
/// - `bounds`: The list of bounds for each type parameter. The length of the
/// list also tells you how many type parameters there are.
///
/// - `rp`: true if the type is region-parameterized. Types can have at
/// most one region parameter, always called `&self`.
///
/// - `ty`: the base type. May have reference to the (unsubstituted) bound
/// region `&self` or to (unsubstituted) ty_param types
pub type ty_param_bounds_and_ty = {bounds: @~[param_bounds],
region_param: Option<region_variance>,
ty: t};
pub type ty_param_substs_and_ty = {substs: ty::substs, ty: ty::t};
type type_cache = HashMap<ast::def_id, ty_param_bounds_and_ty>;
type constness_cache = HashMap<ast::def_id, const_eval::constness>;
pub type node_type_table = @smallintmap::SmallIntMap<t>;
fn mk_rcache() -> creader_cache {
type val = {cnum: int, pos: uint, len: uint};
return map::HashMap();
}
pub fn new_ty_hash<V: Copy>() -> map::HashMap<t, V> {
map::HashMap()
}
pub fn mk_ctxt(s: session::Session,
dm: resolve::DefMap,
amap: ast_map::map,
freevars: freevars::freevar_map,
region_map: middle::region::region_map,
region_paramd_items: middle::region::region_paramd_items,
+lang_items: middle::lang_items::LanguageItems,
crate: @ast::crate)
-> ctxt {
let mut legacy_modes = false;
let mut legacy_records = false;
for crate.node.attrs.each |attribute| {
match attribute.node.value.node {
ast::meta_word(ref w) if (*w) == ~"legacy_modes" => {
legacy_modes = true;
if legacy_records { break; }
}
ast::meta_word(ref w) if (*w) == ~"legacy_records" => {
legacy_records = true;
if legacy_modes { break; }
}
_ => {}
}
}
let interner = map::HashMap();
let vecs_implicitly_copyable =
get_lint_level(s.lint_settings.default_settings,
lint::vecs_implicitly_copyable) == allow;
@ctxt_ {
diag: s.diagnostic(),
interner: interner,
mut next_id: 0u,
vecs_implicitly_copyable: vecs_implicitly_copyable,
legacy_modes: legacy_modes,
legacy_records: legacy_records,
cstore: s.cstore,
sess: s,
def_map: dm,
region_map: region_map,
region_paramd_items: region_paramd_items,
node_types: @smallintmap::mk(),
node_type_substs: map::HashMap(),
items: amap,
intrinsic_defs: map::HashMap(),
freevars: freevars,
tcache: HashMap(),
rcache: mk_rcache(),
ccache: HashMap(),
short_names_cache: new_ty_hash(),
needs_drop_cache: new_ty_hash(),
needs_unwind_cleanup_cache: new_ty_hash(),
kind_cache: new_ty_hash(),
ast_ty_to_ty_cache: HashMap(),
enum_var_cache: HashMap(),
trait_method_cache: HashMap(),
ty_param_bounds: HashMap(),
inferred_modes: HashMap(),
adjustments: HashMap(),
normalized_cache: new_ty_hash(),
lang_items: move lang_items,
legacy_boxed_traits: HashMap(),
provided_methods: HashMap(),
provided_method_sources: HashMap(),
supertraits: HashMap(),
destructor_for_type: HashMap(),
destructors: HashMap(),
value_modes: HashMap(),
trait_impls: HashMap()
}
}
// Type constructors
fn mk_t(cx: ctxt, +st: sty) -> t { mk_t_with_id(cx, st, None) }
// Interns a type/name combination, stores the resulting box in cx.interner,
// and returns the box as cast to an unsafe ptr (see comments for t above).
fn mk_t_with_id(cx: ctxt, +st: sty, o_def_id: Option<ast::def_id>) -> t {
let key = intern_key { sty: to_unsafe_ptr(&st), o_def_id: o_def_id };
match cx.interner.find(key) {
Some(t) => unsafe { return cast::reinterpret_cast(&t); },
_ => ()
}
let mut flags = 0u;
fn rflags(r: Region) -> uint {
(has_regions as uint) | {
match r {
ty::re_infer(_) => needs_infer as uint,
_ => 0u
}
}
}
fn sflags(substs: &substs) -> uint {
let mut f = 0u;
for substs.tps.each |tt| { f |= get(*tt).flags; }
substs.self_r.iter(|r| f |= rflags(*r));
return f;
}
match &st {
&ty_estr(vstore_slice(r)) => {
flags |= rflags(r);
}
&ty_evec(ref mt, vstore_slice(r)) => {
flags |= rflags(r);
flags |= get(mt.ty).flags;
}
&ty_nil | &ty_bot | &ty_bool | &ty_int(_) | &ty_float(_) | &ty_uint(_) |
&ty_estr(_) | &ty_type | &ty_opaque_closure_ptr(_) |
&ty_opaque_box => (),
&ty_err => flags |= has_ty_err as uint,
&ty_param(_) => flags |= has_params as uint,
&ty_infer(_) => flags |= needs_infer as uint,
&ty_self => flags |= has_self as uint,
&ty_enum(_, ref substs) | &ty_struct(_, ref substs) |
&ty_trait(_, ref substs, _) => {
flags |= sflags(substs);
}
&ty_box(ref m) | &ty_uniq(ref m) | &ty_evec(ref m, _) |
&ty_ptr(ref m) | &ty_unboxed_vec(ref m) => {
flags |= get(m.ty).flags;
}
&ty_rptr(r, ref m) => {
flags |= rflags(r);
flags |= get(m.ty).flags;
}
&ty_rec(ref flds) => for flds.each |f| { flags |= get(f.mt.ty).flags; },
&ty_tup(ref ts) => for ts.each |tt| { flags |= get(*tt).flags; },
&ty_fn(ref f) => {
flags |= rflags(f.meta.region);
for f.sig.inputs.each |a| { flags |= get(a.ty).flags; }
flags |= get(f.sig.output).flags;
}
}
let t = @{sty: move st, id: cx.next_id, flags: flags, o_def_id: o_def_id};
let key = intern_key {sty: to_unsafe_ptr(&t.sty), o_def_id: o_def_id};
cx.interner.insert(move key, t);
cx.next_id += 1u;
unsafe { cast::reinterpret_cast(&t) }
}
pub fn mk_nil(cx: ctxt) -> t { mk_t(cx, ty_nil) }
pub fn mk_err(cx: ctxt) -> t { mk_t(cx, ty_err) }
pub fn mk_bot(cx: ctxt) -> t { mk_t(cx, ty_bot) }
pub fn mk_bool(cx: ctxt) -> t { mk_t(cx, ty_bool) }
pub fn mk_int(cx: ctxt) -> t { mk_t(cx, ty_int(ast::ty_i)) }
pub fn mk_i8(cx: ctxt) -> t { mk_t(cx, ty_int(ast::ty_i8)) }
pub fn mk_i16(cx: ctxt) -> t { mk_t(cx, ty_int(ast::ty_i16)) }
pub fn mk_i32(cx: ctxt) -> t { mk_t(cx, ty_int(ast::ty_i32)) }
pub fn mk_i64(cx: ctxt) -> t { mk_t(cx, ty_int(ast::ty_i64)) }
pub fn mk_float(cx: ctxt) -> t { mk_t(cx, ty_float(ast::ty_f)) }
pub fn mk_uint(cx: ctxt) -> t { mk_t(cx, ty_uint(ast::ty_u)) }
pub fn mk_u8(cx: ctxt) -> t { mk_t(cx, ty_uint(ast::ty_u8)) }
pub fn mk_u16(cx: ctxt) -> t { mk_t(cx, ty_uint(ast::ty_u16)) }
pub fn mk_u32(cx: ctxt) -> t { mk_t(cx, ty_uint(ast::ty_u32)) }
pub fn mk_u64(cx: ctxt) -> t { mk_t(cx, ty_uint(ast::ty_u64)) }
pub fn mk_f32(cx: ctxt) -> t { mk_t(cx, ty_float(ast::ty_f32)) }
pub fn mk_f64(cx: ctxt) -> t { mk_t(cx, ty_float(ast::ty_f64)) }
pub fn mk_mach_int(cx: ctxt, tm: ast::int_ty) -> t { mk_t(cx, ty_int(tm)) }
pub fn mk_mach_uint(cx: ctxt, tm: ast::uint_ty) -> t { mk_t(cx, ty_uint(tm)) }
pub fn mk_mach_float(cx: ctxt, tm: ast::float_ty) -> t {
mk_t(cx, ty_float(tm))
}
pub fn mk_char(cx: ctxt) -> t { mk_t(cx, ty_int(ast::ty_char)) }
pub fn mk_estr(cx: ctxt, t: vstore) -> t {
mk_t(cx, ty_estr(t))
}
pub fn mk_enum(cx: ctxt, did: ast::def_id, +substs: substs) -> t {
// take a copy of substs so that we own the vectors inside
mk_t(cx, ty_enum(did, substs))
}
pub fn mk_box(cx: ctxt, tm: mt) -> t { mk_t(cx, ty_box(tm)) }
pub fn mk_imm_box(cx: ctxt, ty: t) -> t {
mk_box(cx, mt {ty: ty, mutbl: ast::m_imm})
}
pub fn mk_uniq(cx: ctxt, tm: mt) -> t { mk_t(cx, ty_uniq(tm)) }
pub fn mk_imm_uniq(cx: ctxt, ty: t) -> t {
mk_uniq(cx, mt {ty: ty, mutbl: ast::m_imm})
}
pub fn mk_ptr(cx: ctxt, tm: mt) -> t { mk_t(cx, ty_ptr(tm)) }
pub fn mk_rptr(cx: ctxt, r: Region, tm: mt) -> t { mk_t(cx, ty_rptr(r, tm)) }
pub fn mk_mut_rptr(cx: ctxt, r: Region, ty: t) -> t {
mk_rptr(cx, r, mt {ty: ty, mutbl: ast::m_mutbl})
}
pub fn mk_imm_rptr(cx: ctxt, r: Region, ty: t) -> t {
mk_rptr(cx, r, mt {ty: ty, mutbl: ast::m_imm})
}
pub fn mk_mut_ptr(cx: ctxt, ty: t) -> t {
mk_ptr(cx, mt {ty: ty, mutbl: ast::m_mutbl})
}
pub fn mk_imm_ptr(cx: ctxt, ty: t) -> t {
mk_ptr(cx, mt {ty: ty, mutbl: ast::m_imm})
}
pub fn mk_nil_ptr(cx: ctxt) -> t {
mk_ptr(cx, mt {ty: mk_nil(cx), mutbl: ast::m_imm})
}
pub fn mk_evec(cx: ctxt, tm: mt, t: vstore) -> t {
mk_t(cx, ty_evec(tm, t))
}
pub fn mk_unboxed_vec(cx: ctxt, tm: mt) -> t {
mk_t(cx, ty_unboxed_vec(tm))
}
pub fn mk_mut_unboxed_vec(cx: ctxt, ty: t) -> t {
mk_t(cx, ty_unboxed_vec(mt {ty: ty, mutbl: ast::m_imm}))
}
pub fn mk_rec(cx: ctxt, +fs: ~[field]) -> t { mk_t(cx, ty_rec(fs)) }
pub fn mk_tup(cx: ctxt, +ts: ~[t]) -> t { mk_t(cx, ty_tup(ts)) }
// take a copy because we want to own the various vectors inside
pub fn mk_fn(cx: ctxt, +fty: FnTy) -> t { mk_t(cx, ty_fn(fty)) }
pub fn mk_trait(cx: ctxt, did: ast::def_id, +substs: substs, vstore: vstore)
-> t {
// take a copy of substs so that we own the vectors inside
mk_t(cx, ty_trait(did, substs, vstore))
}
pub fn mk_struct(cx: ctxt, struct_id: ast::def_id, +substs: substs) -> t {
// take a copy of substs so that we own the vectors inside
mk_t(cx, ty_struct(struct_id, substs))
}
pub fn mk_var(cx: ctxt, v: TyVid) -> t { mk_infer(cx, TyVar(v)) }
pub fn mk_int_var(cx: ctxt, v: IntVid) -> t { mk_infer(cx, IntVar(v)) }
pub fn mk_float_var(cx: ctxt, v: FloatVid) -> t { mk_infer(cx, FloatVar(v)) }
pub fn mk_infer(cx: ctxt, +it: InferTy) -> t { mk_t(cx, ty_infer(it)) }
pub fn mk_self(cx: ctxt) -> t { mk_t(cx, ty_self) }
pub fn mk_param(cx: ctxt, n: uint, k: def_id) -> t {
mk_t(cx, ty_param(param_ty { idx: n, def_id: k }))
}
pub fn mk_type(cx: ctxt) -> t { mk_t(cx, ty_type) }
pub fn mk_opaque_closure_ptr(cx: ctxt, proto: ast::Proto) -> t {
mk_t(cx, ty_opaque_closure_ptr(proto))
}
pub fn mk_opaque_box(cx: ctxt) -> t { mk_t(cx, ty_opaque_box) }
pub fn mk_with_id(cx: ctxt, base: t, def_id: ast::def_id) -> t {
mk_t_with_id(cx, /*bad*/copy get(base).sty, Some(def_id))
}
// Converts s to its machine type equivalent
pub pure fn mach_sty(cfg: @session::config, t: t) -> sty {
match get(t).sty {
ty_int(ast::ty_i) => ty_int(cfg.int_type),
ty_uint(ast::ty_u) => ty_uint(cfg.uint_type),
ty_float(ast::ty_f) => ty_float(cfg.float_type),
ref s => (/*bad*/copy *s)
}
}
pub fn default_arg_mode_for_ty(tcx: ctxt, ty: ty::t) -> ast::rmode {
// FIXME(#2202) --- We retain by-ref for fn& things to workaround a
// memory leak that otherwise results when @fn is upcast to &fn.
if type_is_fn(ty) {
match ty_fn_proto(ty) {
ast::ProtoBorrowed => {
return ast::by_ref;
}
_ => {}
}
}
return if tcx.legacy_modes {
if type_is_borrowed(ty) {
// the old mode default was ++ for things like &ptr, but to be
// forward-compatible with non-legacy, we should use +
ast::by_copy
} else if ty::type_is_immediate(ty) {
ast::by_val
} else {
ast::by_ref
}
} else {
ast::by_copy
};
fn type_is_fn(ty: t) -> bool {
match get(ty).sty {
ty_fn(*) => true,
_ => false
}
}
fn type_is_borrowed(ty: t) -> bool {
match ty::get(ty).sty {
ty::ty_rptr(*) => true,
ty_evec(_, vstore_slice(_)) => true,
ty_estr(vstore_slice(_)) => true,
// technically, we prob ought to include
// &fn(), but that is treated specially due to #2202
_ => false
}
}
}
// Returns the narrowest lifetime enclosing the evaluation of the expression
// with id `id`.
pub fn encl_region(cx: ctxt, id: ast::node_id) -> ty::Region {
match cx.region_map.find(id) {
Some(encl_scope) => ty::re_scope(encl_scope),
None => ty::re_static
}
}
pub fn walk_ty(ty: t, f: fn(t)) {
maybe_walk_ty(ty, |t| { f(t); true });
}
pub fn maybe_walk_ty(ty: t, f: fn(t) -> bool) {
if !f(ty) { return; }
match /*bad*/copy get(ty).sty {
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_uint(_) | ty_float(_) |
ty_estr(_) | ty_type | ty_opaque_box | ty_self |
ty_opaque_closure_ptr(_) | ty_infer(_) | ty_param(_) | ty_err => {
}
ty_box(tm) | ty_evec(tm, _) | ty_unboxed_vec(tm) |
ty_ptr(tm) | ty_rptr(_, tm) => {
maybe_walk_ty(tm.ty, f);
}
ty_enum(_, ref substs) | ty_struct(_, ref substs) |
ty_trait(_, ref substs, _) => {
for (*substs).tps.each |subty| { maybe_walk_ty(*subty, f); }
}
ty_rec(fields) => {
for fields.each |fl| { maybe_walk_ty(fl.mt.ty, f); }
}
ty_tup(ts) => { for ts.each |tt| { maybe_walk_ty(*tt, f); } }
ty_fn(ref ft) => {
for ft.sig.inputs.each |a| { maybe_walk_ty(a.ty, f); }
maybe_walk_ty(ft.sig.output, f);
}
ty_uniq(tm) => { maybe_walk_ty(tm.ty, f); }
}
}
pub fn fold_sty_to_ty(tcx: ty::ctxt, sty: &sty, foldop: fn(t) -> t) -> t {
mk_t(tcx, fold_sty(sty, foldop))
}
pub fn fold_sig(sig: &FnSig, fldop: fn(t) -> t) -> FnSig {
let args = do sig.inputs.map |arg| {
arg { mode: arg.mode, ty: fldop(arg.ty) }
};
FnSig {
inputs: move args,
output: fldop(sig.output)
}
}
fn fold_sty(sty: &sty, fldop: fn(t) -> t) -> sty {
fn fold_substs(substs: &substs, fldop: fn(t) -> t) -> substs {
substs {self_r: substs.self_r,
self_ty: substs.self_ty.map(|t| fldop(*t)),
tps: substs.tps.map(|t| fldop(*t))}
}
match /*bad*/copy *sty {
ty_box(tm) => {
ty_box(mt {ty: fldop(tm.ty), mutbl: tm.mutbl})
}
ty_uniq(tm) => {
ty_uniq(mt {ty: fldop(tm.ty), mutbl: tm.mutbl})
}
ty_ptr(tm) => {
ty_ptr(mt {ty: fldop(tm.ty), mutbl: tm.mutbl})
}
ty_unboxed_vec(tm) => {
ty_unboxed_vec(mt {ty: fldop(tm.ty), mutbl: tm.mutbl})
}
ty_evec(tm, vst) => {
ty_evec(mt {ty: fldop(tm.ty), mutbl: tm.mutbl}, vst)
}
ty_enum(tid, ref substs) => {
ty_enum(tid, fold_substs(substs, fldop))
}
ty_trait(did, ref substs, vst) => {
ty_trait(did, fold_substs(substs, fldop), vst)
}
ty_rec(fields) => {
let new_fields = do vec::map(fields) |fl| {
let new_ty = fldop(fl.mt.ty);
let new_mt = mt { ty: new_ty, mutbl: fl.mt.mutbl };
field { ident: fl.ident, mt: new_mt }
};
ty_rec(new_fields)
}
ty_tup(ts) => {
let new_ts = vec::map(ts, |tt| fldop(*tt));
ty_tup(new_ts)
}
ty_fn(ref f) => {
let sig = fold_sig(&f.sig, fldop);
ty_fn(FnTyBase {meta: f.meta, sig: sig})
}
ty_rptr(r, tm) => {
ty_rptr(r, mt {ty: fldop(tm.ty), mutbl: tm.mutbl})
}
ty_struct(did, ref substs) => {
ty_struct(did, fold_substs(substs, fldop))
}
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_uint(_) | ty_float(_) |
ty_estr(_) | ty_type | ty_opaque_closure_ptr(_) | ty_err |
ty_opaque_box | ty_infer(_) | ty_param(*) | ty_self => {
/*bad*/copy *sty
}
}
}
// Folds types from the bottom up.
pub fn fold_ty(cx: ctxt, t0: t, fldop: fn(t) -> t) -> t {
let sty = fold_sty(&get(t0).sty, |t| fold_ty(cx, fldop(t), fldop));
fldop(mk_t(cx, sty))
}
pub fn walk_regions_and_ty(
cx: ctxt,
ty: t,
walkr: fn(r: Region),
walkt: fn(t: t) -> bool) {
if (walkt(ty)) {
fold_regions_and_ty(
cx, ty,
|r| { walkr(r); r },
|t| { walkt(t); walk_regions_and_ty(cx, t, walkr, walkt); t },
|t| { walkt(t); walk_regions_and_ty(cx, t, walkr, walkt); t });
}
}
pub fn fold_regions_and_ty(
cx: ctxt,
ty: t,
fldr: fn(r: Region) -> Region,
fldfnt: fn(t: t) -> t,
fldt: fn(t: t) -> t) -> t {
fn fold_substs(
substs: &substs,
fldr: fn(r: Region) -> Region,
fldt: fn(t: t) -> t)
-> substs {
substs {
self_r: substs.self_r.map(|r| fldr(*r)),
self_ty: substs.self_ty.map(|t| fldt(*t)),
tps: substs.tps.map(|t| fldt(*t))
}
}
let tb = ty::get(ty);
match tb.sty {
ty::ty_rptr(r, mt) => {
let m_r = fldr(r);
let m_t = fldt(mt.ty);
ty::mk_rptr(cx, m_r, mt {ty: m_t, mutbl: mt.mutbl})
}
ty_estr(vstore_slice(r)) => {
let m_r = fldr(r);
ty::mk_estr(cx, vstore_slice(m_r))
}
ty_evec(mt, vstore_slice(r)) => {
let m_r = fldr(r);
let m_t = fldt(mt.ty);
ty::mk_evec(cx, mt {ty: m_t, mutbl: mt.mutbl}, vstore_slice(m_r))
}
ty_enum(def_id, ref substs) => {
ty::mk_enum(cx, def_id, fold_substs(substs, fldr, fldt))
}
ty_struct(def_id, ref substs) => {
ty::mk_struct(cx, def_id, fold_substs(substs, fldr, fldt))
}
ty_trait(def_id, ref substs, vst) => {
ty::mk_trait(cx, def_id, fold_substs(substs, fldr, fldt), vst)
}
ty_fn(ref f) => {
ty::mk_fn(cx, FnTyBase {meta: FnMeta {region: fldr(f.meta.region),
..f.meta},
sig: fold_sig(&f.sig, fldfnt)})
}
ref sty => {
fold_sty_to_ty(cx, sty, |t| fldt(t))
}
}
}
/* A little utility: it often happens that I have a `fn_ty`,
* but I want to use some function like `fold_regions_and_ty()`
* that is defined over all types. This utility converts to
* a full type and back. It's not the best way to do this (somewhat
* inefficient to do the conversion), it would be better to refactor
* all this folding business. However, I've been waiting on that
* until trait support is improved. */
pub fn apply_op_on_t_to_ty_fn(
cx: ctxt,
f: &FnTy,
t_op: fn(t) -> t) -> FnTy
{
let t0 = ty::mk_fn(cx, /*bad*/copy *f);
let t1 = t_op(t0);
match ty::get(t1).sty {
ty::ty_fn(copy f) => {
move f
}
_ => {
cx.sess.bug(~"`t_op` did not return a function type");
}
}
}
// n.b. this function is intended to eventually replace fold_region() below,
// that is why its name is so similar.
pub fn fold_regions(
cx: ctxt,
ty: t,
fldr: fn(r: Region, in_fn: bool) -> Region) -> t {
fn do_fold(cx: ctxt, ty: t, in_fn: bool,
fldr: fn(Region, bool) -> Region) -> t {
debug!("do_fold(ty=%s, in_fn=%b)", ty_to_str(cx, ty), in_fn);
if !type_has_regions(ty) { return ty; }
fold_regions_and_ty(
cx, ty,
|r| fldr(r, in_fn),
|t| do_fold(cx, t, true, fldr),
|t| do_fold(cx, t, in_fn, fldr))
}
do_fold(cx, ty, false, fldr)
}
pub fn fold_region(cx: ctxt, t0: t, fldop: fn(Region, bool) -> Region) -> t {
fn do_fold(cx: ctxt, t0: t, under_r: bool,
fldop: fn(Region, bool) -> Region) -> t {
let tb = get(t0);
if !tbox_has_flag(tb, has_regions) { return t0; }
match tb.sty {
ty_rptr(r, mt {ty: t1, mutbl: m}) => {
let m_r = fldop(r, under_r);
let m_t1 = do_fold(cx, t1, true, fldop);
ty::mk_rptr(cx, m_r, mt {ty: m_t1, mutbl: m})
}
ty_estr(vstore_slice(r)) => {
let m_r = fldop(r, under_r);
ty::mk_estr(cx, vstore_slice(m_r))
}
ty_evec(mt {ty: t1, mutbl: m}, vstore_slice(r)) => {
let m_r = fldop(r, under_r);
let m_t1 = do_fold(cx, t1, true, fldop);
ty::mk_evec(cx, mt {ty: m_t1, mutbl: m}, vstore_slice(m_r))
}
ty_fn(_) => {
// do not recurse into functions, which introduce fresh bindings
t0
}
ref sty => {
do fold_sty_to_ty(cx, sty) |t| {
do_fold(cx, t, under_r, fldop)
}
}
}
}
do_fold(cx, t0, false, fldop)
}
// Substitute *only* type parameters. Used in trans where regions are erased.
pub fn subst_tps(cx: ctxt, tps: &[t], self_ty_opt: Option<t>, typ: t) -> t {
if tps.len() == 0u && self_ty_opt.is_none() { return typ; }
let tb = ty::get(typ);
if self_ty_opt.is_none() && !tbox_has_flag(tb, has_params) { return typ; }
match tb.sty {
ty_param(p) => tps[p.idx],
ty_self => {
match self_ty_opt {
None => cx.sess.bug(~"ty_self unexpected here"),
Some(self_ty) => {
subst_tps(cx, tps, self_ty_opt, self_ty)
}
}
}
ref sty => {
fold_sty_to_ty(cx, sty, |t| subst_tps(cx, tps, self_ty_opt, t))
}
}
}
pub fn substs_is_noop(substs: &substs) -> bool {
substs.tps.len() == 0u &&
substs.self_r.is_none() &&
substs.self_ty.is_none()
}
pub fn substs_to_str(cx: ctxt, substs: &substs) -> ~str {
fmt!("substs(self_r=%s, self_ty=%s, tps=%?)",
substs.self_r.map_default(~"none", |r| region_to_str(cx, *r)),
substs.self_ty.map_default(~"none",
|t| ::util::ppaux::ty_to_str(cx, *t)),
tys_to_str(cx, substs.tps))
}
pub fn param_bound_to_str(cx: ctxt, pb: &param_bound) -> ~str {
match *pb {
bound_copy => ~"copy",
bound_durable => ~"&static",
bound_owned => ~"owned",
bound_const => ~"const",
bound_trait(t) => ::util::ppaux::ty_to_str(cx, t)
}
}
pub fn param_bounds_to_str(cx: ctxt, pbs: param_bounds) -> ~str {
fmt!("%?", pbs.map(|pb| param_bound_to_str(cx, pb)))
}
pub fn subst(cx: ctxt,
substs: &substs,
typ: t)
-> t {
debug!("subst(substs=%s, typ=%s)",
substs_to_str(cx, substs),
::util::ppaux::ty_to_str(cx, typ));
if substs_is_noop(substs) { return typ; }
let r = do_subst(cx, substs, typ);
debug!(" r = %s", ::util::ppaux::ty_to_str(cx, r));
return r;
fn do_subst(cx: ctxt,
substs: &substs,
typ: t) -> t {
let tb = get(typ);
if !tbox_has_flag(tb, needs_subst) { return typ; }
match tb.sty {
ty_param(p) => substs.tps[p.idx],
ty_self => substs.self_ty.get(),
_ => {
fold_regions_and_ty(
cx, typ,
|r| match r {
re_bound(br_self) => {
match substs.self_r {
None => {
cx.sess.bug(
fmt!("ty::subst: \
Reference to self region when given substs \
with no self region, ty = %s",
::util::ppaux::ty_to_str(cx, typ)))
}
Some(self_r) => self_r
}
}
_ => r
},
|t| do_subst(cx, substs, t),
|t| do_subst(cx, substs, t))
}
}
}
}
// Performs substitutions on a set of substitutions (result = sup(sub)) to
// yield a new set of substitutions. This is used in trait inheritance.
pub fn subst_substs(cx: ctxt, sup: &substs, sub: &substs) -> substs {
substs {
self_r: sup.self_r,
self_ty: sup.self_ty.map(|typ| subst(cx, sub, *typ)),
tps: sup.tps.map(|typ| subst(cx, sub, *typ))
}
}
// Type utilities
pub fn type_is_nil(ty: t) -> bool { get(ty).sty == ty_nil }
pub fn type_is_bot(ty: t) -> bool { get(ty).sty == ty_bot }
pub fn type_is_ty_var(ty: t) -> bool {
match get(ty).sty {
ty_infer(TyVar(_)) => true,
_ => false
}
}
pub fn type_is_bool(ty: t) -> bool { get(ty).sty == ty_bool }
pub fn type_is_structural(ty: t) -> bool {
match get(ty).sty {
ty_rec(_) | ty_struct(*) | ty_tup(_) | ty_enum(*) | ty_fn(_) |
ty_trait(*) |
ty_evec(_, vstore_fixed(_)) | ty_estr(vstore_fixed(_)) |
ty_evec(_, vstore_slice(_)) | ty_estr(vstore_slice(_))
=> true,
_ => false
}
}
pub fn type_is_copyable(cx: ctxt, ty: t) -> bool {
return kind_can_be_copied(type_kind(cx, ty));
}
pub fn type_is_sequence(ty: t) -> bool {
match get(ty).sty {
ty_estr(_) | ty_evec(_, _) => true,
_ => false
}
}
pub fn type_is_str(ty: t) -> bool {
match get(ty).sty {
ty_estr(_) => true,
_ => false
}
}
pub fn sequence_element_type(cx: ctxt, ty: t) -> t {
match get(ty).sty {
ty_estr(_) => return mk_mach_uint(cx, ast::ty_u8),
ty_evec(mt, _) | ty_unboxed_vec(mt) => return mt.ty,
_ => cx.sess.bug(
~"sequence_element_type called on non-sequence value"),
}
}
pub fn get_element_type(ty: t, i: uint) -> t {
match /*bad*/copy get(ty).sty {
ty_rec(flds) => return flds[i].mt.ty,
ty_tup(ts) => return ts[i],
_ => fail ~"get_element_type called on invalid type"
}
}
pub pure fn type_is_box(ty: t) -> bool {
match get(ty).sty {
ty_box(_) => return true,
_ => return false
}
}
pub pure fn type_is_boxed(ty: t) -> bool {
match get(ty).sty {
ty_box(_) | ty_opaque_box |
ty_evec(_, vstore_box) | ty_estr(vstore_box) => true,
_ => false
}
}
pub pure fn type_is_region_ptr(ty: t) -> bool {
match get(ty).sty {
ty_rptr(_, _) => true,
_ => false
}
}
pub pure fn type_is_slice(ty: t) -> bool {
match get(ty).sty {
ty_evec(_, vstore_slice(_)) | ty_estr(vstore_slice(_)) => true,
_ => return false
}
}
pub pure fn type_is_unique_box(ty: t) -> bool {
match get(ty).sty {
ty_uniq(_) => return true,
_ => return false
}
}
pub pure fn type_is_unsafe_ptr(ty: t) -> bool {
match get(ty).sty {
ty_ptr(_) => return true,
_ => return false
}
}
pub pure fn type_is_vec(ty: t) -> bool {
return match get(ty).sty {
ty_evec(_, _) | ty_unboxed_vec(_) => true,
ty_estr(_) => true,
_ => false
};
}
pub pure fn type_is_unique(ty: t) -> bool {
match get(ty).sty {
ty_uniq(_) => return true,
ty_evec(_, vstore_uniq) => true,
ty_estr(vstore_uniq) => true,
_ => return false
}
}
/*
A scalar type is one that denotes an atomic datum, with no sub-components.
(A ty_ptr is scalar because it represents a non-managed pointer, so its
contents are abstract to rustc.)
*/
pub pure fn type_is_scalar(ty: t) -> bool {
match get(ty).sty {
ty_nil | ty_bool | ty_int(_) | ty_float(_) | ty_uint(_) |
ty_infer(IntVar(_)) | ty_infer(FloatVar(_)) | ty_type |
ty_ptr(_) => true,
_ => false
}
}
pub fn type_is_immediate(ty: t) -> bool {
return type_is_scalar(ty) || type_is_boxed(ty) ||
type_is_unique(ty) || type_is_region_ptr(ty);
}
pub fn type_needs_drop(cx: ctxt, ty: t) -> bool {
match cx.needs_drop_cache.find(ty) {
Some(result) => return result,
None => {/* fall through */ }
}
let mut accum = false;
let result = match /*bad*/copy get(ty).sty {
// scalar types
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_float(_) | ty_uint(_) |
ty_type | ty_ptr(_) | ty_rptr(_, _) |
ty_estr(vstore_fixed(_)) |
ty_estr(vstore_slice(_)) |
ty_evec(_, vstore_slice(_)) |
ty_self => false,
ty_box(_) | ty_uniq(_) |
ty_opaque_box | ty_opaque_closure_ptr(*) |
ty_estr(vstore_uniq) |
ty_estr(vstore_box) |
ty_evec(_, vstore_uniq) |
ty_evec(_, vstore_box) => true,
ty_trait(_, _, vstore_box) |
ty_trait(_, _, vstore_uniq) => true,
ty_trait(_, _, vstore_fixed(_)) |
ty_trait(_, _, vstore_slice(_)) => false,
ty_param(*) | ty_infer(*) | ty_err => true,
ty_evec(mt, vstore_fixed(_)) => type_needs_drop(cx, mt.ty),
ty_unboxed_vec(mt) => type_needs_drop(cx, mt.ty),
ty_rec(flds) => {
for flds.each |f| {
if type_needs_drop(cx, f.mt.ty) { accum = true; }
}
accum
}
ty_struct(did, ref substs) => {
// Any struct with a dtor needs a drop
ty_dtor(cx, did).is_present() || {
for vec::each(ty::struct_fields(cx, did, substs)) |f| {
if type_needs_drop(cx, f.mt.ty) { accum = true; }
}
accum
}
}
ty_tup(elts) => {
for elts.each |m| { if type_needs_drop(cx, *m) { accum = true; } }
accum
}
ty_enum(did, ref substs) => {
let variants = enum_variants(cx, did);
for vec::each(*variants) |variant| {
for variant.args.each |aty| {
// Perform any type parameter substitutions.
let arg_ty = subst(cx, substs, *aty);
if type_needs_drop(cx, arg_ty) { accum = true; }
}
if accum { break; }
}
accum
}
ty_fn(ref fty) => {
match fty.meta.proto {
ast::ProtoBare | ast::ProtoBorrowed => false,
ast::ProtoBox | ast::ProtoUniq => true,
}
}
};
cx.needs_drop_cache.insert(ty, result);
return result;
}
// Some things don't need cleanups during unwinding because the
// task can free them all at once later. Currently only things
// that only contain scalars and shared boxes can avoid unwind
// cleanups.
pub fn type_needs_unwind_cleanup(cx: ctxt, ty: t) -> bool {
match cx.needs_unwind_cleanup_cache.find(ty) {
Some(result) => return result,
None => ()
}
let tycache = new_ty_hash();
let needs_unwind_cleanup =
type_needs_unwind_cleanup_(cx, ty, tycache, false);
cx.needs_unwind_cleanup_cache.insert(ty, needs_unwind_cleanup);
return needs_unwind_cleanup;
}
fn type_needs_unwind_cleanup_(cx: ctxt, ty: t,
tycache: map::HashMap<t, ()>,
encountered_box: bool) -> bool {
// Prevent infinite recursion
match tycache.find(ty) {
Some(_) => return false,
None => { tycache.insert(ty, ()); }
}
let mut encountered_box = encountered_box;
let mut needs_unwind_cleanup = false;
do maybe_walk_ty(ty) |ty| {
let old_encountered_box = encountered_box;
let result = match get(ty).sty {
ty_box(_) | ty_opaque_box => {
encountered_box = true;
true
}
ty_nil | ty_bot | ty_bool |
ty_int(_) | ty_uint(_) | ty_float(_) |
ty_rec(_) | ty_tup(_) | ty_ptr(_) => {
true
}
ty_enum(did, ref substs) => {
for vec::each(*enum_variants(cx, did)) |v| {
for v.args.each |aty| {
let t = subst(cx, substs, *aty);
needs_unwind_cleanup |=
type_needs_unwind_cleanup_(cx, t, tycache,
encountered_box);
}
}
!needs_unwind_cleanup
}
ty_uniq(_) |
ty_estr(vstore_uniq) |
ty_estr(vstore_box) |
ty_evec(_, vstore_uniq) |
ty_evec(_, vstore_box)
=> {
// Once we're inside a box, the annihilator will find
// it and destroy it.
if !encountered_box {
needs_unwind_cleanup = true;
false
} else {
true
}
}
_ => {
needs_unwind_cleanup = true;
false
}
};
encountered_box = old_encountered_box;
result
}
return needs_unwind_cleanup;
}
pub enum Kind { kind_(u32) }
/// can be copied (implicitly or explicitly)
const KIND_MASK_COPY : u32 = 0b000000000000000000000000001_u32;
/// no shared box, borrowed ptr (must imply DURABLE)
const KIND_MASK_OWNED : u32 = 0b000000000000000000000000010_u32;
/// is durable (no borrowed ptrs)
const KIND_MASK_DURABLE : u32 = 0b000000000000000000000000100_u32;
/// is deeply immutable
const KIND_MASK_CONST : u32 = 0b000000000000000000000001000_u32;
/// can be implicitly copied (must imply COPY)
const KIND_MASK_IMPLICIT : u32 = 0b000000000000000000000010000_u32;
/// safe for default mode (subset of KIND_MASK_IMPLICIT)
const KIND_MASK_DEFAULT_MODE : u32 = 0b000000000000000000000100000_u32;
pub fn kind_noncopyable() -> Kind {
kind_(0u32)
}
pub fn kind_copyable() -> Kind {
kind_(KIND_MASK_COPY)
}
pub fn kind_implicitly_copyable() -> Kind {
kind_(KIND_MASK_IMPLICIT | KIND_MASK_COPY)
}
fn kind_safe_for_default_mode() -> Kind {
// similar to implicit copy, but always includes vectors and strings
kind_(KIND_MASK_DEFAULT_MODE | KIND_MASK_IMPLICIT | KIND_MASK_COPY)
}
fn kind_implicitly_sendable() -> Kind {
kind_(KIND_MASK_IMPLICIT | KIND_MASK_COPY | KIND_MASK_OWNED)
}
fn kind_safe_for_default_mode_send() -> Kind {
// similar to implicit copy, but always includes vectors and strings
kind_(KIND_MASK_DEFAULT_MODE | KIND_MASK_IMPLICIT |
KIND_MASK_COPY | KIND_MASK_OWNED)
}
fn kind_owned_copy() -> Kind {
kind_(KIND_MASK_COPY | KIND_MASK_OWNED)
}
fn kind_owned_only() -> Kind {
kind_(KIND_MASK_OWNED)
}
pub fn kind_const() -> Kind {
kind_(KIND_MASK_CONST)
}
fn kind_durable() -> Kind {
kind_(KIND_MASK_DURABLE)
}
fn kind_top() -> Kind {
kind_(0xffffffffu32)
}
fn remove_const(k: Kind) -> Kind {
k - kind_const()
}
fn remove_implicit(k: Kind) -> Kind {
k - kind_(KIND_MASK_IMPLICIT | KIND_MASK_DEFAULT_MODE)
}
fn remove_owned(k: Kind) -> Kind {
k - kind_(KIND_MASK_OWNED)
}
fn remove_durable_owned(k: Kind) -> Kind {
k - kind_(KIND_MASK_DURABLE) - kind_(KIND_MASK_OWNED)
}
fn remove_copyable(k: Kind) -> Kind {
k - kind_(KIND_MASK_COPY | KIND_MASK_DEFAULT_MODE)
}
impl Kind : ops::BitAnd<Kind,Kind> {
pure fn bitand(&self, other: &Kind) -> Kind {
unsafe {
lower_kind(*self, *other)
}
}
}
impl Kind : ops::BitOr<Kind,Kind> {
pure fn bitor(&self, other: &Kind) -> Kind {
unsafe {
raise_kind(*self, *other)
}
}
}
impl Kind : ops::Sub<Kind,Kind> {
pure fn sub(&self, other: &Kind) -> Kind {
unsafe {
kind_(**self & !**other)
}
}
}
// Using these query functions is preferable to direct comparison or matching
// against the kind constants, as we may modify the kind hierarchy in the
// future.
pub pure fn kind_can_be_implicitly_copied(k: Kind) -> bool {
*k & KIND_MASK_IMPLICIT == KIND_MASK_IMPLICIT
}
pub pure fn kind_is_safe_for_default_mode(k: Kind) -> bool {
*k & KIND_MASK_DEFAULT_MODE == KIND_MASK_DEFAULT_MODE
}
pub pure fn kind_can_be_copied(k: Kind) -> bool {
*k & KIND_MASK_COPY == KIND_MASK_COPY
}
pub pure fn kind_can_be_sent(k: Kind) -> bool {
*k & KIND_MASK_OWNED == KIND_MASK_OWNED
}
pub pure fn kind_is_durable(k: Kind) -> bool {
*k & KIND_MASK_DURABLE == KIND_MASK_DURABLE
}
pub fn meta_kind(p: FnMeta) -> Kind {
match p.proto { // XXX consider the kind bounds!
ast::ProtoBare => {
kind_safe_for_default_mode_send() | kind_const() | kind_durable()
}
ast::ProtoBorrowed => {
kind_noncopyable() | kind_(KIND_MASK_DEFAULT_MODE)
}
ast::ProtoBox => {
kind_safe_for_default_mode() | kind_durable()
}
ast::ProtoUniq => {
kind_owned_copy() | kind_durable()
}
}
}
pub fn kind_lteq(a: Kind, b: Kind) -> bool {
*a & *b == *a
}
fn lower_kind(a: Kind, b: Kind) -> Kind {
kind_(*a & *b)
}
fn raise_kind(a: Kind, b: Kind) -> Kind {
kind_(*a | *b)
}
#[test]
fn test_kinds() {
// The kind "lattice" is defined by the subset operation on the
// set of permitted operations.
assert kind_lteq(kind_owned_copy(), kind_owned_copy());
assert kind_lteq(kind_copyable(), kind_owned_copy());
assert kind_lteq(kind_copyable(), kind_copyable());
assert kind_lteq(kind_noncopyable(), kind_owned_copy());
assert kind_lteq(kind_noncopyable(), kind_copyable());
assert kind_lteq(kind_noncopyable(), kind_noncopyable());
assert kind_lteq(kind_copyable(), kind_implicitly_copyable());
assert kind_lteq(kind_copyable(), kind_implicitly_sendable());
assert kind_lteq(kind_owned_copy(), kind_implicitly_sendable());
assert !kind_lteq(kind_owned_copy(), kind_implicitly_copyable());
assert !kind_lteq(kind_copyable(), kind_owned_only());
}
// Return the most permissive kind that a composite object containing a field
// with the given mutability can have.
// This is used to prevent objects containing mutable state from being
// implicitly copied and to compute whether things have const kind.
fn mutability_kind(m: mutability) -> Kind {
match (m) {
m_mutbl => remove_const(remove_implicit(kind_top())),
m_const => remove_implicit(kind_top()),
m_imm => kind_top()
}
}
fn mutable_type_kind(cx: ctxt, ty: mt) -> Kind {
lower_kind(mutability_kind(ty.mutbl), type_kind(cx, ty.ty))
}
pub fn type_kind(cx: ctxt, ty: t) -> Kind {
type_kind_ext(cx, ty, false)
}
// If `allow_ty_var` is true, then this is a conservative assumption; we
// assume that type variables *do* have all kinds.
pub fn type_kind_ext(cx: ctxt, ty: t, allow_ty_var: bool) -> Kind {
match cx.kind_cache.find(ty) {
Some(result) => return result,
None => {/* fall through */ }
}
// Insert a default in case we loop back on self recursively.
cx.kind_cache.insert(ty, kind_top());
let mut result = match /*bad*/copy get(ty).sty {
// Scalar and unique types are sendable, constant, and owned
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_uint(_) | ty_float(_) |
ty_ptr(_) => {
kind_safe_for_default_mode_send() | kind_const() | kind_durable()
}
// Implicit copyability of strs is configurable
ty_estr(vstore_uniq) => {
if cx.vecs_implicitly_copyable {
kind_implicitly_sendable() | kind_const() | kind_durable()
} else {
kind_owned_copy() | kind_const() | kind_durable()
}
}
// functions depend on the protocol
ty_fn(ref f) => meta_kind(f.meta),
// Those with refcounts raise noncopyable to copyable,
// lower sendable to copyable. Therefore just set result to copyable.
ty_box(tm) => {
remove_owned(mutable_type_kind(cx, tm) | kind_safe_for_default_mode())
}
// XXX: This is wrong for ~Trait and &Trait!
ty_trait(_, _, _) => kind_safe_for_default_mode() | kind_durable(),
// Static region pointers are copyable and sendable, but not owned
ty_rptr(re_static, mt) =>
kind_safe_for_default_mode() | mutable_type_kind(cx, mt),
ty_rptr(_, mt) => {
if mt.mutbl == ast::m_mutbl {
// Mutable region pointers are noncopyable
kind_noncopyable()
} else {
// General region pointers are copyable but NOT owned nor sendable
kind_safe_for_default_mode()
}
}
// Unique boxes and vecs have the kind of their contained type,
// but unique boxes can't be implicitly copyable.
ty_uniq(tm) => remove_implicit(mutable_type_kind(cx, tm)),
// Implicit copyability of vecs is configurable
ty_evec(tm, vstore_uniq) => {
if cx.vecs_implicitly_copyable {
mutable_type_kind(cx, tm)
} else {
remove_implicit(mutable_type_kind(cx, tm))
}
}
// Slices, refcounted evecs are copyable; uniques depend on the their
// contained type, but aren't implicitly copyable. Fixed vectors have
// the kind of the element they contain, taking mutability into account.
ty_evec(tm, vstore_box) => {
remove_owned(kind_safe_for_default_mode() | mutable_type_kind(cx, tm))
}
ty_evec(tm, vstore_slice(re_static)) => {
kind_safe_for_default_mode() | mutable_type_kind(cx, tm)
}
ty_evec(tm, vstore_slice(_)) => {
remove_durable_owned(kind_safe_for_default_mode() |
mutable_type_kind(cx, tm))
}
ty_evec(tm, vstore_fixed(_)) => {
mutable_type_kind(cx, tm)
}
// All estrs are copyable; uniques and interiors are sendable.
ty_estr(vstore_box) => {
kind_safe_for_default_mode() | kind_const() | kind_durable()
}
ty_estr(vstore_slice(re_static)) => {
kind_safe_for_default_mode() | kind_owned_copy() | kind_const()
}
ty_estr(vstore_slice(_)) => {
kind_safe_for_default_mode() | kind_const()
}
ty_estr(vstore_fixed(_)) => {
kind_safe_for_default_mode_send() | kind_const() | kind_durable()
}
// Records lower to the lowest of their members.
ty_rec(flds) => {
let mut lowest = kind_top();
for flds.each |f| {
lowest = lower_kind(lowest, mutable_type_kind(cx, f.mt));
}
lowest
}
ty_struct(did, ref substs) => {
// Structs are sendable if all their fields are sendable,
// likewise for copyable...
// also factor out this code, copied from the records case
let mut lowest = kind_top();
let flds = struct_fields(cx, did, substs);
for flds.each |f| {
lowest = lower_kind(lowest, mutable_type_kind(cx, f.mt));
}
// ...but structs with dtors are never copyable (they can be
// sendable)
if ty::has_dtor(cx, did) {
lowest = remove_copyable(lowest);
}
lowest
}
// Tuples lower to the lowest of their members.
ty_tup(tys) => {
let mut lowest = kind_top();
for tys.each |ty| { lowest = lower_kind(lowest, type_kind(cx, *ty)); }
lowest
}
// Enums lower to the lowest of their variants.
ty_enum(did, ref substs) => {
let mut lowest = kind_top();
let variants = enum_variants(cx, did);
if variants.is_empty() {
lowest = kind_owned_only() | kind_durable();
} else {
for variants.each |variant| {
for variant.args.each |aty| {
// Perform any type parameter substitutions.
let arg_ty = subst(cx, substs, *aty);
lowest = lower_kind(lowest, type_kind(cx, arg_ty));
if lowest == kind_noncopyable() { break; }
}
}
}
lowest
}
ty_param(p) => {
param_bounds_to_kind(cx.ty_param_bounds.get(p.def_id.node))
}
// self is a special type parameter that can only appear in traits; it
// is never bounded in any way, hence it has the bottom kind.
ty_self => kind_noncopyable(),
ty_infer(_) => {
if allow_ty_var {
kind_top()
} else {
cx.sess.bug(~"Asked to compute kind of a type variable")
}
}
ty_type | ty_opaque_closure_ptr(_)
| ty_opaque_box | ty_unboxed_vec(_) | ty_err => {
cx.sess.bug(~"Asked to compute kind of fictitious type");
}
};
// arbitrary threshold to prevent by-value copying of big records
if kind_is_safe_for_default_mode(result) {
if type_size(cx, ty) > 4 {
result = result - kind_(KIND_MASK_DEFAULT_MODE);
}
}
cx.kind_cache.insert(ty, result);
return result;
}
pub fn type_implicitly_moves(cx: ctxt, ty: t) -> bool {
let kind = type_kind(cx, ty);
!(kind_can_be_copied(kind) && kind_can_be_implicitly_copied(kind))
}
/// gives a rough estimate of how much space it takes to represent
/// an instance of `ty`. Used for the mode transition.
fn type_size(cx: ctxt, ty: t) -> uint {
match /*bad*/copy get(ty).sty {
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_uint(_) | ty_float(_) |
ty_ptr(_) | ty_box(_) | ty_uniq(_) | ty_estr(vstore_uniq) |
ty_trait(*) | ty_rptr(*) | ty_evec(_, vstore_uniq) |
ty_evec(_, vstore_box) | ty_estr(vstore_box) => {
1
}
ty_evec(_, vstore_slice(_)) |
ty_estr(vstore_slice(_)) |
ty_fn(_) => {
2
}
ty_evec(t, vstore_fixed(n)) => {
type_size(cx, t.ty) * n
}
ty_estr(vstore_fixed(n)) => {
n
}
ty_rec(flds) => {
flds.foldl(0, |s, f| *s + type_size(cx, f.mt.ty))
}
ty_struct(did, ref substs) => {
let flds = struct_fields(cx, did, substs);
flds.foldl(0, |s, f| *s + type_size(cx, f.mt.ty))
}
ty_tup(tys) => {
tys.foldl(0, |s, t| *s + type_size(cx, *t))
}
ty_enum(did, ref substs) => {
let variants = substd_enum_variants(cx, did, substs);
variants.foldl( // find max size of any variant
0,
|m, v| uint::max(*m,
// find size of this variant:
v.args.foldl(0, |s, a| *s + type_size(cx, *a))))
}
ty_param(_) | ty_self => {
1
}
ty_infer(_) => {
cx.sess.bug(~"Asked to compute kind of a type variable");
}
ty_type | ty_opaque_closure_ptr(_)
| ty_opaque_box | ty_unboxed_vec(_) | ty_err => {
cx.sess.bug(~"Asked to compute kind of fictitious type");
}
}
}
// True if instantiating an instance of `r_ty` requires an instance of `r_ty`.
pub fn is_instantiable(cx: ctxt, r_ty: t) -> bool {
fn type_requires(cx: ctxt, seen: @mut ~[def_id],
r_ty: t, ty: t) -> bool {
debug!("type_requires(%s, %s)?",
::util::ppaux::ty_to_str(cx, r_ty),
::util::ppaux::ty_to_str(cx, ty));
let r = {
get(r_ty).sty == get(ty).sty ||
subtypes_require(cx, seen, r_ty, ty)
};
debug!("type_requires(%s, %s)? %b",
::util::ppaux::ty_to_str(cx, r_ty),
::util::ppaux::ty_to_str(cx, ty),
r);
return r;
}
fn subtypes_require(cx: ctxt, seen: @mut ~[def_id],
r_ty: t, ty: t) -> bool {
debug!("subtypes_require(%s, %s)?",
::util::ppaux::ty_to_str(cx, r_ty),
::util::ppaux::ty_to_str(cx, ty));
let r = match /*bad*/copy get(ty).sty {
ty_nil |
ty_bot |
ty_bool |
ty_int(_) |
ty_uint(_) |
ty_float(_) |
ty_estr(_) |
ty_fn(_) |
ty_infer(_) |
ty_err |
ty_param(_) |
ty_self |
ty_type |
ty_opaque_box |
ty_opaque_closure_ptr(_) |
ty_evec(_, _) |
ty_unboxed_vec(_) => {
false
}
ty_box(mt) |
ty_uniq(mt) |
ty_rptr(_, mt) => {
return type_requires(cx, seen, r_ty, mt.ty);
}
ty_ptr(*) => {
false // unsafe ptrs can always be NULL
}
ty_rec(fields) => {
do vec::any(fields) |field| {
type_requires(cx, seen, r_ty, field.mt.ty)
}
}
ty_trait(_, _, _) => {
false
}
ty_struct(ref did, _) if vec::contains(*seen, did) => {
false
}
ty_struct(did, ref substs) => {
seen.push(did);
let r = vec::any(struct_fields(cx, did, substs),
|f| type_requires(cx, seen, r_ty, f.mt.ty));
seen.pop();
r
}
ty_tup(ts) => {
vec::any(ts, |t| type_requires(cx, seen, r_ty, *t))
}
ty_enum(ref did, _) if vec::contains(*seen, did) => {
false
}
ty_enum(did, ref substs) => {
seen.push(did);
let vs = enum_variants(cx, did);
let r = vec::len(*vs) > 0u && vec::all(*vs, |variant| {
vec::any(variant.args, |aty| {
let sty = subst(cx, substs, *aty);
type_requires(cx, seen, r_ty, sty)
})
});
seen.pop();
r
}
};
debug!("subtypes_require(%s, %s)? %b",
::util::ppaux::ty_to_str(cx, r_ty),
::util::ppaux::ty_to_str(cx, ty),
r);
return r;
}
let seen = @mut ~[];
!subtypes_require(cx, seen, r_ty, r_ty)
}
pub fn type_structurally_contains(cx: ctxt,
ty: t,
test: fn(x: &sty) -> bool)
-> bool {
let sty = &get(ty).sty;
debug!("type_structurally_contains: %s",
::util::ppaux::ty_to_str(cx, ty));
if test(sty) { return true; }
match /*bad*/copy *sty {
ty_enum(did, ref substs) => {
for vec::each(*enum_variants(cx, did)) |variant| {
for variant.args.each |aty| {
let sty = subst(cx, substs, *aty);
if type_structurally_contains(cx, sty, test) { return true; }
}
}
return false;
}
ty_rec(fields) => {
for fields.each |field| {
if type_structurally_contains(cx, field.mt.ty, test) {
return true;
}
}
return false;
}
ty_struct(did, ref substs) => {
for lookup_struct_fields(cx, did).each |field| {
let ft = lookup_field_type(cx, did, field.id, substs);
if type_structurally_contains(cx, ft, test) { return true; }
}
return false;
}
ty_tup(ts) => {
for ts.each |tt| {
if type_structurally_contains(cx, *tt, test) { return true; }
}
return false;
}
ty_evec(mt, vstore_fixed(_)) => {
return type_structurally_contains(cx, mt.ty, test);
}
_ => return false
}
}
pub fn type_structurally_contains_uniques(cx: ctxt, ty: t) -> bool {
return type_structurally_contains(cx, ty, |sty| {
match *sty {
ty_uniq(_) |
ty_evec(_, vstore_uniq) |
ty_estr(vstore_uniq) => true,
_ => false,
}
});
}
pub fn type_is_integral(ty: t) -> bool {
match get(ty).sty {
ty_infer(IntVar(_)) | ty_int(_) | ty_uint(_) | ty_bool => true,
_ => false
}
}
pub fn type_is_char(ty: t) -> bool {
match get(ty).sty {
ty_int(ty_char) => true,
_ => false
}
}
pub fn type_is_fp(ty: t) -> bool {
match get(ty).sty {
ty_infer(FloatVar(_)) | ty_float(_) => true,
_ => false
}
}
pub fn type_is_numeric(ty: t) -> bool {
return type_is_integral(ty) || type_is_fp(ty);
}
pub fn type_is_signed(ty: t) -> bool {
match get(ty).sty {
ty_int(_) => true,
_ => false
}
}
// Whether a type is Plain Old Data -- meaning it does not contain pointers
// that the cycle collector might care about.
pub fn type_is_pod(cx: ctxt, ty: t) -> bool {
let mut result = true;
match /*bad*/copy get(ty).sty {
// Scalar types
ty_nil | ty_bot | ty_bool | ty_int(_) | ty_float(_) | ty_uint(_) |
ty_type | ty_ptr(_) => result = true,
// Boxed types
ty_box(_) | ty_uniq(_) | ty_fn(_) |
ty_estr(vstore_uniq) | ty_estr(vstore_box) |
ty_evec(_, vstore_uniq) | ty_evec(_, vstore_box) |
ty_trait(_, _, _) | ty_rptr(_,_) | ty_opaque_box => result = false,
// Structural types
ty_enum(did, ref substs) => {
let variants = enum_variants(cx, did);
for vec::each(*variants) |variant| {
let tup_ty = mk_tup(cx, /*bad*/copy variant.args);
// Perform any type parameter substitutions.
let tup_ty = subst(cx, substs, tup_ty);
if !type_is_pod(cx, tup_ty) { result = false; }
}
}
ty_rec(flds) => {
for flds.each |f| {
if !type_is_pod(cx, f.mt.ty) { result = false; }
}
}
ty_tup(elts) => {
for elts.each |elt| { if !type_is_pod(cx, *elt) { result = false; } }
}
ty_estr(vstore_fixed(_)) => result = true,
ty_evec(mt, vstore_fixed(_)) | ty_unboxed_vec(mt) => {
result = type_is_pod(cx, mt.ty);
}
ty_param(_) => result = false,
ty_opaque_closure_ptr(_) => result = true,
ty_struct(did, ref substs) => {
result = vec::any(lookup_struct_fields(cx, did), |f| {
let fty = ty::lookup_item_type(cx, f.id);
let sty = subst(cx, substs, fty.ty);
type_is_pod(cx, sty)
});
}
ty_estr(vstore_slice(*)) | ty_evec(_, vstore_slice(*)) => {
result = false;
}
ty_infer(*) | ty_self(*) | ty_err => {
cx.sess.bug(~"non concrete type in type_is_pod");
}
}
return result;
}
pub fn type_is_enum(ty: t) -> bool {
match get(ty).sty {
ty_enum(_, _) => return true,
_ => return false
}
}
// Whether a type is enum like, that is a enum type with only nullary
// constructors
pub fn type_is_c_like_enum(cx: ctxt, ty: t) -> bool {
match get(ty).sty {
ty_enum(did, _) => {
let variants = enum_variants(cx, did);
let some_n_ary = vec::any(*variants, |v| vec::len(v.args) > 0u);
return !some_n_ary;
}
_ => return false
}
}
pub fn type_param(ty: t) -> Option<uint> {
match get(ty).sty {
ty_param(p) => return Some(p.idx),
_ => {/* fall through */ }
}
return None;
}
// Returns the type and mutability of *t.
//
// The parameter `explicit` indicates if this is an *explicit* dereference.
// Some types---notably unsafe ptrs---can only be dereferenced explicitly.
pub fn deref(cx: ctxt, t: t, explicit: bool) -> Option<mt> {
deref_sty(cx, &get(t).sty, explicit)
}
pub fn deref_sty(cx: ctxt, sty: &sty, explicit: bool) -> Option<mt> {
match *sty {
ty_rptr(_, mt) | ty_box(mt) | ty_uniq(mt) => {
Some(mt)
}
ty_ptr(mt) if explicit => {
Some(mt)
}
ty_enum(did, ref substs) => {
let variants = enum_variants(cx, did);
if vec::len(*variants) == 1u && vec::len(variants[0].args) == 1u {
let v_t = subst(cx, substs, variants[0].args[0]);
Some(mt {ty: v_t, mutbl: ast::m_imm})
} else {
None
}
}
ty_struct(did, ref substs) => {
let fields = struct_fields(cx, did, substs);
if fields.len() == 1 && fields[0].ident ==
syntax::parse::token::special_idents::unnamed_field {
Some(mt {ty: fields[0].mt.ty, mutbl: ast::m_imm})
} else {
None
}
}
_ => None
}
}
pub fn type_autoderef(cx: ctxt, t: t) -> t {
let mut t = t;
loop {
match deref(cx, t, false) {
None => return t,
Some(mt) => t = mt.ty
}
}
}
// Returns the type and mutability of t[i]
pub fn index(cx: ctxt, t: t) -> Option<mt> {
index_sty(cx, &get(t).sty)
}
pub fn index_sty(cx: ctxt, sty: &sty) -> Option<mt> {
match *sty {
ty_evec(mt, _) => Some(mt),
ty_estr(_) => Some(mt {ty: mk_u8(cx), mutbl: ast::m_imm}),
_ => None
}
}
impl bound_region : to_bytes::IterBytes {
pure fn iter_bytes(&self, +lsb0: bool, f: to_bytes::Cb) {
match *self {
ty::br_self => 0u8.iter_bytes(lsb0, f),
ty::br_anon(ref idx) =>
to_bytes::iter_bytes_2(&1u8, idx, lsb0, f),
ty::br_named(ref ident) =>
to_bytes::iter_bytes_2(&2u8, ident, lsb0, f),
ty::br_cap_avoid(ref id, ref br) =>
to_bytes::iter_bytes_3(&3u8, id, br, lsb0, f),
ty::br_fresh(ref x) =>
to_bytes::iter_bytes_2(&4u8, x, lsb0, f)
}
}
}
impl Region : to_bytes::IterBytes {
pure fn iter_bytes(&self, +lsb0: bool, f: to_bytes::Cb) {
match *self {
re_bound(ref br) =>
to_bytes::iter_bytes_2(&0u8, br, lsb0, f),
re_free(ref id, ref br) =>
to_bytes::iter_bytes_3(&1u8, id, br, lsb0, f),
re_scope(ref id) =>
to_bytes::iter_bytes_2(&2u8, id, lsb0, f),
re_infer(ref id) =>
to_bytes::iter_bytes_2(&3u8, id, lsb0, f),
re_static => 4u8.iter_bytes(lsb0, f)
}
}
}
impl vstore : to_bytes::IterBytes {
pure fn iter_bytes(&self, +lsb0: bool, f: to_bytes::Cb) {
match *self {
vstore_fixed(ref u) =>
to_bytes::iter_bytes_2(&0u8, u, lsb0, f),
vstore_uniq => 1u8.iter_bytes(lsb0, f),
vstore_box => 2u8.iter_bytes(lsb0, f),
vstore_slice(ref r) =>
to_bytes::iter_bytes_2(&3u8, r, lsb0, f),
}
}
}
impl substs : to_bytes::IterBytes {
pure fn iter_bytes(&self, +lsb0: bool, f: to_bytes::Cb) {
to_bytes::iter_bytes_3(&self.self_r,
&self.self_ty,
&self.tps, lsb0, f)
}
}
impl mt : to_bytes::IterBytes {
pure fn iter_bytes(&self, +lsb0: bool, f: to_bytes::Cb) {
to_bytes::iter_bytes_2(&self.ty,
&self.mutbl, lsb0, f)
}
}
impl field : to_bytes::IterBytes {
pure fn iter_bytes(&self, +lsb0: bool, f: to_bytes::Cb) {
to_bytes::iter_bytes_2(&self.ident,
&self.mt, lsb0, f)
}
}
impl arg : to_bytes::IterBytes {
pure fn iter_bytes(&self, +lsb0: bool, f: to_bytes::Cb) {
to_bytes::iter_bytes_2(&self.mode,
&self.ty, lsb0, f)
}
}
impl FnMeta : to_bytes::IterBytes {
pure fn iter_bytes(&self, +lsb0: bool, f: to_bytes::Cb) {
to_bytes::iter_bytes_5(&self.purity,
&self.proto,
&self.onceness,
&self.region,
&self.bounds,
lsb0, f);
}
}
impl FnSig : to_bytes::IterBytes {
pure fn iter_bytes(&self, +lsb0: bool, f: to_bytes::Cb) {
to_bytes::iter_bytes_2(&self.inputs,
&self.output,
lsb0, f);
}
}
impl sty : to_bytes::IterBytes {
pure fn iter_bytes(&self, +lsb0: bool, f: to_bytes::Cb) {
match *self {
ty_nil => 0u8.iter_bytes(lsb0, f),
ty_bool => 1u8.iter_bytes(lsb0, f),
ty_int(ref t) =>
to_bytes::iter_bytes_2(&2u8, t, lsb0, f),
ty_uint(ref t) =>
to_bytes::iter_bytes_2(&3u8, t, lsb0, f),
ty_float(ref t) =>
to_bytes::iter_bytes_2(&4u8, t, lsb0, f),
ty_estr(ref v) =>
to_bytes::iter_bytes_2(&5u8, v, lsb0, f),
ty_enum(ref did, ref substs) =>
to_bytes::iter_bytes_3(&6u8, did, substs, lsb0, f),
ty_box(ref mt) =>
to_bytes::iter_bytes_2(&7u8, mt, lsb0, f),
ty_evec(ref mt, ref v) =>
to_bytes::iter_bytes_3(&8u8, mt, v, lsb0, f),
ty_unboxed_vec(ref mt) =>
to_bytes::iter_bytes_2(&9u8, mt, lsb0, f),
ty_tup(ref ts) =>
to_bytes::iter_bytes_2(&10u8, ts, lsb0, f),
ty_rec(ref fs) =>
to_bytes::iter_bytes_2(&11u8, fs, lsb0, f),
ty_fn(ref ft) =>
to_bytes::iter_bytes_2(&12u8, ft, lsb0, f),
ty_self => 13u8.iter_bytes(lsb0, f),
ty_infer(ref v) =>
to_bytes::iter_bytes_2(&14u8, v, lsb0, f),
ty_param(ref p) =>
to_bytes::iter_bytes_2(&15u8, p, lsb0, f),
ty_type => 16u8.iter_bytes(lsb0, f),
ty_bot => 17u8.iter_bytes(lsb0, f),
ty_ptr(ref mt) =>
to_bytes::iter_bytes_2(&18u8, mt, lsb0, f),
ty_uniq(ref mt) =>
to_bytes::iter_bytes_2(&19u8, mt, lsb0, f),
ty_trait(ref did, ref substs, ref v) =>
to_bytes::iter_bytes_4(&20u8, did, substs, v, lsb0, f),
ty_opaque_closure_ptr(ref ck) =>
to_bytes::iter_bytes_2(&21u8, ck, lsb0, f),
ty_opaque_box => 22u8.iter_bytes(lsb0, f),
ty_struct(ref did, ref substs) =>
to_bytes::iter_bytes_3(&23u8, did, substs, lsb0, f),
ty_rptr(ref r, ref mt) =>
to_bytes::iter_bytes_3(&24u8, r, mt, lsb0, f),
ty_err => 25u8.iter_bytes(lsb0, f)
}
}
}
pub fn br_hashmap<V:Copy>() -> HashMap<bound_region, V> {
map::HashMap()
}
pub fn node_id_to_type(cx: ctxt, id: ast::node_id) -> t {
//io::println(fmt!("%?/%?", id, cx.node_types.size()));
match smallintmap::find(*cx.node_types, id as uint) {
Some(t) => t,
None => cx.sess.bug(
fmt!("node_id_to_type: no type for node `%s`",
ast_map::node_id_to_str(cx.items, id,
cx.sess.parse_sess.interner)))
}
}
pub fn node_id_to_type_params(cx: ctxt, id: ast::node_id) -> ~[t] {
match cx.node_type_substs.find(id) {
None => return ~[],
Some(ts) => return ts
}
}
fn node_id_has_type_params(cx: ctxt, id: ast::node_id) -> bool {
return cx.node_type_substs.contains_key(id);
}
// Type accessors for substructures of types
pub fn ty_fn_args(fty: t) -> ~[arg] {
match get(fty).sty {
ty_fn(ref f) => /*bad*/copy f.sig.inputs,
_ => fail ~"ty_fn_args() called on non-fn type"
}
}
pub fn ty_fn_proto(fty: t) -> Proto {
match get(fty).sty {
ty_fn(ref f) => f.meta.proto,
_ => fail ~"ty_fn_proto() called on non-fn type"
}
}
pub fn ty_fn_purity(fty: t) -> ast::purity {
match get(fty).sty {
ty_fn(ref f) => f.meta.purity,
_ => fail ~"ty_fn_purity() called on non-fn type"
}
}
pub pure fn ty_fn_ret(fty: t) -> t {
match get(fty).sty {
ty_fn(ref f) => f.sig.output,
_ => fail ~"ty_fn_ret() called on non-fn type"
}
}
fn is_fn_ty(fty: t) -> bool {
match get(fty).sty {
ty_fn(_) => true,
_ => false
}
}
pub pure fn ty_vstore(ty: t) -> vstore {
match get(ty).sty {
ty_evec(_, vstore) => vstore,
ty_estr(vstore) => vstore,
ref s => fail fmt!("ty_vstore() called on invalid sty: %?", s)
}
}
pub fn ty_region(ty: t) -> Region {
match get(ty).sty {
ty_rptr(r, _) => r,
ty_evec(_, vstore_slice(r)) => r,
ty_estr(vstore_slice(r)) => r,
ref s => fail fmt!("ty_region() invoked on in appropriate ty: %?", (*s))
}
}
pub fn replace_fn_return_type(tcx: ctxt, fn_type: t, ret_type: t) -> t {
/*!
*
* Returns a new function type based on `fn_type` but returning a value of
* type `ret_type` instead. */
match ty::get(fn_type).sty {
ty::ty_fn(ref fty) => {
ty::mk_fn(tcx, FnTyBase {
meta: fty.meta,
sig: FnSig {output: ret_type, ..copy fty.sig}
})
}
_ => {
tcx.sess.bug(fmt!(
"replace_fn_ret() invoked with non-fn-type: %s",
ty_to_str(tcx, fn_type)));
}
}
}
// Returns a vec of all the input and output types of fty.
pub fn tys_in_fn_sig(sig: &FnSig) -> ~[t] {
vec::append_one(sig.inputs.map(|a| a.ty), sig.output)
}
// Just checks whether it's a fn that returns bool,
// not its purity.
pub fn is_pred_ty(fty: t) -> bool {
is_fn_ty(fty) && type_is_bool(ty_fn_ret(fty))
}
// Type accessors for AST nodes
pub fn block_ty(cx: ctxt, b: &ast::blk) -> t {
return node_id_to_type(cx, b.node.id);
}
// Returns the type of a pattern as a monotype. Like @expr_ty, this function
// doesn't provide type parameter substitutions.
pub fn pat_ty(cx: ctxt, pat: @ast::pat) -> t {
return node_id_to_type(cx, pat.id);
}
// Returns the type of an expression as a monotype.
//
// NB: This type doesn't provide type parameter substitutions; e.g. if you
// ask for the type of "id" in "id(3)", it will return "fn(&int) -> int"
// instead of "fn(t) -> T with T = int". If this isn't what you want, see
// expr_ty_params_and_ty() below.
pub fn expr_ty(cx: ctxt, expr: @ast::expr) -> t {
return node_id_to_type(cx, expr.id);
}
pub fn expr_ty_params_and_ty(cx: ctxt,
expr: @ast::expr)
-> {params: ~[t], ty: t} {
return {params: node_id_to_type_params(cx, expr.id),
ty: node_id_to_type(cx, expr.id)};
}
pub fn expr_has_ty_params(cx: ctxt, expr: @ast::expr) -> bool {
return node_id_has_type_params(cx, expr.id);
}
pub fn method_call_bounds(tcx: ctxt, method_map: typeck::method_map,
id: ast::node_id)
-> Option<@~[param_bounds]> {
do method_map.find(id).map |method| {
match method.origin {
typeck::method_static(did) => {
// n.b.: When we encode impl methods, the bounds
// that we encode include both the impl bounds
// and then the method bounds themselves...
ty::lookup_item_type(tcx, did).bounds
}
typeck::method_param(typeck::method_param {
trait_id: trt_id,
method_num: n_mth, _}) |
typeck::method_trait(trt_id, n_mth, _) |
typeck::method_self(trt_id, n_mth) |
typeck::method_super(trt_id, n_mth) => {
// ...trait methods bounds, in contrast, include only the
// method bounds, so we must preprend the tps from the
// trait itself. This ought to be harmonized.
let trt_bounds =
ty::lookup_item_type(tcx, trt_id).bounds;
let mth = /*bad*/copy ty::trait_methods(tcx, trt_id)[n_mth];
@(vec::append(/*bad*/copy *trt_bounds, *mth.tps))
}
}
}
}
fn resolve_expr(tcx: ctxt, expr: @ast::expr) -> ast::def {
match tcx.def_map.find(expr.id) {
Some(def) => def,
None => {
tcx.sess.span_bug(expr.span, fmt!(
"No def-map entry for expr %?", expr.id));
}
}
}
pub fn expr_is_lval(tcx: ctxt,
method_map: typeck::method_map,
e: @ast::expr) -> bool {
match expr_kind(tcx, method_map, e) {
LvalueExpr => true,
RvalueDpsExpr | RvalueDatumExpr | RvalueStmtExpr => false
}
}
/// We categorize expressions into three kinds. The distinction between
/// lvalue/rvalue is fundamental to the language. The distinction between the
/// two kinds of rvalues is an artifact of trans which reflects how we will
/// generate code for that kind of expression. See trans/expr.rs for more
/// information.
pub enum ExprKind {
LvalueExpr,
RvalueDpsExpr,
RvalueDatumExpr,
RvalueStmtExpr
}
pub fn expr_kind(tcx: ctxt,
method_map: typeck::method_map,
expr: @ast::expr) -> ExprKind {
if method_map.contains_key(expr.id) {
// Overloaded operations are generally calls, and hence they are
// generated via DPS. However, assign_op (e.g., `x += y`) is an
// exception, as its result is always unit.
return match expr.node {
ast::expr_assign_op(*) => RvalueStmtExpr,
_ => RvalueDpsExpr
};
}
match expr.node {
ast::expr_path(*) => {
match resolve_expr(tcx, expr) {
ast::def_fn(*) | ast::def_static_method(*) |
ast::def_variant(*) | ast::def_struct(*) => RvalueDpsExpr,
// Note: there is actually a good case to be made that
// def_args, particularly those of immediate type, ought to
// considered rvalues.
ast::def_const(*) |
ast::def_binding(*) |
ast::def_upvar(*) |
ast::def_arg(*) |
ast::def_local(*) |
ast::def_self(*) => LvalueExpr,
move def => {
tcx.sess.span_bug(expr.span, fmt!(
"Uncategorized def for expr %?: %?",
expr.id, def));
}
}
}
ast::expr_unary(ast::deref, _) |
ast::expr_field(*) |
ast::expr_index(*) => {
LvalueExpr
}
ast::expr_call(*) |
ast::expr_method_call(*) |
ast::expr_rec(*) |
ast::expr_struct(*) |
ast::expr_tup(*) |
ast::expr_if(*) |
ast::expr_match(*) |
ast::expr_fn(*) |
ast::expr_fn_block(*) |
ast::expr_loop_body(*) |
ast::expr_do_body(*) |
ast::expr_block(*) |
ast::expr_copy(*) |
ast::expr_unary_move(*) |
ast::expr_repeat(*) |
ast::expr_lit(@ast::spanned {node: lit_str(_), _}) |
ast::expr_vstore(_, ast::expr_vstore_slice) |
ast::expr_vstore(_, ast::expr_vstore_mut_slice) |
ast::expr_vstore(_, ast::expr_vstore_fixed(_)) |
ast::expr_vec(*) => {
RvalueDpsExpr
}
ast::expr_cast(*) => {
match smallintmap::find(*tcx.node_types, expr.id as uint) {
Some(t) => {
if ty::type_is_immediate(t) {
RvalueDatumExpr
} else {
RvalueDpsExpr
}
}
None => {
// Technically, it should not happen that the expr is not
// present within the table. However, it DOES happen
// during type check, because the final types from the
// expressions are not yet recorded in the tcx. At that
// time, though, we are only interested in knowing lvalue
// vs rvalue. It would be better to base this decision on
// the AST type in cast node---but (at the time of this
// writing) it's not easy to distinguish casts to traits
// from other casts based on the AST. This should be
// easier in the future, when casts to traits would like
// like @Foo, ~Foo, or &Foo.
RvalueDatumExpr
}
}
}
ast::expr_break(*) |
ast::expr_again(*) |
ast::expr_ret(*) |
ast::expr_log(*) |
ast::expr_fail(*) |
ast::expr_assert(*) |
ast::expr_while(*) |
ast::expr_loop(*) |
ast::expr_assign(*) |
ast::expr_swap(*) |
ast::expr_assign_op(*) => {
RvalueStmtExpr
}
ast::expr_lit(_) | // Note: lit_str is carved out above
ast::expr_unary(*) |
ast::expr_addr_of(*) |
ast::expr_binary(*) |
ast::expr_vstore(_, ast::expr_vstore_box) |
ast::expr_vstore(_, ast::expr_vstore_mut_box) |
ast::expr_vstore(_, ast::expr_vstore_uniq) => {
RvalueDatumExpr
}
ast::expr_paren(e) => expr_kind(tcx, method_map, e),
ast::expr_mac(*) => {
tcx.sess.span_bug(
expr.span,
~"macro expression remains after expansion");
}
}
}
pub fn stmt_node_id(s: @ast::stmt) -> ast::node_id {
match s.node {
ast::stmt_decl(_, id) | stmt_expr(_, id) | stmt_semi(_, id) => {
return id;
}
ast::stmt_mac(*) => fail ~"unexpanded macro in trans"
}
}
pub fn field_idx(id: ast::ident, fields: &[field]) -> Option<uint> {
let mut i = 0u;
for fields.each |f| { if f.ident == id { return Some(i); } i += 1u; }
return None;
}
pub fn field_idx_strict(tcx: ty::ctxt, id: ast::ident, fields: &[field])
-> uint {
let mut i = 0u;
for fields.each |f| { if f.ident == id { return i; } i += 1u; }
tcx.sess.bug(fmt!(
"No field named `%s` found in the list of fields `%?`",
tcx.sess.str_of(id),
fields.map(|f| tcx.sess.str_of(f.ident))));
}
pub fn get_field(tcx: ctxt, rec_ty: t, id: ast::ident) -> field {
match vec::find(get_fields(rec_ty), |f| f.ident == id) {
Some(f) => f,
// Do we only call this when we know the field is legit?
None => fail (fmt!("get_field: ty doesn't have a field %s",
tcx.sess.str_of(id)))
}
}
pub fn get_fields(rec_ty:t) -> ~[field] {
match /*bad*/copy get(rec_ty).sty {
ty_rec(fields) => fields,
// Can we check at the caller?
_ => fail ~"get_fields: not a record type"
}
}
pub fn method_idx(id: ast::ident, meths: &[method]) -> Option<uint> {
let mut i = 0u;
for meths.each |m| { if m.ident == id { return Some(i); } i += 1u; }
return None;
}
/// Returns a vector containing the indices of all type parameters that appear
/// in `ty`. The vector may contain duplicates. Probably should be converted
/// to a bitset or some other representation.
pub fn param_tys_in_type(ty: t) -> ~[param_ty] {
let mut rslt = ~[];
do walk_ty(ty) |ty| {
match get(ty).sty {
ty_param(p) => {
rslt.push(p);
}
_ => ()
}
}
rslt
}
pub fn occurs_check(tcx: ctxt, sp: span, vid: TyVid, rt: t) {
// Returns a vec of all the type variables occurring in `ty`. It may
// contain duplicates. (Integral type vars aren't counted.)
fn vars_in_type(ty: t) -> ~[TyVid] {
let mut rslt = ~[];
do walk_ty(ty) |ty| {
match get(ty).sty {
ty_infer(TyVar(v)) => rslt.push(v),
_ => ()
}
}
rslt
}
// Fast path
if !type_needs_infer(rt) { return; }
// Occurs check!
if vec::contains(vars_in_type(rt), &vid) {
// Maybe this should be span_err -- however, there's an
// assertion later on that the type doesn't contain
// variables, so in this case we have to be sure to die.
tcx.sess.span_fatal
(sp, ~"type inference failed because I \
could not find a type\n that's both of the form "
+ ::util::ppaux::ty_to_str(tcx, mk_var(tcx, vid)) +
~" and of the form " + ::util::ppaux::ty_to_str(tcx, rt) +
~" - such a type would have to be infinitely large.");
}
}
// Maintains a little union-set tree for inferred modes. `canon()` returns
// the current head value for `m0`.
fn canon<T:Copy cmp::Eq>(tbl: HashMap<ast::node_id, ast::inferable<T>>,
+m0: ast::inferable<T>) -> ast::inferable<T> {
match m0 {
ast::infer(id) => match tbl.find(id) {
None => m0,
Some(ref m1) => {
let cm1 = canon(tbl, (*m1));
// path compression:
if cm1 != (*m1) { tbl.insert(id, cm1); }
cm1
}
},
_ => m0
}
}
// Maintains a little union-set tree for inferred modes. `resolve_mode()`
// returns the current head value for `m0`.
pub fn canon_mode(cx: ctxt, m0: ast::mode) -> ast::mode {
canon(cx.inferred_modes, m0)
}
// Returns the head value for mode, failing if `m` was a infer(_) that
// was never inferred. This should be safe for use after typeck.
pub fn resolved_mode(cx: ctxt, m: ast::mode) -> ast::rmode {
match canon_mode(cx, m) {
ast::infer(_) => {
cx.sess.bug(fmt!("mode %? was never resolved", m));
}
ast::expl(m0) => m0
}
}
pub fn arg_mode(cx: ctxt, a: arg) -> ast::rmode { resolved_mode(cx, a.mode) }
// Unifies `m1` and `m2`. Returns unified value or failure code.
pub fn unify_mode(cx: ctxt, modes: expected_found<ast::mode>)
-> Result<ast::mode, type_err> {
let m1 = modes.expected;
let m2 = modes.found;
match (canon_mode(cx, m1), canon_mode(cx, m2)) {
(m1, m2) if (m1 == m2) => {
result::Ok(m1)
}
(ast::infer(_), ast::infer(id2)) => {
cx.inferred_modes.insert(id2, m1);
result::Ok(m1)
}
(ast::infer(id), m) | (m, ast::infer(id)) => {
cx.inferred_modes.insert(id, m);
result::Ok(m1)
}
(_, _) => {
result::Err(terr_mode_mismatch(modes))
}
}
}
// If `m` was never unified, unifies it with `m_def`. Returns the final value
// for `m`.
pub fn set_default_mode(cx: ctxt, m: ast::mode, m_def: ast::rmode) {
match canon_mode(cx, m) {
ast::infer(id) => {
cx.inferred_modes.insert(id, ast::expl(m_def));
}
ast::expl(_) => ()
}
}
pub fn ty_sort_str(cx: ctxt, t: t) -> ~str {
match get(t).sty {
ty_nil | ty_bot | ty_bool | ty_int(_) |
ty_uint(_) | ty_float(_) | ty_estr(_) |
ty_type | ty_opaque_box | ty_opaque_closure_ptr(_) => {
::util::ppaux::ty_to_str(cx, t)
}
ty_enum(id, _) => fmt!("enum %s", item_path_str(cx, id)),
ty_box(_) => ~"@-ptr",
ty_uniq(_) => ~"~-ptr",
ty_evec(_, _) => ~"vector",
ty_unboxed_vec(_) => ~"unboxed vector",
ty_ptr(_) => ~"*-ptr",
ty_rptr(_, _) => ~"&-ptr",
ty_rec(_) => ~"record",
ty_fn(_) => ~"fn",
ty_trait(id, _, _) => fmt!("trait %s", item_path_str(cx, id)),
ty_struct(id, _) => fmt!("struct %s", item_path_str(cx, id)),
ty_tup(_) => ~"tuple",
ty_infer(TyVar(_)) => ~"inferred type",
ty_infer(IntVar(_)) => ~"integral variable",
ty_infer(FloatVar(_)) => ~"floating-point variable",
ty_param(_) => ~"type parameter",
ty_self => ~"self",
ty_err => ~"type error"
}
}
pub fn type_err_to_str(cx: ctxt, err: &type_err) -> ~str {
/*!
*
* Explains the source of a type err in a short,
* human readable way. This is meant to be placed in
* parentheses after some larger message. You should
* also invoke `note_and_explain_type_err()` afterwards
* to present additional details, particularly when
* it comes to lifetime-related errors. */
fn terr_vstore_kind_to_str(k: terr_vstore_kind) -> ~str {
match k {
terr_vec => ~"[]",
terr_str => ~"str",
terr_fn => ~"fn",
terr_trait => ~"trait"
}
}
match *err {
terr_mismatch => ~"types differ",
terr_purity_mismatch(values) => {
fmt!("expected %s fn but found %s fn",
values.expected.to_str(), values.found.to_str())
}
terr_onceness_mismatch(values) => {
fmt!("expected %s fn but found %s fn",
values.expected.to_str(), values.found.to_str())
}
terr_proto_mismatch(values) => {
fmt!("expected %s closure, found %s closure",
proto_ty_to_str(cx, values.expected, false),
proto_ty_to_str(cx, values.found, false))
}
terr_mutability => ~"values differ in mutability",
terr_box_mutability => ~"boxed values differ in mutability",
terr_vec_mutability => ~"vectors differ in mutability",
terr_ptr_mutability => ~"pointers differ in mutability",
terr_ref_mutability => ~"references differ in mutability",
terr_ty_param_size(values) => {
fmt!("expected a type with %? type params \
but found one with %? type params",
values.expected, values.found)
}
terr_tuple_size(values) => {
fmt!("expected a tuple with %? elements \
but found one with %? elements",
values.expected, values.found)
}
terr_record_size(values) => {
fmt!("expected a record with %? fields \
but found one with %? fields",
values.expected, values.found)
}
terr_record_mutability => {
~"record elements differ in mutability"
}
terr_record_fields(values) => {
fmt!("expected a record with field `%s` but found one with field \
`%s`",
cx.sess.str_of(values.expected),
cx.sess.str_of(values.found))
}
terr_arg_count => ~"incorrect number of function parameters",
terr_mode_mismatch(values) => {
fmt!("expected argument mode %s, but found %s",
pprust::mode_to_str(values.expected),
pprust::mode_to_str(values.found))
}
terr_regions_does_not_outlive(*) => {
fmt!("lifetime mismatch")
}
terr_regions_not_same(*) => {
fmt!("lifetimes are not the same")
}
terr_regions_no_overlap(*) => {
fmt!("lifetimes do not intersect")
}
terr_regions_insufficiently_polymorphic(br, _) => {
fmt!("expected bound lifetime parameter %s, \
but found concrete lifetime",
bound_region_to_str(cx, br))
}
terr_regions_overly_polymorphic(br, _) => {
fmt!("expected concrete lifetime, \
but found bound lifetime parameter %s",
bound_region_to_str(cx, br))
}
terr_vstores_differ(k, ref values) => {
fmt!("%s storage differs: expected %s but found %s",
terr_vstore_kind_to_str(k),
vstore_to_str(cx, (*values).expected),
vstore_to_str(cx, (*values).found))
}
terr_in_field(err, fname) => {
fmt!("in field `%s`, %s", cx.sess.str_of(fname),
type_err_to_str(cx, err))
}
terr_sorts(values) => {
fmt!("expected %s but found %s",
ty_sort_str(cx, values.expected),
ty_sort_str(cx, values.found))
}
terr_self_substs => {
~"inconsistent self substitution" // XXX this is more of a bug
}
terr_integer_as_char => {
fmt!("expected an integral type but found char")
}
terr_int_mismatch(ref values) => {
fmt!("expected %s but found %s",
values.expected.to_str(),
values.found.to_str())
}
terr_float_mismatch(ref values) => {
fmt!("expected %s but found %s",
values.expected.to_str(),
values.found.to_str())
}
}
}
pub fn note_and_explain_type_err(cx: ctxt, err: &type_err) {
match *err {
terr_regions_does_not_outlive(subregion, superregion) => {
note_and_explain_region(cx, ~"", subregion, ~"...");
note_and_explain_region(cx, ~"...does not necessarily outlive ",
superregion, ~"");
}
terr_regions_not_same(region1, region2) => {
note_and_explain_region(cx, ~"", region1, ~"...");
note_and_explain_region(cx, ~"...is not the same lifetime as ",
region2, ~"");
}
terr_regions_no_overlap(region1, region2) => {
note_and_explain_region(cx, ~"", region1, ~"...");
note_and_explain_region(cx, ~"...does not overlap ",
region2, ~"");
}
terr_regions_insufficiently_polymorphic(_, conc_region) => {
note_and_explain_region(cx,
~"concrete lifetime that was found is ",
conc_region, ~"");
}
terr_regions_overly_polymorphic(_, conc_region) => {
note_and_explain_region(cx,
~"expected concrete lifetime is ",
conc_region, ~"");
}
_ => {}
}
}
pub fn def_has_ty_params(def: ast::def) -> bool {
match def {
ast::def_fn(_, _) | ast::def_variant(_, _) | ast::def_struct(_)
=> true,
_ => false
}
}
pub fn store_trait_methods(cx: ctxt, id: ast::node_id, ms: @~[method]) {
cx.trait_method_cache.insert(ast_util::local_def(id), ms);
}
pub fn provided_trait_methods(cx: ctxt, id: ast::def_id) -> ~[ast::ident] {
if is_local(id) {
match cx.items.find(id.node) {
Some(ast_map::node_item(@ast::item {
node: item_trait(_, _, ref ms),
_
}, _)) =>
match ast_util::split_trait_methods((/*bad*/copy *ms)) {
(_, p) => p.map(|method| method.ident)
},
_ => cx.sess.bug(fmt!("provided_trait_methods: %? is not a trait",
id))
}
} else {
csearch::get_provided_trait_methods(cx, id).map(|ifo| ifo.ty.ident)
}
}
pub fn trait_supertraits(cx: ctxt,
id: ast::def_id)
-> @~[InstantiatedTraitRef] {
// Check the cache.
match cx.supertraits.find(id) {
Some(instantiated_trait_info) => { return instantiated_trait_info; }
None => {} // Continue.
}
// Not in the cache. It had better be in the metadata, which means it
// shouldn't be local.
assert !is_local(id);
// Get the supertraits out of the metadata and create the
// InstantiatedTraitRef for each.
let result = dvec::DVec();
for csearch::get_supertraits(cx, id).each |trait_type| {
match get(*trait_type).sty {
ty_trait(def_id, ref substs, _) => {
result.push(InstantiatedTraitRef {
def_id: def_id,
tpt: { substs: (/*bad*/copy *substs), ty: *trait_type }
});
}
_ => cx.sess.bug(~"trait_supertraits: trait ref wasn't a trait")
}
}
// Unwrap and return the result.
return @dvec::unwrap(move result);
}
pub fn trait_methods(cx: ctxt, id: ast::def_id) -> @~[method] {
match cx.trait_method_cache.find(id) {
// Local traits are supposed to have been added explicitly.
Some(ms) => ms,
_ => {
// If the lookup in trait_method_cache fails, assume that the trait
// method we're trying to look up is in a different crate, and look
// for it there.
assert id.crate != ast::local_crate;
let result = csearch::get_trait_methods(cx, id);
// Store the trait method in the local trait_method_cache so that
// future lookups succeed.
cx.trait_method_cache.insert(id, result);
result
}
}
}
/*
Could this return a list of (def_id, substs) pairs?
*/
pub fn impl_traits(cx: ctxt, id: ast::def_id, vstore: vstore) -> ~[t] {
fn vstoreify(cx: ctxt, ty: t, vstore: vstore) -> t {
match ty::get(ty).sty {
ty::ty_trait(_, _, trait_vstore) if vstore == trait_vstore => ty,
ty::ty_trait(did, ref substs, _) => {
mk_trait(cx, did, (/*bad*/copy *substs), vstore)
}
_ => cx.sess.bug(~"impl_traits: not a trait")
}
}
if id.crate == ast::local_crate {
debug!("(impl_traits) searching for trait impl %?", id);
match cx.items.find(id.node) {
Some(ast_map::node_item(@ast::item {
node: ast::item_impl(_, opt_trait, _, _),
_},
_)) => {
do option::map_default(&opt_trait, ~[]) |trait_ref| {
~[vstoreify(cx,
node_id_to_type(cx, trait_ref.ref_id),
vstore)]
}
}
_ => ~[]
}
} else {
vec::map(csearch::get_impl_traits(cx, id),
|x| vstoreify(cx, *x, vstore))
}
}
pub fn ty_to_def_id(ty: t) -> Option<ast::def_id> {
match get(ty).sty {
ty_trait(id, _, _) | ty_struct(id, _) | ty_enum(id, _) => Some(id),
_ => None
}
}
/// Returns the def ID of the constructor for the given tuple-like struct, or
/// None if the struct is not tuple-like. Fails if the given def ID does not
/// refer to a struct at all.
fn struct_ctor_id(cx: ctxt, struct_did: ast::def_id) -> Option<ast::def_id> {
if struct_did.crate != ast::local_crate {
// XXX: Cross-crate functionality.
cx.sess.unimpl(~"constructor ID of cross-crate tuple structs");
}
match cx.items.find(struct_did.node) {
Some(ast_map::node_item(item, _)) => {
match item.node {
ast::item_struct(struct_def, _) => {
struct_def.ctor_id.map(|ctor_id|
ast_util::local_def(*ctor_id))
}
_ => cx.sess.bug(~"called struct_ctor_id on non-struct")
}
}
_ => cx.sess.bug(~"called struct_ctor_id on non-struct")
}
}
// Enum information
pub struct VariantInfo_ {
args: ~[t],
ctor_ty: t,
name: ast::ident,
id: ast::def_id,
disr_val: int,
vis: visibility
}
pub type VariantInfo = @VariantInfo_;
pub fn substd_enum_variants(cx: ctxt,
id: ast::def_id,
substs: &substs)
-> ~[VariantInfo] {
do vec::map(*enum_variants(cx, id)) |variant_info| {
let substd_args = vec::map(variant_info.args,
|aty| subst(cx, substs, *aty));
let substd_ctor_ty = subst(cx, substs, variant_info.ctor_ty);
@VariantInfo_{args: substd_args, ctor_ty: substd_ctor_ty,
../*bad*/copy **variant_info}
}
}
pub fn item_path_str(cx: ctxt, id: ast::def_id) -> ~str {
ast_map::path_to_str(item_path(cx, id), cx.sess.parse_sess.interner)
}
pub enum DtorKind {
NoDtor,
LegacyDtor(def_id),
TraitDtor(def_id)
}
impl DtorKind {
pure fn is_not_present(&const self) -> bool {
match *self {
NoDtor => true,
_ => false
}
}
pure fn is_present(&const self) -> bool {
!self.is_not_present()
}
}
/* If struct_id names a struct with a dtor, return Some(the dtor's id).
Otherwise return none. */
pub fn ty_dtor(cx: ctxt, struct_id: def_id) -> DtorKind {
match cx.destructor_for_type.find(struct_id) {
Some(method_def_id) => return TraitDtor(method_def_id),
None => {} // Continue.
}
if is_local(struct_id) {
match cx.items.find(struct_id.node) {
Some(ast_map::node_item(@ast::item {
node: ast::item_struct(@ast::struct_def { dtor: Some(ref dtor),
_ },
_),
_
}, _)) =>
LegacyDtor(local_def((*dtor).node.id)),
_ =>
NoDtor
}
}
else {
match csearch::struct_dtor(cx.sess.cstore, struct_id) {
None => NoDtor,
Some(did) => LegacyDtor(did),
}
}
}
pub fn has_dtor(cx: ctxt, struct_id: def_id) -> bool {
ty_dtor(cx, struct_id).is_present()
}
pub fn item_path(cx: ctxt, id: ast::def_id) -> ast_map::path {
if id.crate != ast::local_crate {
csearch::get_item_path(cx, id)
} else {
let node = cx.items.get(id.node);
match node {
ast_map::node_item(item, path) => {
let item_elt = match item.node {
item_mod(_) | item_foreign_mod(_) => {
ast_map::path_mod(item.ident)
}
_ => {
ast_map::path_name(item.ident)
}
};
vec::append_one(/*bad*/copy *path, item_elt)
}
ast_map::node_foreign_item(nitem, _, path) => {
vec::append_one(/*bad*/copy *path,
ast_map::path_name(nitem.ident))
}
ast_map::node_method(method, _, path) => {
vec::append_one(/*bad*/copy *path,
ast_map::path_name(method.ident))
}
ast_map::node_trait_method(trait_method, _, path) => {
let method = ast_util::trait_method_to_ty_method(*trait_method);
vec::append_one(/*bad*/copy *path,
ast_map::path_name(method.ident))
}
ast_map::node_variant(ref variant, _, path) => {
vec::append_one(vec::init(*path),
ast_map::path_name((*variant).node.name))
}
ast_map::node_dtor(_, _, _, path) => {
vec::append_one(/*bad*/copy *path, ast_map::path_name(
syntax::parse::token::special_idents::literally_dtor))
}
ast_map::node_struct_ctor(_, item, path) => {
vec::append_one(/*bad*/copy *path, ast_map::path_name(item.ident))
}
ast_map::node_stmt(*) | ast_map::node_expr(*) |
ast_map::node_arg(*) | ast_map::node_local(*) |
ast_map::node_export(*) | ast_map::node_block(*) => {
cx.sess.bug(fmt!("cannot find item_path for node %?", node));
}
}
}
}
pub fn enum_is_univariant(cx: ctxt, id: ast::def_id) -> bool {
enum_variants(cx, id).len() == 1
}
pub fn type_is_empty(cx: ctxt, t: t) -> bool {
match ty::get(t).sty {
ty_enum(did, _) => (*enum_variants(cx, did)).is_empty(),
_ => false
}
}
pub fn enum_variants(cx: ctxt, id: ast::def_id) -> @~[VariantInfo] {
match cx.enum_var_cache.find(id) {
Some(variants) => return variants,
_ => { /* fallthrough */ }
}
let result = if ast::local_crate != id.crate {
@csearch::get_enum_variants(cx, id)
} else {
/*
Although both this code and check_enum_variants in typeck/check
call eval_const_expr, it should never get called twice for the same
expr, since check_enum_variants also updates the enum_var_cache
*/
match cx.items.get(id.node) {
ast_map::node_item(@ast::item {
node: ast::item_enum(ref enum_definition, _),
_
}, _) => {
let variants = /*bad*/copy (*enum_definition).variants;
let mut disr_val = -1;
@vec::map(variants, |variant| {
match variant.node.kind {
ast::tuple_variant_kind(ref args) => {
let ctor_ty = node_id_to_type(cx, variant.node.id);
let arg_tys = {
if args.len() > 0u {
ty_fn_args(ctor_ty).map(|a| a.ty)
} else {
~[]
}
};
match variant.node.disr_expr {
Some (ex) => {
disr_val = match const_eval::eval_const_expr(cx,
ex) {
const_eval::const_int(val) => val as int,
_ => cx.sess.bug(~"tag_variants: bad disr expr")
}
}
_ => disr_val += 1
}
@VariantInfo_{args: arg_tys,
ctor_ty: ctor_ty,
name: variant.node.name,
id: ast_util::local_def(variant.node.id),
disr_val: disr_val,
vis: variant.node.vis
}
}
ast::struct_variant_kind(_) => {
fail ~"struct variant kinds unimpl in enum_variants"
}
ast::enum_variant_kind(_) => {
fail ~"enum variant kinds unimpl in enum_variants"
}
}
})
}
_ => cx.sess.bug(~"tag_variants: id not bound to an enum")
}
};
cx.enum_var_cache.insert(id, result);
result
}
// Returns information about the enum variant with the given ID:
pub fn enum_variant_with_id(cx: ctxt,
enum_id: ast::def_id,
variant_id: ast::def_id)
-> VariantInfo {
let variants = enum_variants(cx, enum_id);
let mut i = 0;
while i < variants.len() {
let variant = variants[i];
if variant.id == variant_id { return variant; }
i += 1;
}
cx.sess.bug(~"enum_variant_with_id(): no variant exists with that ID");
}
// If the given item is in an external crate, looks up its type and adds it to
// the type cache. Returns the type parameters and type.
pub fn lookup_item_type(cx: ctxt,
did: ast::def_id)
-> ty_param_bounds_and_ty {
match cx.tcache.find(did) {
Some(tpt) => {
// The item is in this crate. The caller should have added it to the
// type cache already
return tpt;
}
None => {
assert did.crate != ast::local_crate;
let tyt = csearch::get_type(cx, did);
cx.tcache.insert(did, tyt);
return tyt;
}
}
}
// Look up a field ID, whether or not it's local
// Takes a list of type substs in case the struct is generic
pub fn lookup_field_type(tcx: ctxt,
struct_id: def_id,
id: def_id,
substs: &substs)
-> ty::t {
let t = if id.crate == ast::local_crate {
node_id_to_type(tcx, id.node)
}
else {
match tcx.tcache.find(id) {
Some(tpt) => tpt.ty,
None => {
let tpt = csearch::get_field_type(tcx, struct_id, id);
tcx.tcache.insert(id, tpt);
tpt.ty
}
}
};
subst(tcx, substs, t)
}
// Look up the list of field names and IDs for a given struct
// Fails if the id is not bound to a struct.
pub fn lookup_struct_fields(cx: ctxt, did: ast::def_id) -> ~[field_ty] {
if did.crate == ast::local_crate {
match cx.items.find(did.node) {
Some(ast_map::node_item(i,_)) => {
match i.node {
ast::item_struct(struct_def, _) => {
struct_field_tys(/*bad*/copy struct_def.fields)
}
_ => cx.sess.bug(~"struct ID bound to non-struct")
}
}
Some(ast_map::node_variant(ref variant, _, _)) => {
match (*variant).node.kind {
ast::struct_variant_kind(struct_def) => {
struct_field_tys(/*bad*/copy struct_def.fields)
}
_ => {
cx.sess.bug(~"struct ID bound to enum variant that isn't \
struct-like")
}
}
}
_ => {
cx.sess.bug(
fmt!("struct ID not bound to an item: %s",
ast_map::node_id_to_str(cx.items, did.node,
cx.sess.parse_sess.interner)));
}
}
}
else {
return csearch::get_struct_fields(cx, did);
}
}
pub fn lookup_struct_field(cx: ctxt,
parent: ast::def_id,
field_id: ast::def_id)
-> field_ty {
match vec::find(lookup_struct_fields(cx, parent),
|f| f.id.node == field_id.node) {
Some(t) => t,
None => cx.sess.bug(~"struct ID not found in parent's fields")
}
}
pure fn is_public(f: field_ty) -> bool {
// XXX: This is wrong.
match f.vis {
public | inherited => true,
private => false
}
}
fn struct_field_tys(fields: ~[@struct_field]) -> ~[field_ty] {
do fields.map |field| {
match field.node.kind {
named_field(ident, mutability, visibility) => {
field_ty {
ident: ident,
id: ast_util::local_def(field.node.id),
vis: visibility,
mutability: mutability,
}
}
unnamed_field => {
field_ty {
ident:
syntax::parse::token::special_idents::unnamed_field,
id: ast_util::local_def(field.node.id),
vis: ast::public,
mutability: ast::struct_immutable,
}
}
}
}
}
// Return a list of fields corresponding to the struct's items
// (as if the struct was a record). trans uses this
// Takes a list of substs with which to instantiate field types
// Keep in mind that this function reports that all fields are
// mutable, regardless of how they were declared. It's meant to
// be used in trans.
pub fn struct_mutable_fields(cx: ctxt,
did: ast::def_id,
substs: &substs)
-> ~[field] {
struct_item_fields(cx, did, substs, |_mt| m_mutbl)
}
// Same as struct_mutable_fields, but doesn't change
// mutability.
pub fn struct_fields(cx: ctxt,
did: ast::def_id,
substs: &substs)
-> ~[field] {
struct_item_fields(cx, did, substs, |mt| match mt {
struct_mutable => m_mutbl,
struct_immutable => m_imm })
}
fn struct_item_fields(cx:ctxt,
did: ast::def_id,
substs: &substs,
frob_mutability: fn(struct_mutability) -> mutability)
-> ~[field] {
do lookup_struct_fields(cx, did).map |f| {
// consider all instance vars mut, because the
// constructor may mutate all vars
field {
ident: f.ident,
mt: mt {
ty: lookup_field_type(cx, did, f.id, substs),
mutbl: frob_mutability(f.mutability)
}
}
}
}
pub fn is_binopable(_cx: ctxt, ty: t, op: ast::binop) -> bool {
const tycat_other: int = 0;
const tycat_bool: int = 1;
const tycat_int: int = 2;
const tycat_float: int = 3;
const tycat_struct: int = 4;
const tycat_bot: int = 5;
const opcat_add: int = 0;
const opcat_sub: int = 1;
const opcat_mult: int = 2;
const opcat_shift: int = 3;
const opcat_rel: int = 4;
const opcat_eq: int = 5;
const opcat_bit: int = 6;
const opcat_logic: int = 7;
fn opcat(op: ast::binop) -> int {
match op {
ast::add => opcat_add,
ast::subtract => opcat_sub,
ast::mul => opcat_mult,
ast::div => opcat_mult,
ast::rem => opcat_mult,
ast::and => opcat_logic,
ast::or => opcat_logic,
ast::bitxor => opcat_bit,
ast::bitand => opcat_bit,
ast::bitor => opcat_bit,
ast::shl => opcat_shift,
ast::shr => opcat_shift,
ast::eq => opcat_eq,
ast::ne => opcat_eq,
ast::lt => opcat_rel,
ast::le => opcat_rel,
ast::ge => opcat_rel,
ast::gt => opcat_rel
}
}
fn tycat(ty: t) -> int {
match get(ty).sty {
ty_bool => tycat_bool,
ty_int(_) | ty_uint(_) | ty_infer(IntVar(_)) => tycat_int,
ty_float(_) | ty_infer(FloatVar(_)) => tycat_float,
ty_rec(_) | ty_tup(_) | ty_enum(_, _) => tycat_struct,
ty_bot => tycat_bot,
_ => tycat_other
}
}
const t: bool = true;
const f: bool = false;
let tbl = ~[
/*. add, shift, bit
. sub, rel, logic
. mult, eq, */
/*other*/ ~[f, f, f, f, f, f, f, f],
/*bool*/ ~[f, f, f, f, t, t, t, t],
/*int*/ ~[t, t, t, t, t, t, t, f],
/*float*/ ~[t, t, t, f, t, t, f, f],
/*bot*/ ~[f, f, f, f, f, f, f, f],
/*struct*/ ~[t, t, t, t, f, f, t, t]];
return tbl[tycat(ty)][opcat(op)];
}
pub fn ty_params_to_tys(tcx: ty::ctxt, tps: ~[ast::ty_param]) -> ~[t] {
vec::from_fn(tps.len(), |i| {
ty::mk_param(tcx, i, ast_util::local_def(tps[i].id))
})
}
/// Returns an equivalent type with all the typedefs and self regions removed.
pub fn normalize_ty(cx: ctxt, t: t) -> t {
fn normalize_mt(cx: ctxt, mt: mt) -> mt {
mt { ty: normalize_ty(cx, mt.ty), mutbl: mt.mutbl }
}
fn normalize_vstore(vstore: vstore) -> vstore {
match vstore {
vstore_fixed(*) | vstore_uniq | vstore_box => vstore,
vstore_slice(_) => vstore_slice(re_static)
}
}
match cx.normalized_cache.find(t) {
Some(t) => return t,
None => ()
}
let t = match get(t).sty {
ty_evec(mt, vstore) =>
// This type has a vstore. Get rid of it
mk_evec(cx, normalize_mt(cx, mt), normalize_vstore(vstore)),
ty_estr(vstore) =>
// This type has a vstore. Get rid of it
mk_estr(cx, normalize_vstore(vstore)),
ty_rptr(_, mt) =>
// This type has a region. Get rid of it
mk_rptr(cx, re_static, normalize_mt(cx, mt)),
ty_fn(ref fn_ty) => {
mk_fn(cx, FnTyBase {
meta: FnMeta {
region: ty::re_static,
..fn_ty.meta
},
sig: /*bad*/copy fn_ty.sig
})
}
ty_enum(did, ref r) =>
match (*r).self_r {
Some(_) =>
// Use re_static since trans doesn't care about regions
mk_enum(cx, did,
substs {
self_r: Some(ty::re_static),
self_ty: None,
tps: /*bad*/copy (*r).tps
}),
None =>
t
},
ty_struct(did, ref r) =>
match (*r).self_r {
Some(_) =>
// Ditto.
mk_struct(cx, did, substs {self_r: Some(ty::re_static),
self_ty: None,
tps: /*bad*/copy (*r).tps}),
None =>
t
},
_ =>
t
};
let sty = fold_sty(&get(t).sty, |t| { normalize_ty(cx, t) });
let t_norm = mk_t(cx, sty);
cx.normalized_cache.insert(t, t_norm);
return t_norm;
}
// Returns the repeat count for a repeating vector expression.
pub fn eval_repeat_count(tcx: ctxt,
count_expr: @ast::expr,
span: span)
-> uint {
match const_eval::eval_const_expr(tcx, count_expr) {
const_eval::const_int(count) => return count as uint,
const_eval::const_uint(count) => return count as uint,
const_eval::const_float(count) => {
tcx.sess.span_err(span,
~"expected signed or unsigned integer for \
repeat count but found float");
return count as uint;
}
const_eval::const_str(_) => {
tcx.sess.span_err(span,
~"expected signed or unsigned integer for \
repeat count but found string");
return 0;
}
const_eval::const_bool(_) => {
tcx.sess.span_err(span,
~"expected signed or unsigned integer for \
repeat count but found boolean");
return 0;
}
}
}
// Determine what purity to check a nested function under
pub pure fn determine_inherited_purity(parent_purity: ast::purity,
child_purity: ast::purity,
child_proto: ast::Proto)
-> ast::purity {
// If the closure is a stack closure and hasn't had some non-standard
// purity inferred for it, then check it under its parent's purity.
// Otherwise, use its own
match child_proto {
ast::ProtoBorrowed if child_purity == ast::impure_fn => parent_purity,
_ => child_purity
}
}
// Iterate over a type parameter's bounded traits and any supertraits
// of those traits, ignoring kinds.
// Here, the supertraits are the transitive closure of the supertrait
// relation on the supertraits from each bounded trait's constraint
// list.
pub fn iter_bound_traits_and_supertraits(tcx: ctxt,
bounds: param_bounds,
f: &fn(t) -> bool) {
let mut fin = false;
for bounds.each |bound| {
let bound_trait_ty = match *bound {
ty::bound_trait(bound_t) => bound_t,
ty::bound_copy | ty::bound_owned |
ty::bound_const | ty::bound_durable => {
loop; // skip non-trait bounds
}
};
let mut supertrait_map = HashMap();
let mut seen_def_ids = ~[];
let mut i = 0;
let trait_ty_id = ty_to_def_id(bound_trait_ty).expect(
~"iter_trait_ty_supertraits got a non-trait type");
let mut trait_ty = bound_trait_ty;
debug!("iter_bound_traits_and_supertraits: trait_ty = %s",
ty_to_str(tcx, trait_ty));
// Add the given trait ty to the hash map
supertrait_map.insert(trait_ty_id, trait_ty);
seen_def_ids.push(trait_ty_id);
if f(trait_ty) {
// Add all the supertraits to the hash map,
// executing <f> on each of them
while i < supertrait_map.size() && !fin {
let init_trait_id = seen_def_ids[i];
i += 1;
// Add supertraits to supertrait_map
let supertraits = trait_supertraits(tcx, init_trait_id);
for supertraits.each |supertrait| {
let super_t = supertrait.tpt.ty;
let d_id = ty_to_def_id(super_t).expect("supertrait \
should be a trait ty");
if !supertrait_map.contains_key(d_id) {
supertrait_map.insert(d_id, super_t);
trait_ty = super_t;
seen_def_ids.push(d_id);
}
debug!("A super_t = %s", ty_to_str(tcx, trait_ty));
if !f(trait_ty) {
fin = true;
}
}
}
};
fin = false;
}
}
pub fn count_traits_and_supertraits(tcx: ctxt,
boundses: &[param_bounds]) -> uint {
let mut total = 0;
for boundses.each |bounds| {
for iter_bound_traits_and_supertraits(tcx, *bounds) |_trait_ty| {
total += 1;
}
}
return total;
}
// Given a trait and a type, returns the impl of that type
pub fn get_impl_id(tcx: ctxt, trait_id: def_id, self_ty: t) -> def_id {
match tcx.trait_impls.find(trait_id) {
Some(ty_to_impl) => match ty_to_impl.find(self_ty) {
Some(the_impl) => the_impl.did,
None => // try autoderef!
match deref(tcx, self_ty, false) {
Some(some_ty) => get_impl_id(tcx, trait_id, some_ty.ty),
None => tcx.sess.bug(~"get_impl_id: no impl of trait for \
this type")
}
},
None => tcx.sess.bug(~"get_impl_id: trait isn't in trait_impls")
}
}
impl mt : cmp::Eq {
pure fn eq(&self, other: &mt) -> bool {
(*self).ty == (*other).ty && (*self).mutbl == (*other).mutbl
}
pure fn ne(&self, other: &mt) -> bool { !(*self).eq(other) }
}
impl vstore : cmp::Eq {
pure fn eq(&self, other: &vstore) -> bool {
match (*self) {
vstore_fixed(e0a) => {
match (*other) {
vstore_fixed(e0b) => e0a == e0b,
_ => false
}
}
vstore_uniq => {
match (*other) {
vstore_uniq => true,
_ => false
}
}
vstore_box => {
match (*other) {
vstore_box => true,
_ => false
}
}
vstore_slice(e0a) => {
match (*other) {
vstore_slice(e0b) => e0a == e0b,
_ => false
}
}
}
}
pure fn ne(&self, other: &vstore) -> bool { !(*self).eq(other) }
}
impl Region : cmp::Eq {
pure fn eq(&self, other: &Region) -> bool {
match (*self) {
re_bound(e0a) => {
match (*other) {
re_bound(e0b) => e0a == e0b,
_ => false
}
}
re_free(e0a, e1a) => {
match (*other) {
re_free(e0b, e1b) => e0a == e0b && e1a == e1b,
_ => false
}
}
re_scope(e0a) => {
match (*other) {
re_scope(e0b) => e0a == e0b,
_ => false
}
}
re_static => {
match (*other) {
re_static => true,
_ => false
}
}
re_infer(e0a) => {
match (*other) {
re_infer(e0b) => e0a == e0b,
_ => false
}
}
}
}
pure fn ne(&self, other: &Region) -> bool { !(*self).eq(other) }
}
impl bound_region : cmp::Eq {
pure fn eq(&self, other: &bound_region) -> bool {
match (*self) {
br_self => {
match (*other) {
br_self => true,
_ => false
}
}
br_anon(e0a) => {
match (*other) {
br_anon(e0b) => e0a == e0b,
_ => false
}
}
br_named(e0a) => {
match (*other) {
br_named(e0b) => e0a == e0b,
_ => false
}
}
br_cap_avoid(e0a, e1a) => {
match (*other) {
br_cap_avoid(e0b, e1b) => e0a == e0b && e1a == e1b,
_ => false
}
}
br_fresh(e0a) => {
match (*other) {
br_fresh(e0b) => e0a == e0b,
_ => false
}
}
}
}
pure fn ne(&self, other: &bound_region) -> bool { !(*self).eq(other) }
}
impl sty : cmp::Eq {
pure fn eq(&self, other: &sty) -> bool {
match (/*bad*/copy *self) {
ty_nil => {
match (*other) {
ty_nil => true,
_ => false
}
}
ty_bot => {
match (*other) {
ty_bot => true,
_ => false
}
}
ty_bool => {
match (*other) {
ty_bool => true,
_ => false
}
}
ty_int(e0a) => {
match (*other) {
ty_int(e0b) => e0a == e0b,
_ => false
}
}
ty_uint(e0a) => {
match (*other) {
ty_uint(e0b) => e0a == e0b,
_ => false
}
}
ty_float(e0a) => {
match (*other) {
ty_float(e0b) => e0a == e0b,
_ => false
}
}
ty_estr(e0a) => {
match (*other) {
ty_estr(e0b) => e0a == e0b,
_ => false
}
}
ty_enum(e0a, ref e1a) => {
match (*other) {
ty_enum(e0b, ref e1b) => e0a == e0b && (*e1a) == (*e1b),
_ => false
}
}
ty_box(e0a) => {
match (*other) {
ty_box(e0b) => e0a == e0b,
_ => false
}
}
ty_uniq(e0a) => {
match (*other) {
ty_uniq(e0b) => e0a == e0b,
_ => false
}
}
ty_evec(e0a, e1a) => {
match (*other) {
ty_evec(e0b, e1b) => e0a == e0b && e1a == e1b,
_ => false
}
}
ty_ptr(e0a) => {
match (*other) {
ty_ptr(e0b) => e0a == e0b,
_ => false
}
}
ty_rptr(e0a, e1a) => {
match (*other) {
ty_rptr(e0b, e1b) => e0a == e0b && e1a == e1b,
_ => false
}
}
ty_rec(e0a) => {
match (/*bad*/copy *other) {
ty_rec(e0b) => e0a == e0b,
_ => false
}
}
ty_fn(ref e0a) => {
match (*other) {
ty_fn(ref e0b) => (*e0a) == (*e0b),
_ => false
}
}
ty_trait(e0a, ref e1a, e2a) => {
match (*other) {
ty_trait(e0b, ref e1b, e2b) =>
e0a == e0b && (*e1a) == (*e1b) && e2a == e2b,
_ => false
}
}
ty_struct(e0a, ref e1a) => {
match (*other) {
ty_struct(e0b, ref e1b) => e0a == e0b && (*e1a) == (*e1b),
_ => false
}
}
ty_tup(e0a) => {
match (/*bad*/copy *other) {
ty_tup(e0b) => e0a == e0b,
_ => false
}
}
ty_infer(ref e0a) => {
match (*other) {
ty_infer(ref e0b) => *e0a == *e0b,
_ => false
}
}
ty_err => {
match (*other) {
ty_err => true,
_ => false
}
}
ty_param(e0a) => {
match (*other) {
ty_param(e0b) => e0a == e0b,
_ => false
}
}
ty_self => {
match (*other) {
ty_self => true,
_ => false
}
}
ty_type => {
match (*other) {
ty_type => true,
_ => false
}
}
ty_opaque_box => {
match (*other) {
ty_opaque_box => true,
_ => false
}
}
ty_opaque_closure_ptr(e0a) => {
match (*other) {
ty_opaque_closure_ptr(e0b) => e0a == e0b,
_ => false
}
}
ty_unboxed_vec(e0a) => {
match (*other) {
ty_unboxed_vec(e0b) => e0a == e0b,
_ => false
}
}
}
}
pure fn ne(&self, other: &sty) -> bool { !(*self).eq(other) }
}
impl param_bound : cmp::Eq {
pure fn eq(&self, other: &param_bound) -> bool {
match (*self) {
bound_copy => {
match (*other) {
bound_copy => true,
_ => false
}
}
bound_durable => {
match (*other) {
bound_durable => true,
_ => false
}
}
bound_owned => {
match (*other) {
bound_owned => true,
_ => false
}
}
bound_const => {
match (*other) {
bound_const => true,
_ => false
}
}
bound_trait(e0a) => {
match (*other) {
bound_trait(e0b) => e0a == e0b,
_ => false
}
}
}
}
pure fn ne(&self, other: &param_bound) -> bool { !self.eq(other) }
}
impl Kind : cmp::Eq {
pure fn eq(&self, other: &Kind) -> bool { *(*self) == *(*other) }
pure fn ne(&self, other: &Kind) -> bool { *(*self) != *(*other) }
}
// Local Variables:
// mode: rust
// fill-column: 78;
// indent-tabs-mode: nil
// c-basic-offset: 4
// buffer-file-coding-system: utf-8-unix
// End: