rust/src/librustc_mir/const_eval.rs

749 lines
26 KiB
Rust

// Copyright 2018 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// Not in interpret to make sure we do not use private implementation details
use std::fmt;
use std::error::Error;
use std::borrow::{Borrow, Cow};
use std::hash::Hash;
use std::collections::hash_map::Entry;
use rustc::hir::{self, def_id::DefId};
use rustc::hir::def::Def;
use rustc::mir::interpret::{ConstEvalErr, ErrorHandled};
use rustc::mir;
use rustc::ty::{self, TyCtxt, Instance, query::TyCtxtAt};
use rustc::ty::layout::{self, LayoutOf, TyLayout, VariantIdx};
use rustc::ty::subst::Subst;
use rustc::traits::Reveal;
use rustc_data_structures::indexed_vec::IndexVec;
use rustc_data_structures::fx::FxHashMap;
use rustc::util::common::ErrorReported;
use syntax::ast::Mutability;
use syntax::source_map::{Span, DUMMY_SP};
use crate::interpret::{self,
PlaceTy, MPlaceTy, MemPlace, OpTy, Operand, Immediate, Scalar, RawConst, ConstValue, Pointer,
EvalResult, EvalError, EvalErrorKind, GlobalId, EvalContext, StackPopCleanup,
Allocation, AllocId, MemoryKind,
snapshot, RefTracking,
};
/// Number of steps until the detector even starts doing anything.
/// Also, a warning is shown to the user when this number is reached.
const STEPS_UNTIL_DETECTOR_ENABLED: isize = 1_000_000;
/// The number of steps between loop detector snapshots.
/// Should be a power of two for performance reasons.
const DETECTOR_SNAPSHOT_PERIOD: isize = 256;
pub fn mk_borrowck_eval_cx<'a, 'mir, 'tcx>(
tcx: TyCtxt<'a, 'tcx, 'tcx>,
instance: Instance<'tcx>,
mir: &'mir mir::Mir<'tcx>,
span: Span,
) -> EvalResult<'tcx, CompileTimeEvalContext<'a, 'mir, 'tcx>> {
debug!("mk_borrowck_eval_cx: {:?}", instance);
let param_env = tcx.param_env(instance.def_id());
let mut ecx = EvalContext::new(tcx.at(span), param_env, CompileTimeInterpreter::new());
// insert a stack frame so any queries have the correct substs
// cannot use `push_stack_frame`; if we do `const_prop` explodes
ecx.stack.push(interpret::Frame {
block: mir::START_BLOCK,
locals: IndexVec::new(),
instance,
span,
mir,
return_place: None,
return_to_block: StackPopCleanup::Goto(None), // never pop
stmt: 0,
extra: (),
});
Ok(ecx)
}
pub fn mk_eval_cx<'a, 'tcx>(
tcx: TyCtxt<'a, 'tcx, 'tcx>,
instance: Instance<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> EvalResult<'tcx, CompileTimeEvalContext<'a, 'tcx, 'tcx>> {
debug!("mk_eval_cx: {:?}, {:?}", instance, param_env);
let span = tcx.def_span(instance.def_id());
let mut ecx = EvalContext::new(tcx.at(span), param_env, CompileTimeInterpreter::new());
let mir = ecx.load_mir(instance.def)?;
// insert a stack frame so any queries have the correct substs
ecx.push_stack_frame(
instance,
mir.span,
mir,
None,
StackPopCleanup::Goto(None), // never pop
)?;
Ok(ecx)
}
pub(crate) fn eval_promoted<'a, 'mir, 'tcx>(
tcx: TyCtxt<'a, 'tcx, 'tcx>,
cid: GlobalId<'tcx>,
mir: &'mir mir::Mir<'tcx>,
param_env: ty::ParamEnv<'tcx>,
) -> EvalResult<'tcx, MPlaceTy<'tcx>> {
let mut ecx = mk_borrowck_eval_cx(tcx, cid.instance, mir, DUMMY_SP).unwrap();
eval_body_using_ecx(&mut ecx, cid, Some(mir), param_env)
}
// FIXME: These two conversion functions are bad hacks. We should just always use allocations.
pub fn op_to_const<'tcx>(
ecx: &CompileTimeEvalContext<'_, '_, 'tcx>,
op: OpTy<'tcx>,
may_normalize: bool,
) -> EvalResult<'tcx, &'tcx ty::Const<'tcx>> {
// We do not normalize just any data. Only scalar layout and fat pointers.
let normalize = may_normalize
&& match op.layout.abi {
layout::Abi::Scalar(..) => true,
layout::Abi::ScalarPair(..) => {
// Must be a fat pointer
op.layout.ty.builtin_deref(true).is_some()
},
_ => false,
};
let normalized_op = if normalize {
ecx.try_read_immediate(op)?
} else {
match op.op {
Operand::Indirect(mplace) => Err(mplace),
Operand::Immediate(val) => Ok(val)
}
};
let val = match normalized_op {
Err(MemPlace { ptr, align, meta }) => {
// extract alloc-offset pair
assert!(meta.is_none());
let ptr = ptr.to_ptr()?;
let alloc = ecx.memory.get(ptr.alloc_id)?;
assert!(alloc.align >= align);
assert!(alloc.bytes.len() as u64 - ptr.offset.bytes() >= op.layout.size.bytes());
let mut alloc = alloc.clone();
alloc.align = align;
// FIXME shouldn't it be the case that `mark_static_initialized` has already
// interned this? I thought that is the entire point of that `FinishStatic` stuff?
let alloc = ecx.tcx.intern_const_alloc(alloc);
ConstValue::ByRef(ptr.alloc_id, alloc, ptr.offset)
},
Ok(Immediate::Scalar(x)) =>
ConstValue::Scalar(x.not_undef()?),
Ok(Immediate::ScalarPair(a, b)) =>
ConstValue::ScalarPair(a.not_undef()?, b.not_undef()?),
};
Ok(ty::Const::from_const_value(ecx.tcx.tcx, val, op.layout.ty))
}
pub fn const_to_op<'tcx>(
ecx: &CompileTimeEvalContext<'_, '_, 'tcx>,
cnst: &ty::Const<'tcx>,
) -> EvalResult<'tcx, OpTy<'tcx>> {
let op = ecx.const_value_to_op(cnst.val)?;
Ok(OpTy { op, layout: ecx.layout_of(cnst.ty)? })
}
fn eval_body_and_ecx<'a, 'mir, 'tcx>(
tcx: TyCtxt<'a, 'tcx, 'tcx>,
cid: GlobalId<'tcx>,
mir: Option<&'mir mir::Mir<'tcx>>,
param_env: ty::ParamEnv<'tcx>,
) -> (EvalResult<'tcx, MPlaceTy<'tcx>>, CompileTimeEvalContext<'a, 'mir, 'tcx>) {
// we start out with the best span we have
// and try improving it down the road when more information is available
let span = tcx.def_span(cid.instance.def_id());
let span = mir.map(|mir| mir.span).unwrap_or(span);
let mut ecx = EvalContext::new(tcx.at(span), param_env, CompileTimeInterpreter::new());
let r = eval_body_using_ecx(&mut ecx, cid, mir, param_env);
(r, ecx)
}
// Returns a pointer to where the result lives
fn eval_body_using_ecx<'mir, 'tcx>(
ecx: &mut CompileTimeEvalContext<'_, 'mir, 'tcx>,
cid: GlobalId<'tcx>,
mir: Option<&'mir mir::Mir<'tcx>>,
param_env: ty::ParamEnv<'tcx>,
) -> EvalResult<'tcx, MPlaceTy<'tcx>> {
debug!("eval_body_using_ecx: {:?}, {:?}", cid, param_env);
let tcx = ecx.tcx.tcx;
let mut mir = match mir {
Some(mir) => mir,
None => ecx.load_mir(cid.instance.def)?,
};
if let Some(index) = cid.promoted {
mir = &mir.promoted[index];
}
let layout = ecx.layout_of(mir.return_ty().subst(tcx, cid.instance.substs))?;
assert!(!layout.is_unsized());
let ret = ecx.allocate(layout, MemoryKind::Stack)?;
let name = ty::tls::with(|tcx| tcx.item_path_str(cid.instance.def_id()));
let prom = cid.promoted.map_or(String::new(), |p| format!("::promoted[{:?}]", p));
trace!("eval_body_using_ecx: pushing stack frame for global: {}{}", name, prom);
assert!(mir.arg_count == 0);
ecx.push_stack_frame(
cid.instance,
mir.span,
mir,
Some(ret.into()),
StackPopCleanup::None { cleanup: false },
)?;
// The main interpreter loop.
ecx.run()?;
// Intern the result
let internally_mutable = !layout.ty.is_freeze(tcx, param_env, mir.span);
let is_static = tcx.is_static(cid.instance.def_id());
let mutability = if is_static == Some(hir::Mutability::MutMutable) || internally_mutable {
Mutability::Mutable
} else {
Mutability::Immutable
};
ecx.memory.intern_static(ret.ptr.to_ptr()?.alloc_id, mutability)?;
debug!("eval_body_using_ecx done: {:?}", *ret);
Ok(ret)
}
impl<'tcx> Into<EvalError<'tcx>> for ConstEvalError {
fn into(self) -> EvalError<'tcx> {
EvalErrorKind::MachineError(self.to_string()).into()
}
}
#[derive(Clone, Debug)]
enum ConstEvalError {
NeedsRfc(String),
}
impl fmt::Display for ConstEvalError {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
use self::ConstEvalError::*;
match *self {
NeedsRfc(ref msg) => {
write!(
f,
"\"{}\" needs an rfc before being allowed inside constants",
msg
)
}
}
}
}
impl Error for ConstEvalError {
fn description(&self) -> &str {
use self::ConstEvalError::*;
match *self {
NeedsRfc(_) => "this feature needs an rfc before being allowed inside constants",
}
}
fn cause(&self) -> Option<&dyn Error> {
None
}
}
// Extra machine state for CTFE, and the Machine instance
pub struct CompileTimeInterpreter<'a, 'mir, 'tcx: 'a+'mir> {
/// When this value is negative, it indicates the number of interpreter
/// steps *until* the loop detector is enabled. When it is positive, it is
/// the number of steps after the detector has been enabled modulo the loop
/// detector period.
pub(super) steps_since_detector_enabled: isize,
/// Extra state to detect loops.
pub(super) loop_detector: snapshot::InfiniteLoopDetector<'a, 'mir, 'tcx>,
}
impl<'a, 'mir, 'tcx> CompileTimeInterpreter<'a, 'mir, 'tcx> {
fn new() -> Self {
CompileTimeInterpreter {
loop_detector: Default::default(),
steps_since_detector_enabled: -STEPS_UNTIL_DETECTOR_ENABLED,
}
}
}
impl<K: Hash + Eq, V> interpret::AllocMap<K, V> for FxHashMap<K, V> {
#[inline(always)]
fn contains_key<Q: ?Sized + Hash + Eq>(&mut self, k: &Q) -> bool
where K: Borrow<Q>
{
FxHashMap::contains_key(self, k)
}
#[inline(always)]
fn insert(&mut self, k: K, v: V) -> Option<V>
{
FxHashMap::insert(self, k, v)
}
#[inline(always)]
fn remove<Q: ?Sized + Hash + Eq>(&mut self, k: &Q) -> Option<V>
where K: Borrow<Q>
{
FxHashMap::remove(self, k)
}
#[inline(always)]
fn filter_map_collect<T>(&self, mut f: impl FnMut(&K, &V) -> Option<T>) -> Vec<T> {
self.iter()
.filter_map(move |(k, v)| f(k, &*v))
.collect()
}
#[inline(always)]
fn get_or<E>(
&self,
k: K,
vacant: impl FnOnce() -> Result<V, E>
) -> Result<&V, E>
{
match self.get(&k) {
Some(v) => Ok(v),
None => {
vacant()?;
bug!("The CTFE machine shouldn't ever need to extend the alloc_map when reading")
}
}
}
#[inline(always)]
fn get_mut_or<E>(
&mut self,
k: K,
vacant: impl FnOnce() -> Result<V, E>
) -> Result<&mut V, E>
{
match self.entry(k) {
Entry::Occupied(e) => Ok(e.into_mut()),
Entry::Vacant(e) => {
let v = vacant()?;
Ok(e.insert(v))
}
}
}
}
type CompileTimeEvalContext<'a, 'mir, 'tcx> =
EvalContext<'a, 'mir, 'tcx, CompileTimeInterpreter<'a, 'mir, 'tcx>>;
impl interpret::MayLeak for ! {
#[inline(always)]
fn may_leak(self) -> bool {
// `self` is uninhabited
self
}
}
impl<'a, 'mir, 'tcx> interpret::Machine<'a, 'mir, 'tcx>
for CompileTimeInterpreter<'a, 'mir, 'tcx>
{
type MemoryKinds = !;
type PointerTag = ();
type FrameExtra = ();
type MemoryExtra = ();
type AllocExtra = ();
type MemoryMap = FxHashMap<AllocId, (MemoryKind<!>, Allocation)>;
const STATIC_KIND: Option<!> = None; // no copying of statics allowed
#[inline(always)]
fn enforce_validity(_ecx: &EvalContext<'a, 'mir, 'tcx, Self>) -> bool {
false // for now, we don't enforce validity
}
fn find_fn(
ecx: &mut EvalContext<'a, 'mir, 'tcx, Self>,
instance: ty::Instance<'tcx>,
args: &[OpTy<'tcx>],
dest: Option<PlaceTy<'tcx>>,
ret: Option<mir::BasicBlock>,
) -> EvalResult<'tcx, Option<&'mir mir::Mir<'tcx>>> {
debug!("eval_fn_call: {:?}", instance);
// Execution might have wandered off into other crates, so we cannot to a stability-
// sensitive check here. But we can at least rule out functions that are not const
// at all.
if !ecx.tcx.is_const_fn_raw(instance.def_id()) {
// Some functions we support even if they are non-const -- but avoid testing
// that for const fn! We certainly do *not* want to actually call the fn
// though, so be sure we return here.
return if ecx.hook_fn(instance, args, dest)? {
ecx.goto_block(ret)?; // fully evaluated and done
Ok(None)
} else {
err!(MachineError(format!("calling non-const function `{}`", instance)))
};
}
// This is a const fn. Call it.
Ok(Some(match ecx.load_mir(instance.def) {
Ok(mir) => mir,
Err(err) => {
if let EvalErrorKind::NoMirFor(ref path) = err.kind {
return Err(
ConstEvalError::NeedsRfc(format!("calling extern function `{}`", path))
.into(),
);
}
return Err(err);
}
}))
}
fn call_intrinsic(
ecx: &mut EvalContext<'a, 'mir, 'tcx, Self>,
instance: ty::Instance<'tcx>,
args: &[OpTy<'tcx>],
dest: PlaceTy<'tcx>,
) -> EvalResult<'tcx> {
if ecx.emulate_intrinsic(instance, args, dest)? {
return Ok(());
}
// An intrinsic that we do not support
let intrinsic_name = &ecx.tcx.item_name(instance.def_id()).as_str()[..];
Err(
ConstEvalError::NeedsRfc(format!("calling intrinsic `{}`", intrinsic_name)).into()
)
}
fn ptr_op(
_ecx: &EvalContext<'a, 'mir, 'tcx, Self>,
_bin_op: mir::BinOp,
_left: Scalar,
_left_layout: TyLayout<'tcx>,
_right: Scalar,
_right_layout: TyLayout<'tcx>,
) -> EvalResult<'tcx, (Scalar, bool)> {
Err(
ConstEvalError::NeedsRfc("pointer arithmetic or comparison".to_string()).into(),
)
}
fn find_foreign_static(
_def_id: DefId,
_tcx: TyCtxtAt<'a, 'tcx, 'tcx>,
_memory_extra: &(),
) -> EvalResult<'tcx, Cow<'tcx, Allocation<Self::PointerTag>>> {
err!(ReadForeignStatic)
}
#[inline(always)]
fn adjust_static_allocation<'b>(
alloc: &'b Allocation,
_memory_extra: &(),
) -> Cow<'b, Allocation<Self::PointerTag>> {
// We do not use a tag so we can just cheaply forward the reference
Cow::Borrowed(alloc)
}
fn box_alloc(
_ecx: &mut EvalContext<'a, 'mir, 'tcx, Self>,
_dest: PlaceTy<'tcx>,
) -> EvalResult<'tcx> {
Err(
ConstEvalError::NeedsRfc("heap allocations via `box` keyword".to_string()).into(),
)
}
fn before_terminator(ecx: &mut EvalContext<'a, 'mir, 'tcx, Self>) -> EvalResult<'tcx> {
{
let steps = &mut ecx.machine.steps_since_detector_enabled;
*steps += 1;
if *steps < 0 {
return Ok(());
}
*steps %= DETECTOR_SNAPSHOT_PERIOD;
if *steps != 0 {
return Ok(());
}
}
let span = ecx.frame().span;
ecx.machine.loop_detector.observe_and_analyze(
&ecx.tcx,
span,
&ecx.memory,
&ecx.stack[..],
)
}
#[inline(always)]
fn tag_new_allocation(
_ecx: &mut EvalContext<'a, 'mir, 'tcx, Self>,
ptr: Pointer,
_kind: MemoryKind<Self::MemoryKinds>,
) -> EvalResult<'tcx, Pointer> {
Ok(ptr)
}
#[inline(always)]
fn stack_push(
_ecx: &mut EvalContext<'a, 'mir, 'tcx, Self>,
) -> EvalResult<'tcx> {
Ok(())
}
/// Called immediately before a stack frame gets popped
#[inline(always)]
fn stack_pop(
_ecx: &mut EvalContext<'a, 'mir, 'tcx, Self>,
_extra: (),
) -> EvalResult<'tcx> {
Ok(())
}
}
/// Project to a field of a (variant of a) const
pub fn const_field<'a, 'tcx>(
tcx: TyCtxt<'a, 'tcx, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
instance: ty::Instance<'tcx>,
variant: Option<VariantIdx>,
field: mir::Field,
value: &'tcx ty::Const<'tcx>,
) -> ::rustc::mir::interpret::ConstEvalResult<'tcx> {
trace!("const_field: {:?}, {:?}, {:?}", instance, field, value);
let ecx = mk_eval_cx(tcx, instance, param_env).unwrap();
let result = (|| {
// get the operand again
let op = const_to_op(&ecx, value)?;
// downcast
let down = match variant {
None => op,
Some(variant) => ecx.operand_downcast(op, variant)?
};
// then project
let field = ecx.operand_field(down, field.index() as u64)?;
// and finally move back to the const world, always normalizing because
// this is not called for statics.
op_to_const(&ecx, field, true)
})();
result.map_err(|error| {
let err = error_to_const_error(&ecx, error);
err.report_as_error(ecx.tcx, "could not access field of constant");
ErrorHandled::Reported
})
}
pub fn const_variant_index<'a, 'tcx>(
tcx: TyCtxt<'a, 'tcx, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
instance: ty::Instance<'tcx>,
val: &'tcx ty::Const<'tcx>,
) -> EvalResult<'tcx, VariantIdx> {
trace!("const_variant_index: {:?}, {:?}", instance, val);
let ecx = mk_eval_cx(tcx, instance, param_env).unwrap();
let op = const_to_op(&ecx, val)?;
Ok(ecx.read_discriminant(op)?.1)
}
pub fn error_to_const_error<'a, 'mir, 'tcx>(
ecx: &EvalContext<'a, 'mir, 'tcx, CompileTimeInterpreter<'a, 'mir, 'tcx>>,
mut error: EvalError<'tcx>
) -> ConstEvalErr<'tcx> {
error.print_backtrace();
let stacktrace = ecx.generate_stacktrace(None);
ConstEvalErr { error: error.kind, stacktrace, span: ecx.tcx.span }
}
fn validate_and_turn_into_const<'a, 'tcx>(
tcx: ty::TyCtxt<'a, 'tcx, 'tcx>,
constant: RawConst<'tcx>,
key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
) -> ::rustc::mir::interpret::ConstEvalResult<'tcx> {
let cid = key.value;
let ecx = mk_eval_cx(tcx, cid.instance, key.param_env).unwrap();
let val = (|| {
let op = ecx.raw_const_to_mplace(constant)?.into();
// FIXME: Once the visitor infrastructure landed, change validation to
// work directly on `MPlaceTy`.
let mut ref_tracking = RefTracking::new(op);
while let Some((op, path)) = ref_tracking.todo.pop() {
ecx.validate_operand(
op,
path,
Some(&mut ref_tracking),
/* const_mode */ true,
)?;
}
// Now that we validated, turn this into a proper constant
let def_id = cid.instance.def.def_id();
let normalize = tcx.is_static(def_id).is_none() && cid.promoted.is_none();
op_to_const(&ecx, op, normalize)
})();
val.map_err(|error| {
let err = error_to_const_error(&ecx, error);
match err.struct_error(ecx.tcx, "it is undefined behavior to use this value") {
Ok(mut diag) => {
diag.note("The rules on what exactly is undefined behavior aren't clear, \
so this check might be overzealous. Please open an issue on the rust compiler \
repository if you believe it should not be considered undefined behavior",
);
diag.emit();
ErrorHandled::Reported
}
Err(err) => err,
}
})
}
pub fn const_eval_provider<'a, 'tcx>(
tcx: TyCtxt<'a, 'tcx, 'tcx>,
key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
) -> ::rustc::mir::interpret::ConstEvalResult<'tcx> {
// see comment in const_eval_provider for what we're doing here
if key.param_env.reveal == Reveal::All {
let mut key = key.clone();
key.param_env.reveal = Reveal::UserFacing;
match tcx.const_eval(key) {
// try again with reveal all as requested
Err(ErrorHandled::TooGeneric) => {
// Promoteds should never be "too generic" when getting evaluated.
// They either don't get evaluated, or we are in a monomorphic context
assert!(key.value.promoted.is_none());
},
// dedupliate calls
other => return other,
}
}
tcx.const_eval_raw(key).and_then(|val| {
validate_and_turn_into_const(tcx, val, key)
})
}
pub fn const_eval_raw_provider<'a, 'tcx>(
tcx: TyCtxt<'a, 'tcx, 'tcx>,
key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>,
) -> ::rustc::mir::interpret::ConstEvalRawResult<'tcx> {
// Because the constant is computed twice (once per value of `Reveal`), we are at risk of
// reporting the same error twice here. To resolve this, we check whether we can evaluate the
// constant in the more restrictive `Reveal::UserFacing`, which most likely already was
// computed. For a large percentage of constants that will already have succeeded. Only
// associated constants of generic functions will fail due to not enough monomorphization
// information being available.
// In case we fail in the `UserFacing` variant, we just do the real computation.
if key.param_env.reveal == Reveal::All {
let mut key = key.clone();
key.param_env.reveal = Reveal::UserFacing;
match tcx.const_eval_raw(key) {
// try again with reveal all as requested
Err(ErrorHandled::TooGeneric) => {},
// dedupliate calls
other => return other,
}
}
// the first trace is for replicating an ice
// There's no tracking issue, but the next two lines concatenated link to the discussion on
// zulip. It's not really possible to test this, because it doesn't show up in diagnostics
// or MIR.
// https://rust-lang.zulipchat.com/#narrow/stream/146212-t-compiler.2Fconst-eval/
// subject/anon_const_instance_printing/near/135980032
trace!("const eval: {}", key.value.instance);
trace!("const eval: {:?}", key);
let cid = key.value;
let def_id = cid.instance.def.def_id();
if let Some(id) = tcx.hir.as_local_node_id(def_id) {
let tables = tcx.typeck_tables_of(def_id);
// Do match-check before building MIR
if let Err(ErrorReported) = tcx.check_match(def_id) {
return Err(ErrorHandled::Reported)
}
if let hir::BodyOwnerKind::Const = tcx.hir.body_owner_kind(id) {
tcx.mir_const_qualif(def_id);
}
// Do not continue into miri if typeck errors occurred; it will fail horribly
if tables.tainted_by_errors {
return Err(ErrorHandled::Reported)
}
};
let (res, ecx) = eval_body_and_ecx(tcx, cid, None, key.param_env);
res.and_then(|place| {
Ok(RawConst {
alloc_id: place.to_ptr().expect("we allocated this ptr!").alloc_id,
ty: place.layout.ty
})
}).map_err(|error| {
let err = error_to_const_error(&ecx, error);
// errors in statics are always emitted as fatal errors
if tcx.is_static(def_id).is_some() {
let err = err.report_as_error(ecx.tcx, "could not evaluate static initializer");
// check that a static never produces `TooGeneric`
if tcx.sess.err_count() == 0 {
span_bug!(ecx.tcx.span, "static eval failure didn't emit an error: {:#?}", err);
}
err
} else if def_id.is_local() {
// constant defined in this crate, we can figure out a lint level!
match tcx.describe_def(def_id) {
// constants never produce a hard error at the definition site. Anything else is
// a backwards compatibility hazard (and will break old versions of winapi for sure)
//
// note that validation may still cause a hard error on this very same constant,
// because any code that existed before validation could not have failed validation
// thus preventing such a hard error from being a backwards compatibility hazard
Some(Def::Const(_)) | Some(Def::AssociatedConst(_)) => {
let node_id = tcx.hir.as_local_node_id(def_id).unwrap();
err.report_as_lint(
tcx.at(tcx.def_span(def_id)),
"any use of this value will cause an error",
node_id,
)
},
// promoting runtime code is only allowed to error if it references broken constants
// any other kind of error will be reported to the user as a deny-by-default lint
_ => if let Some(p) = cid.promoted {
let span = tcx.optimized_mir(def_id).promoted[p].span;
if let EvalErrorKind::ReferencedConstant = err.error {
err.report_as_error(
tcx.at(span),
"evaluation of constant expression failed",
)
} else {
err.report_as_lint(
tcx.at(span),
"reaching this expression at runtime will panic or abort",
tcx.hir.as_local_node_id(def_id).unwrap(),
)
}
// anything else (array lengths, enum initializers, constant patterns) are reported
// as hard errors
} else {
err.report_as_error(
ecx.tcx,
"evaluation of constant value failed",
)
},
}
} else {
// use of broken constant from other crate
err.report_as_error(ecx.tcx, "could not evaluate constant")
}
})
}