28a0b25f42
overflow-checking for rhs of shift operators Subtask of #22020 ([RFC 560](https://github.com/rust-lang/rfcs/blob/master/text/0560-integer-overflow.md))
2631 lines
106 KiB
Rust
2631 lines
106 KiB
Rust
// Copyright 2012-2014 The Rust Project Developers. See the COPYRIGHT
|
|
// file at the top-level directory of this distribution and at
|
|
// http://rust-lang.org/COPYRIGHT.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
|
|
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
|
|
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
|
|
// option. This file may not be copied, modified, or distributed
|
|
// except according to those terms.
|
|
|
|
//! # Translation of Expressions
|
|
//!
|
|
//! The expr module handles translation of expressions. The most general
|
|
//! translation routine is `trans()`, which will translate an expression
|
|
//! into a datum. `trans_into()` is also available, which will translate
|
|
//! an expression and write the result directly into memory, sometimes
|
|
//! avoiding the need for a temporary stack slot. Finally,
|
|
//! `trans_to_lvalue()` is available if you'd like to ensure that the
|
|
//! result has cleanup scheduled.
|
|
//!
|
|
//! Internally, each of these functions dispatches to various other
|
|
//! expression functions depending on the kind of expression. We divide
|
|
//! up expressions into:
|
|
//!
|
|
//! - **Datum expressions:** Those that most naturally yield values.
|
|
//! Examples would be `22`, `box x`, or `a + b` (when not overloaded).
|
|
//! - **DPS expressions:** Those that most naturally write into a location
|
|
//! in memory. Examples would be `foo()` or `Point { x: 3, y: 4 }`.
|
|
//! - **Statement expressions:** That that do not generate a meaningful
|
|
//! result. Examples would be `while { ... }` or `return 44`.
|
|
//!
|
|
//! Public entry points:
|
|
//!
|
|
//! - `trans_into(bcx, expr, dest) -> bcx`: evaluates an expression,
|
|
//! storing the result into `dest`. This is the preferred form, if you
|
|
//! can manage it.
|
|
//!
|
|
//! - `trans(bcx, expr) -> DatumBlock`: evaluates an expression, yielding
|
|
//! `Datum` with the result. You can then store the datum, inspect
|
|
//! the value, etc. This may introduce temporaries if the datum is a
|
|
//! structural type.
|
|
//!
|
|
//! - `trans_to_lvalue(bcx, expr, "...") -> DatumBlock`: evaluates an
|
|
//! expression and ensures that the result has a cleanup associated with it,
|
|
//! creating a temporary stack slot if necessary.
|
|
//!
|
|
//! - `trans_local_var -> Datum`: looks up a local variable or upvar.
|
|
|
|
#![allow(non_camel_case_types)]
|
|
|
|
pub use self::cast_kind::*;
|
|
pub use self::Dest::*;
|
|
use self::lazy_binop_ty::*;
|
|
|
|
use back::abi;
|
|
use llvm::{self, ValueRef};
|
|
use middle::check_const;
|
|
use middle::def;
|
|
use middle::mem_categorization::Typer;
|
|
use middle::subst::{self, Substs};
|
|
use trans::{_match, adt, asm, base, callee, closure, consts, controlflow};
|
|
use trans::base::*;
|
|
use trans::build::*;
|
|
use trans::cleanup::{self, CleanupMethods};
|
|
use trans::common::*;
|
|
use trans::datum::*;
|
|
use trans::debuginfo::{self, DebugLoc, ToDebugLoc};
|
|
use trans::glue;
|
|
use trans::machine;
|
|
use trans::meth;
|
|
use trans::monomorphize;
|
|
use trans::tvec;
|
|
use trans::type_of;
|
|
use middle::ty::{struct_fields, tup_fields};
|
|
use middle::ty::{AdjustDerefRef, AdjustReifyFnPointer, AdjustUnsafeFnPointer, AutoUnsafe};
|
|
use middle::ty::{AutoPtr};
|
|
use middle::ty::{self, Ty};
|
|
use middle::ty::MethodCall;
|
|
use util::common::indenter;
|
|
use util::ppaux::Repr;
|
|
use trans::machine::{llsize_of, llsize_of_alloc};
|
|
use trans::type_::Type;
|
|
|
|
use syntax::{ast, ast_util, codemap};
|
|
use syntax::parse::token::InternedString;
|
|
use syntax::ptr::P;
|
|
use syntax::parse::token;
|
|
use std::iter::repeat;
|
|
use std::mem;
|
|
use std::rc::Rc;
|
|
|
|
// Destinations
|
|
|
|
// These are passed around by the code generating functions to track the
|
|
// destination of a computation's value.
|
|
|
|
#[derive(Copy, PartialEq)]
|
|
pub enum Dest {
|
|
SaveIn(ValueRef),
|
|
Ignore,
|
|
}
|
|
|
|
impl Dest {
|
|
pub fn to_string(&self, ccx: &CrateContext) -> String {
|
|
match *self {
|
|
SaveIn(v) => format!("SaveIn({})", ccx.tn().val_to_string(v)),
|
|
Ignore => "Ignore".to_string()
|
|
}
|
|
}
|
|
}
|
|
|
|
/// This function is equivalent to `trans(bcx, expr).store_to_dest(dest)` but it may generate
|
|
/// better optimized LLVM code.
|
|
pub fn trans_into<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &ast::Expr,
|
|
dest: Dest)
|
|
-> Block<'blk, 'tcx> {
|
|
let mut bcx = bcx;
|
|
|
|
debuginfo::set_source_location(bcx.fcx, expr.id, expr.span);
|
|
|
|
if bcx.tcx().adjustments.borrow().contains_key(&expr.id) {
|
|
// use trans, which may be less efficient but
|
|
// which will perform the adjustments:
|
|
let datum = unpack_datum!(bcx, trans(bcx, expr));
|
|
return datum.store_to_dest(bcx, dest, expr.id);
|
|
}
|
|
|
|
let qualif = bcx.tcx().const_qualif_map.borrow()[expr.id];
|
|
if !qualif.intersects(check_const::NOT_CONST | check_const::NEEDS_DROP) {
|
|
if !qualif.intersects(check_const::PREFER_IN_PLACE) {
|
|
if let SaveIn(lldest) = dest {
|
|
let global = consts::get_const_expr_as_global(bcx.ccx(), expr, qualif,
|
|
bcx.fcx.param_substs);
|
|
// Cast pointer to destination, because constants
|
|
// have different types.
|
|
let lldest = PointerCast(bcx, lldest, val_ty(global));
|
|
memcpy_ty(bcx, lldest, global, expr_ty_adjusted(bcx, expr));
|
|
}
|
|
// Don't do anything in the Ignore case, consts don't need drop.
|
|
return bcx;
|
|
} else {
|
|
// The only way we're going to see a `const` at this point is if
|
|
// it prefers in-place instantiation, likely because it contains
|
|
// `[x; N]` somewhere within.
|
|
match expr.node {
|
|
ast::ExprPath(..) => {
|
|
match bcx.def(expr.id) {
|
|
def::DefConst(did) => {
|
|
let const_expr = consts::get_const_expr(bcx.ccx(), did, expr);
|
|
// Temporarily get cleanup scopes out of the way,
|
|
// as they require sub-expressions to be contained
|
|
// inside the current AST scope.
|
|
// These should record no cleanups anyways, `const`
|
|
// can't have destructors.
|
|
let scopes = mem::replace(&mut *bcx.fcx.scopes.borrow_mut(),
|
|
vec![]);
|
|
// Lock emitted debug locations to the location of
|
|
// the constant reference expression.
|
|
debuginfo::with_source_location_override(bcx.fcx,
|
|
expr.debug_loc(),
|
|
|| {
|
|
bcx = trans_into(bcx, const_expr, dest)
|
|
});
|
|
let scopes = mem::replace(&mut *bcx.fcx.scopes.borrow_mut(),
|
|
scopes);
|
|
assert!(scopes.is_empty());
|
|
return bcx;
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
_ => {}
|
|
}
|
|
}
|
|
}
|
|
|
|
debug!("trans_into() expr={}", expr.repr(bcx.tcx()));
|
|
|
|
let cleanup_debug_loc = debuginfo::get_cleanup_debug_loc_for_ast_node(bcx.ccx(),
|
|
expr.id,
|
|
expr.span,
|
|
false);
|
|
bcx.fcx.push_ast_cleanup_scope(cleanup_debug_loc);
|
|
|
|
let kind = ty::expr_kind(bcx.tcx(), expr);
|
|
bcx = match kind {
|
|
ty::LvalueExpr | ty::RvalueDatumExpr => {
|
|
trans_unadjusted(bcx, expr).store_to_dest(dest, expr.id)
|
|
}
|
|
ty::RvalueDpsExpr => {
|
|
trans_rvalue_dps_unadjusted(bcx, expr, dest)
|
|
}
|
|
ty::RvalueStmtExpr => {
|
|
trans_rvalue_stmt_unadjusted(bcx, expr)
|
|
}
|
|
};
|
|
|
|
bcx.fcx.pop_and_trans_ast_cleanup_scope(bcx, expr.id)
|
|
}
|
|
|
|
/// Translates an expression, returning a datum (and new block) encapsulating the result. When
|
|
/// possible, it is preferred to use `trans_into`, as that may avoid creating a temporary on the
|
|
/// stack.
|
|
pub fn trans<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &ast::Expr)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
debug!("trans(expr={})", bcx.expr_to_string(expr));
|
|
|
|
let mut bcx = bcx;
|
|
let fcx = bcx.fcx;
|
|
let qualif = bcx.tcx().const_qualif_map.borrow()[expr.id];
|
|
let adjusted_global = !qualif.intersects(check_const::NON_STATIC_BORROWS);
|
|
let global = if !qualif.intersects(check_const::NOT_CONST | check_const::NEEDS_DROP) {
|
|
let global = consts::get_const_expr_as_global(bcx.ccx(), expr, qualif,
|
|
bcx.fcx.param_substs);
|
|
|
|
if qualif.intersects(check_const::HAS_STATIC_BORROWS) {
|
|
// Is borrowed as 'static, must return lvalue.
|
|
|
|
// Cast pointer to global, because constants have different types.
|
|
let const_ty = expr_ty_adjusted(bcx, expr);
|
|
let llty = type_of::type_of(bcx.ccx(), const_ty);
|
|
let global = PointerCast(bcx, global, llty.ptr_to());
|
|
let datum = Datum::new(global, const_ty, Lvalue);
|
|
return DatumBlock::new(bcx, datum.to_expr_datum());
|
|
}
|
|
|
|
// Otherwise, keep around and perform adjustments, if needed.
|
|
let const_ty = if adjusted_global {
|
|
expr_ty_adjusted(bcx, expr)
|
|
} else {
|
|
expr_ty(bcx, expr)
|
|
};
|
|
|
|
// This could use a better heuristic.
|
|
Some(if type_is_immediate(bcx.ccx(), const_ty) {
|
|
// Cast pointer to global, because constants have different types.
|
|
let llty = type_of::type_of(bcx.ccx(), const_ty);
|
|
let global = PointerCast(bcx, global, llty.ptr_to());
|
|
// Maybe just get the value directly, instead of loading it?
|
|
immediate_rvalue(load_ty(bcx, global, const_ty), const_ty)
|
|
} else {
|
|
let llty = type_of::type_of(bcx.ccx(), const_ty);
|
|
// HACK(eddyb) get around issues with lifetime intrinsics.
|
|
let scratch = alloca_no_lifetime(bcx, llty, "const");
|
|
let lldest = if !ty::type_is_structural(const_ty) {
|
|
// Cast pointer to slot, because constants have different types.
|
|
PointerCast(bcx, scratch, val_ty(global))
|
|
} else {
|
|
// In this case, memcpy_ty calls llvm.memcpy after casting both
|
|
// source and destination to i8*, so we don't need any casts.
|
|
scratch
|
|
};
|
|
memcpy_ty(bcx, lldest, global, const_ty);
|
|
Datum::new(scratch, const_ty, Rvalue::new(ByRef))
|
|
})
|
|
} else {
|
|
None
|
|
};
|
|
|
|
let cleanup_debug_loc = debuginfo::get_cleanup_debug_loc_for_ast_node(bcx.ccx(),
|
|
expr.id,
|
|
expr.span,
|
|
false);
|
|
fcx.push_ast_cleanup_scope(cleanup_debug_loc);
|
|
let datum = match global {
|
|
Some(rvalue) => rvalue.to_expr_datum(),
|
|
None => unpack_datum!(bcx, trans_unadjusted(bcx, expr))
|
|
};
|
|
let datum = if adjusted_global {
|
|
datum // trans::consts already performed adjustments.
|
|
} else {
|
|
unpack_datum!(bcx, apply_adjustments(bcx, expr, datum))
|
|
};
|
|
bcx = fcx.pop_and_trans_ast_cleanup_scope(bcx, expr.id);
|
|
return DatumBlock::new(bcx, datum);
|
|
}
|
|
|
|
pub fn get_len(bcx: Block, fat_ptr: ValueRef) -> ValueRef {
|
|
GEPi(bcx, fat_ptr, &[0, abi::FAT_PTR_EXTRA])
|
|
}
|
|
|
|
pub fn get_dataptr(bcx: Block, fat_ptr: ValueRef) -> ValueRef {
|
|
GEPi(bcx, fat_ptr, &[0, abi::FAT_PTR_ADDR])
|
|
}
|
|
|
|
pub fn copy_fat_ptr(bcx: Block, src_ptr: ValueRef, dst_ptr: ValueRef) {
|
|
Store(bcx, Load(bcx, get_dataptr(bcx, src_ptr)), get_dataptr(bcx, dst_ptr));
|
|
Store(bcx, Load(bcx, get_len(bcx, src_ptr)), get_len(bcx, dst_ptr));
|
|
}
|
|
|
|
// Retrieve the information we are losing (making dynamic) in an unsizing
|
|
// adjustment.
|
|
//
|
|
// The `unadjusted_val` argument is a bit funny. It is intended
|
|
// for use in an upcast, where the new vtable for an object will
|
|
// be drived from the old one. Hence it is a pointer to the fat
|
|
// pointer.
|
|
pub fn unsized_info_bcx<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
kind: &ty::UnsizeKind<'tcx>,
|
|
id: ast::NodeId,
|
|
unadjusted_ty: Ty<'tcx>,
|
|
unadjusted_val: ValueRef, // see above (*)
|
|
param_substs: &'tcx subst::Substs<'tcx>)
|
|
-> ValueRef {
|
|
unsized_info(
|
|
bcx.ccx(),
|
|
kind,
|
|
id,
|
|
unadjusted_ty,
|
|
param_substs,
|
|
|| Load(bcx, GEPi(bcx, unadjusted_val, &[0, abi::FAT_PTR_EXTRA])))
|
|
}
|
|
|
|
// Same as `unsize_info_bcx`, but does not require a bcx -- instead it
|
|
// takes an extra closure to compute the upcast vtable.
|
|
pub fn unsized_info<'ccx, 'tcx, MK_UPCAST_VTABLE>(
|
|
ccx: &CrateContext<'ccx, 'tcx>,
|
|
kind: &ty::UnsizeKind<'tcx>,
|
|
id: ast::NodeId,
|
|
unadjusted_ty: Ty<'tcx>,
|
|
param_substs: &'tcx subst::Substs<'tcx>,
|
|
mk_upcast_vtable: MK_UPCAST_VTABLE) // see notes above
|
|
-> ValueRef
|
|
where MK_UPCAST_VTABLE: FnOnce() -> ValueRef
|
|
{
|
|
debug!("unsized_info(kind={:?}, id={}, unadjusted_ty={})",
|
|
kind, id, unadjusted_ty.repr(ccx.tcx()));
|
|
match kind {
|
|
&ty::UnsizeLength(len) => C_uint(ccx, len),
|
|
&ty::UnsizeStruct(box ref k, tp_index) => match unadjusted_ty.sty {
|
|
ty::ty_struct(_, ref substs) => {
|
|
let ty_substs = substs.types.get_slice(subst::TypeSpace);
|
|
unsized_info(ccx, k, id, ty_substs[tp_index], param_substs,
|
|
mk_upcast_vtable)
|
|
}
|
|
_ => ccx.sess().bug(&format!("UnsizeStruct with bad sty: {}",
|
|
unadjusted_ty.repr(ccx.tcx())))
|
|
},
|
|
&ty::UnsizeVtable(ty::TyTrait { ref principal, .. }, _) => {
|
|
// Note that we preserve binding levels here:
|
|
let substs = principal.0.substs.with_self_ty(unadjusted_ty).erase_regions();
|
|
let substs = ccx.tcx().mk_substs(substs);
|
|
let trait_ref = ty::Binder(Rc::new(ty::TraitRef { def_id: principal.def_id(),
|
|
substs: substs }));
|
|
let trait_ref = monomorphize::apply_param_substs(ccx.tcx(),
|
|
param_substs,
|
|
&trait_ref);
|
|
consts::ptrcast(meth::get_vtable(ccx, trait_ref, param_substs),
|
|
Type::vtable_ptr(ccx))
|
|
}
|
|
&ty::UnsizeUpcast(_) => {
|
|
// For now, upcasts are limited to changes in marker
|
|
// traits, and hence never actually require an actual
|
|
// change to the vtable.
|
|
mk_upcast_vtable()
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Helper for trans that apply adjustments from `expr` to `datum`, which should be the unadjusted
|
|
/// translation of `expr`.
|
|
fn apply_adjustments<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &ast::Expr,
|
|
datum: Datum<'tcx, Expr>)
|
|
-> DatumBlock<'blk, 'tcx, Expr>
|
|
{
|
|
let mut bcx = bcx;
|
|
let mut datum = datum;
|
|
let adjustment = match bcx.tcx().adjustments.borrow().get(&expr.id).cloned() {
|
|
None => {
|
|
return DatumBlock::new(bcx, datum);
|
|
}
|
|
Some(adj) => { adj }
|
|
};
|
|
debug!("unadjusted datum for expr {}: {} adjustment={:?}",
|
|
expr.repr(bcx.tcx()),
|
|
datum.to_string(bcx.ccx()),
|
|
adjustment);
|
|
match adjustment {
|
|
AdjustReifyFnPointer(_def_id) => {
|
|
// FIXME(#19925) once fn item types are
|
|
// zero-sized, we'll need to do something here
|
|
}
|
|
AdjustUnsafeFnPointer => {
|
|
// purely a type-level thing
|
|
}
|
|
AdjustDerefRef(ref adj) => {
|
|
let (autoderefs, use_autoref) = match adj.autoref {
|
|
// Extracting a value from a box counts as a deref, but if we are
|
|
// just converting Box<[T, ..n]> to Box<[T]> we aren't really doing
|
|
// a deref (and wouldn't if we could treat Box like a normal struct).
|
|
Some(ty::AutoUnsizeUniq(..)) => (adj.autoderefs - 1, true),
|
|
// We are a bit paranoid about adjustments and thus might have a re-
|
|
// borrow here which merely derefs and then refs again (it might have
|
|
// a different region or mutability, but we don't care here. It might
|
|
// also be just in case we need to unsize. But if there are no nested
|
|
// adjustments then it should be a no-op).
|
|
Some(ty::AutoPtr(_, _, None)) |
|
|
Some(ty::AutoUnsafe(_, None)) if adj.autoderefs == 1 => {
|
|
match datum.ty.sty {
|
|
// Don't skip a conversion from Box<T> to &T, etc.
|
|
ty::ty_rptr(..) => {
|
|
let method_call = MethodCall::autoderef(expr.id, adj.autoderefs-1);
|
|
let method = bcx.tcx().method_map.borrow().get(&method_call).is_some();
|
|
if method {
|
|
// Don't skip an overloaded deref.
|
|
(adj.autoderefs, true)
|
|
} else {
|
|
(adj.autoderefs - 1, false)
|
|
}
|
|
}
|
|
_ => (adj.autoderefs, true),
|
|
}
|
|
}
|
|
_ => (adj.autoderefs, true)
|
|
};
|
|
|
|
if autoderefs > 0 {
|
|
// Schedule cleanup.
|
|
let lval = unpack_datum!(bcx, datum.to_lvalue_datum(bcx, "auto_deref", expr.id));
|
|
datum = unpack_datum!(
|
|
bcx, deref_multiple(bcx, expr, lval.to_expr_datum(), autoderefs));
|
|
}
|
|
|
|
// (You might think there is a more elegant way to do this than a
|
|
// use_autoref bool, but then you remember that the borrow checker exists).
|
|
if let (true, &Some(ref a)) = (use_autoref, &adj.autoref) {
|
|
datum = unpack_datum!(bcx, apply_autoref(a,
|
|
bcx,
|
|
expr,
|
|
datum));
|
|
}
|
|
}
|
|
}
|
|
debug!("after adjustments, datum={}", datum.to_string(bcx.ccx()));
|
|
return DatumBlock::new(bcx, datum);
|
|
|
|
fn apply_autoref<'blk, 'tcx>(autoref: &ty::AutoRef<'tcx>,
|
|
bcx: Block<'blk, 'tcx>,
|
|
expr: &ast::Expr,
|
|
datum: Datum<'tcx, Expr>)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let mut bcx = bcx;
|
|
let mut datum = datum;
|
|
|
|
let datum = match autoref {
|
|
&AutoPtr(_, _, ref a) | &AutoUnsafe(_, ref a) => {
|
|
debug!(" AutoPtr");
|
|
if let &Some(box ref a) = a {
|
|
datum = unpack_datum!(bcx, apply_autoref(a, bcx, expr, datum));
|
|
}
|
|
if !type_is_sized(bcx.tcx(), datum.ty) {
|
|
// Arrange cleanup
|
|
let lval = unpack_datum!(bcx,
|
|
datum.to_lvalue_datum(bcx, "ref_fat_ptr", expr.id));
|
|
unpack_datum!(bcx, ref_fat_ptr(bcx, lval))
|
|
} else {
|
|
unpack_datum!(bcx, auto_ref(bcx, datum, expr))
|
|
}
|
|
}
|
|
&ty::AutoUnsize(ref k) => {
|
|
debug!(" AutoUnsize");
|
|
unpack_datum!(bcx, unsize_expr(bcx, expr, datum, k))
|
|
}
|
|
&ty::AutoUnsizeUniq(ty::UnsizeLength(len)) => {
|
|
debug!(" AutoUnsizeUniq(UnsizeLength)");
|
|
unpack_datum!(bcx, unsize_unique_vec(bcx, expr, datum, len))
|
|
}
|
|
&ty::AutoUnsizeUniq(ref k) => {
|
|
debug!(" AutoUnsizeUniq");
|
|
unpack_datum!(bcx, unsize_unique_expr(bcx, expr, datum, k))
|
|
}
|
|
};
|
|
|
|
DatumBlock::new(bcx, datum)
|
|
}
|
|
|
|
fn unsize_expr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &ast::Expr,
|
|
datum: Datum<'tcx, Expr>,
|
|
k: &ty::UnsizeKind<'tcx>)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let mut bcx = bcx;
|
|
let tcx = bcx.tcx();
|
|
let datum_ty = datum.ty;
|
|
let unsized_ty = ty::unsize_ty(tcx, datum_ty, k, expr.span);
|
|
debug!("unsized_ty={}", unsized_ty.repr(bcx.tcx()));
|
|
|
|
let info = unsized_info_bcx(bcx, k, expr.id, datum_ty, datum.val, bcx.fcx.param_substs);
|
|
|
|
// Arrange cleanup
|
|
let lval = unpack_datum!(bcx, datum.to_lvalue_datum(bcx, "into_fat_ptr", expr.id));
|
|
|
|
// Compute the base pointer. This doesn't change the pointer value,
|
|
// but merely its type.
|
|
let ptr_ty = type_of::in_memory_type_of(bcx.ccx(), unsized_ty).ptr_to();
|
|
let base = if !type_is_sized(bcx.tcx(), lval.ty) {
|
|
// Normally, the source is a thin pointer and we are
|
|
// adding extra info to make a fat pointer. The exception
|
|
// is when we are upcasting an existing object fat pointer
|
|
// to use a different vtable. In that case, we want to
|
|
// load out the original data pointer so we can repackage
|
|
// it.
|
|
Load(bcx, get_dataptr(bcx, lval.val))
|
|
} else {
|
|
lval.val
|
|
};
|
|
let base = PointerCast(bcx, base, ptr_ty);
|
|
|
|
let llty = type_of::type_of(bcx.ccx(), unsized_ty);
|
|
// HACK(eddyb) get around issues with lifetime intrinsics.
|
|
let scratch = alloca_no_lifetime(bcx, llty, "__fat_ptr");
|
|
Store(bcx, base, get_dataptr(bcx, scratch));
|
|
Store(bcx, info, get_len(bcx, scratch));
|
|
|
|
DatumBlock::new(bcx, Datum::new(scratch, unsized_ty, LvalueExpr))
|
|
}
|
|
|
|
fn unsize_unique_vec<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &ast::Expr,
|
|
datum: Datum<'tcx, Expr>,
|
|
len: uint)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let mut bcx = bcx;
|
|
let tcx = bcx.tcx();
|
|
|
|
let datum_ty = datum.ty;
|
|
|
|
debug!("unsize_unique_vec expr.id={} datum_ty={} len={}",
|
|
expr.id, datum_ty.repr(tcx), len);
|
|
|
|
// We do not arrange cleanup ourselves; if we already are an
|
|
// L-value, then cleanup will have already been scheduled (and
|
|
// the `datum.store_to` call below will emit code to zero the
|
|
// drop flag when moving out of the L-value). If we are an R-value,
|
|
// then we do not need to schedule cleanup.
|
|
|
|
let ll_len = C_uint(bcx.ccx(), len);
|
|
let unit_ty = ty::sequence_element_type(tcx, ty::type_content(datum_ty));
|
|
let vec_ty = ty::mk_uniq(tcx, ty::mk_vec(tcx, unit_ty, None));
|
|
let scratch = rvalue_scratch_datum(bcx, vec_ty, "__unsize_unique");
|
|
|
|
let base = get_dataptr(bcx, scratch.val);
|
|
let base = PointerCast(bcx,
|
|
base,
|
|
type_of::type_of(bcx.ccx(), datum_ty).ptr_to());
|
|
bcx = datum.store_to(bcx, base);
|
|
|
|
Store(bcx, ll_len, get_len(bcx, scratch.val));
|
|
DatumBlock::new(bcx, scratch.to_expr_datum())
|
|
}
|
|
|
|
fn unsize_unique_expr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &ast::Expr,
|
|
datum: Datum<'tcx, Expr>,
|
|
k: &ty::UnsizeKind<'tcx>)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let mut bcx = bcx;
|
|
let tcx = bcx.tcx();
|
|
|
|
let datum_ty = datum.ty;
|
|
let unboxed_ty = match datum_ty.sty {
|
|
ty::ty_uniq(t) => t,
|
|
_ => bcx.sess().bug(&format!("Expected ty_uniq, found {}",
|
|
bcx.ty_to_string(datum_ty)))
|
|
};
|
|
let result_ty = ty::mk_uniq(tcx, ty::unsize_ty(tcx, unboxed_ty, k, expr.span));
|
|
|
|
// We do not arrange cleanup ourselves; if we already are an
|
|
// L-value, then cleanup will have already been scheduled (and
|
|
// the `datum.store_to` call below will emit code to zero the
|
|
// drop flag when moving out of the L-value). If we are an R-value,
|
|
// then we do not need to schedule cleanup.
|
|
|
|
let scratch = rvalue_scratch_datum(bcx, result_ty, "__uniq_fat_ptr");
|
|
let llbox_ty = type_of::type_of(bcx.ccx(), datum_ty);
|
|
let base = PointerCast(bcx, get_dataptr(bcx, scratch.val), llbox_ty.ptr_to());
|
|
bcx = datum.store_to(bcx, base);
|
|
|
|
let info = unsized_info_bcx(bcx, k, expr.id, unboxed_ty, base, bcx.fcx.param_substs);
|
|
Store(bcx, info, get_len(bcx, scratch.val));
|
|
|
|
DatumBlock::new(bcx, scratch.to_expr_datum())
|
|
}
|
|
}
|
|
|
|
/// Translates an expression in "lvalue" mode -- meaning that it returns a reference to the memory
|
|
/// that the expr represents.
|
|
///
|
|
/// If this expression is an rvalue, this implies introducing a temporary. In other words,
|
|
/// something like `x().f` is translated into roughly the equivalent of
|
|
///
|
|
/// { tmp = x(); tmp.f }
|
|
pub fn trans_to_lvalue<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &ast::Expr,
|
|
name: &str)
|
|
-> DatumBlock<'blk, 'tcx, Lvalue> {
|
|
let mut bcx = bcx;
|
|
let datum = unpack_datum!(bcx, trans(bcx, expr));
|
|
return datum.to_lvalue_datum(bcx, name, expr.id);
|
|
}
|
|
|
|
/// A version of `trans` that ignores adjustments. You almost certainly do not want to call this
|
|
/// directly.
|
|
fn trans_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &ast::Expr)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let mut bcx = bcx;
|
|
|
|
debug!("trans_unadjusted(expr={})", bcx.expr_to_string(expr));
|
|
let _indenter = indenter();
|
|
|
|
debuginfo::set_source_location(bcx.fcx, expr.id, expr.span);
|
|
|
|
return match ty::expr_kind(bcx.tcx(), expr) {
|
|
ty::LvalueExpr | ty::RvalueDatumExpr => {
|
|
let datum = unpack_datum!(bcx, {
|
|
trans_datum_unadjusted(bcx, expr)
|
|
});
|
|
|
|
DatumBlock {bcx: bcx, datum: datum}
|
|
}
|
|
|
|
ty::RvalueStmtExpr => {
|
|
bcx = trans_rvalue_stmt_unadjusted(bcx, expr);
|
|
nil(bcx, expr_ty(bcx, expr))
|
|
}
|
|
|
|
ty::RvalueDpsExpr => {
|
|
let ty = expr_ty(bcx, expr);
|
|
if type_is_zero_size(bcx.ccx(), ty) {
|
|
bcx = trans_rvalue_dps_unadjusted(bcx, expr, Ignore);
|
|
nil(bcx, ty)
|
|
} else {
|
|
let scratch = rvalue_scratch_datum(bcx, ty, "");
|
|
bcx = trans_rvalue_dps_unadjusted(
|
|
bcx, expr, SaveIn(scratch.val));
|
|
|
|
// Note: this is not obviously a good idea. It causes
|
|
// immediate values to be loaded immediately after a
|
|
// return from a call or other similar expression,
|
|
// which in turn leads to alloca's having shorter
|
|
// lifetimes and hence larger stack frames. However,
|
|
// in turn it can lead to more register pressure.
|
|
// Still, in practice it seems to increase
|
|
// performance, since we have fewer problems with
|
|
// morestack churn.
|
|
let scratch = unpack_datum!(
|
|
bcx, scratch.to_appropriate_datum(bcx));
|
|
|
|
DatumBlock::new(bcx, scratch.to_expr_datum())
|
|
}
|
|
}
|
|
};
|
|
|
|
fn nil<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, ty: Ty<'tcx>)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let llval = C_undef(type_of::type_of(bcx.ccx(), ty));
|
|
let datum = immediate_rvalue(llval, ty);
|
|
DatumBlock::new(bcx, datum.to_expr_datum())
|
|
}
|
|
}
|
|
|
|
fn trans_datum_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &ast::Expr)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let mut bcx = bcx;
|
|
let fcx = bcx.fcx;
|
|
let _icx = push_ctxt("trans_datum_unadjusted");
|
|
|
|
match expr.node {
|
|
ast::ExprParen(ref e) => {
|
|
trans(bcx, &**e)
|
|
}
|
|
ast::ExprPath(..) => {
|
|
trans_def(bcx, expr, bcx.def(expr.id))
|
|
}
|
|
ast::ExprField(ref base, ident) => {
|
|
trans_rec_field(bcx, &**base, ident.node)
|
|
}
|
|
ast::ExprTupField(ref base, idx) => {
|
|
trans_rec_tup_field(bcx, &**base, idx.node)
|
|
}
|
|
ast::ExprIndex(ref base, ref idx) => {
|
|
trans_index(bcx, expr, &**base, &**idx, MethodCall::expr(expr.id))
|
|
}
|
|
ast::ExprBox(_, ref contents) => {
|
|
// Special case for `Box<T>`
|
|
let box_ty = expr_ty(bcx, expr);
|
|
let contents_ty = expr_ty(bcx, &**contents);
|
|
match box_ty.sty {
|
|
ty::ty_uniq(..) => {
|
|
trans_uniq_expr(bcx, expr, box_ty, &**contents, contents_ty)
|
|
}
|
|
_ => bcx.sess().span_bug(expr.span,
|
|
"expected unique box")
|
|
}
|
|
|
|
}
|
|
ast::ExprLit(ref lit) => trans_immediate_lit(bcx, expr, &**lit),
|
|
ast::ExprBinary(op, ref lhs, ref rhs) => {
|
|
trans_binary(bcx, expr, op, &**lhs, &**rhs)
|
|
}
|
|
ast::ExprUnary(op, ref x) => {
|
|
trans_unary(bcx, expr, op, &**x)
|
|
}
|
|
ast::ExprAddrOf(_, ref x) => {
|
|
match x.node {
|
|
ast::ExprRepeat(..) | ast::ExprVec(..) => {
|
|
// Special case for slices.
|
|
let cleanup_debug_loc =
|
|
debuginfo::get_cleanup_debug_loc_for_ast_node(bcx.ccx(),
|
|
x.id,
|
|
x.span,
|
|
false);
|
|
fcx.push_ast_cleanup_scope(cleanup_debug_loc);
|
|
let datum = unpack_datum!(
|
|
bcx, tvec::trans_slice_vec(bcx, expr, &**x));
|
|
bcx = fcx.pop_and_trans_ast_cleanup_scope(bcx, x.id);
|
|
DatumBlock::new(bcx, datum)
|
|
}
|
|
_ => {
|
|
trans_addr_of(bcx, expr, &**x)
|
|
}
|
|
}
|
|
}
|
|
ast::ExprCast(ref val, _) => {
|
|
// Datum output mode means this is a scalar cast:
|
|
trans_imm_cast(bcx, &**val, expr.id)
|
|
}
|
|
_ => {
|
|
bcx.tcx().sess.span_bug(
|
|
expr.span,
|
|
&format!("trans_rvalue_datum_unadjusted reached \
|
|
fall-through case: {:?}",
|
|
expr.node));
|
|
}
|
|
}
|
|
}
|
|
|
|
fn trans_field<'blk, 'tcx, F>(bcx: Block<'blk, 'tcx>,
|
|
base: &ast::Expr,
|
|
get_idx: F)
|
|
-> DatumBlock<'blk, 'tcx, Expr> where
|
|
F: FnOnce(&'blk ty::ctxt<'tcx>, &[ty::field<'tcx>]) -> uint,
|
|
{
|
|
let mut bcx = bcx;
|
|
let _icx = push_ctxt("trans_rec_field");
|
|
|
|
let base_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, base, "field"));
|
|
let bare_ty = base_datum.ty;
|
|
let repr = adt::represent_type(bcx.ccx(), bare_ty);
|
|
with_field_tys(bcx.tcx(), bare_ty, None, move |discr, field_tys| {
|
|
let ix = get_idx(bcx.tcx(), field_tys);
|
|
let d = base_datum.get_element(
|
|
bcx,
|
|
field_tys[ix].mt.ty,
|
|
|srcval| adt::trans_field_ptr(bcx, &*repr, srcval, discr, ix));
|
|
|
|
if type_is_sized(bcx.tcx(), d.ty) {
|
|
DatumBlock { datum: d.to_expr_datum(), bcx: bcx }
|
|
} else {
|
|
let scratch = rvalue_scratch_datum(bcx, d.ty, "");
|
|
Store(bcx, d.val, get_dataptr(bcx, scratch.val));
|
|
let info = Load(bcx, get_len(bcx, base_datum.val));
|
|
Store(bcx, info, get_len(bcx, scratch.val));
|
|
|
|
DatumBlock::new(bcx, scratch.to_expr_datum())
|
|
|
|
}
|
|
})
|
|
|
|
}
|
|
|
|
/// Translates `base.field`.
|
|
fn trans_rec_field<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
base: &ast::Expr,
|
|
field: ast::Ident)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
trans_field(bcx, base, |tcx, field_tys| ty::field_idx_strict(tcx, field.name, field_tys))
|
|
}
|
|
|
|
/// Translates `base.<idx>`.
|
|
fn trans_rec_tup_field<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
base: &ast::Expr,
|
|
idx: uint)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
trans_field(bcx, base, |_, _| idx)
|
|
}
|
|
|
|
fn trans_index<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
index_expr: &ast::Expr,
|
|
base: &ast::Expr,
|
|
idx: &ast::Expr,
|
|
method_call: MethodCall)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
//! Translates `base[idx]`.
|
|
|
|
let _icx = push_ctxt("trans_index");
|
|
let ccx = bcx.ccx();
|
|
let mut bcx = bcx;
|
|
|
|
let index_expr_debug_loc = index_expr.debug_loc();
|
|
|
|
// Check for overloaded index.
|
|
let method_ty = ccx.tcx()
|
|
.method_map
|
|
.borrow()
|
|
.get(&method_call)
|
|
.map(|method| method.ty);
|
|
let elt_datum = match method_ty {
|
|
Some(method_ty) => {
|
|
let method_ty = monomorphize_type(bcx, method_ty);
|
|
|
|
let base_datum = unpack_datum!(bcx, trans(bcx, base));
|
|
|
|
// Translate index expression.
|
|
let ix_datum = unpack_datum!(bcx, trans(bcx, idx));
|
|
|
|
let ref_ty = // invoked methods have LB regions instantiated:
|
|
ty::no_late_bound_regions(
|
|
bcx.tcx(), &ty::ty_fn_ret(method_ty)).unwrap().unwrap();
|
|
let elt_ty = match ty::deref(ref_ty, true) {
|
|
None => {
|
|
bcx.tcx().sess.span_bug(index_expr.span,
|
|
"index method didn't return a \
|
|
dereferenceable type?!")
|
|
}
|
|
Some(elt_tm) => elt_tm.ty,
|
|
};
|
|
|
|
// Overloaded. Evaluate `trans_overloaded_op`, which will
|
|
// invoke the user's index() method, which basically yields
|
|
// a `&T` pointer. We can then proceed down the normal
|
|
// path (below) to dereference that `&T`.
|
|
let scratch = rvalue_scratch_datum(bcx, ref_ty, "overloaded_index_elt");
|
|
unpack_result!(bcx,
|
|
trans_overloaded_op(bcx,
|
|
index_expr,
|
|
method_call,
|
|
base_datum,
|
|
vec![(ix_datum, idx.id)],
|
|
Some(SaveIn(scratch.val)),
|
|
true));
|
|
let datum = scratch.to_expr_datum();
|
|
if type_is_sized(bcx.tcx(), elt_ty) {
|
|
Datum::new(datum.to_llscalarish(bcx), elt_ty, LvalueExpr)
|
|
} else {
|
|
Datum::new(datum.val, elt_ty, LvalueExpr)
|
|
}
|
|
}
|
|
None => {
|
|
let base_datum = unpack_datum!(bcx, trans_to_lvalue(bcx,
|
|
base,
|
|
"index"));
|
|
|
|
// Translate index expression and cast to a suitable LLVM integer.
|
|
// Rust is less strict than LLVM in this regard.
|
|
let ix_datum = unpack_datum!(bcx, trans(bcx, idx));
|
|
let ix_val = ix_datum.to_llscalarish(bcx);
|
|
let ix_size = machine::llbitsize_of_real(bcx.ccx(),
|
|
val_ty(ix_val));
|
|
let int_size = machine::llbitsize_of_real(bcx.ccx(),
|
|
ccx.int_type());
|
|
let ix_val = {
|
|
if ix_size < int_size {
|
|
if ty::type_is_signed(expr_ty(bcx, idx)) {
|
|
SExt(bcx, ix_val, ccx.int_type())
|
|
} else { ZExt(bcx, ix_val, ccx.int_type()) }
|
|
} else if ix_size > int_size {
|
|
Trunc(bcx, ix_val, ccx.int_type())
|
|
} else {
|
|
ix_val
|
|
}
|
|
};
|
|
|
|
let unit_ty = ty::sequence_element_type(bcx.tcx(), base_datum.ty);
|
|
|
|
let (base, len) = base_datum.get_vec_base_and_len(bcx);
|
|
|
|
debug!("trans_index: base {}", bcx.val_to_string(base));
|
|
debug!("trans_index: len {}", bcx.val_to_string(len));
|
|
|
|
let bounds_check = ICmp(bcx,
|
|
llvm::IntUGE,
|
|
ix_val,
|
|
len,
|
|
index_expr_debug_loc);
|
|
let expect = ccx.get_intrinsic(&("llvm.expect.i1"));
|
|
let expected = Call(bcx,
|
|
expect,
|
|
&[bounds_check, C_bool(ccx, false)],
|
|
None,
|
|
index_expr_debug_loc);
|
|
bcx = with_cond(bcx, expected, |bcx| {
|
|
controlflow::trans_fail_bounds_check(bcx,
|
|
expr_info(index_expr),
|
|
ix_val,
|
|
len)
|
|
});
|
|
let elt = InBoundsGEP(bcx, base, &[ix_val]);
|
|
let elt = PointerCast(bcx, elt, type_of::type_of(ccx, unit_ty).ptr_to());
|
|
Datum::new(elt, unit_ty, LvalueExpr)
|
|
}
|
|
};
|
|
|
|
DatumBlock::new(bcx, elt_datum)
|
|
}
|
|
|
|
fn trans_def<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
ref_expr: &ast::Expr,
|
|
def: def::Def)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
//! Translates a reference to a path.
|
|
|
|
let _icx = push_ctxt("trans_def_lvalue");
|
|
match def {
|
|
def::DefFn(..) | def::DefMethod(..) |
|
|
def::DefStruct(_) | def::DefVariant(..) => {
|
|
let datum = trans_def_fn_unadjusted(bcx.ccx(), ref_expr, def,
|
|
bcx.fcx.param_substs);
|
|
DatumBlock::new(bcx, datum.to_expr_datum())
|
|
}
|
|
def::DefStatic(did, _) => {
|
|
// There are two things that may happen here:
|
|
// 1) If the static item is defined in this crate, it will be
|
|
// translated using `get_item_val`, and we return a pointer to
|
|
// the result.
|
|
// 2) If the static item is defined in another crate then we add
|
|
// (or reuse) a declaration of an external global, and return a
|
|
// pointer to that.
|
|
let const_ty = expr_ty(bcx, ref_expr);
|
|
|
|
// For external constants, we don't inline.
|
|
let val = if did.krate == ast::LOCAL_CRATE {
|
|
// Case 1.
|
|
|
|
// The LLVM global has the type of its initializer,
|
|
// which may not be equal to the enum's type for
|
|
// non-C-like enums.
|
|
let val = base::get_item_val(bcx.ccx(), did.node);
|
|
let pty = type_of::type_of(bcx.ccx(), const_ty).ptr_to();
|
|
PointerCast(bcx, val, pty)
|
|
} else {
|
|
// Case 2.
|
|
base::get_extern_const(bcx.ccx(), did, const_ty)
|
|
};
|
|
DatumBlock::new(bcx, Datum::new(val, const_ty, LvalueExpr))
|
|
}
|
|
def::DefConst(_) => {
|
|
bcx.sess().span_bug(ref_expr.span,
|
|
"constant expression should not reach expr::trans_def")
|
|
}
|
|
_ => {
|
|
DatumBlock::new(bcx, trans_local_var(bcx, def).to_expr_datum())
|
|
}
|
|
}
|
|
}
|
|
|
|
fn trans_rvalue_stmt_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &ast::Expr)
|
|
-> Block<'blk, 'tcx> {
|
|
let mut bcx = bcx;
|
|
let _icx = push_ctxt("trans_rvalue_stmt");
|
|
|
|
if bcx.unreachable.get() {
|
|
return bcx;
|
|
}
|
|
|
|
debuginfo::set_source_location(bcx.fcx, expr.id, expr.span);
|
|
|
|
match expr.node {
|
|
ast::ExprParen(ref e) => {
|
|
trans_into(bcx, &**e, Ignore)
|
|
}
|
|
ast::ExprBreak(label_opt) => {
|
|
controlflow::trans_break(bcx, expr, label_opt)
|
|
}
|
|
ast::ExprAgain(label_opt) => {
|
|
controlflow::trans_cont(bcx, expr, label_opt)
|
|
}
|
|
ast::ExprRet(ref ex) => {
|
|
// Check to see if the return expression itself is reachable.
|
|
// This can occur when the inner expression contains a return
|
|
let reachable = if let Some(ref cfg) = bcx.fcx.cfg {
|
|
cfg.node_is_reachable(expr.id)
|
|
} else {
|
|
true
|
|
};
|
|
|
|
if reachable {
|
|
controlflow::trans_ret(bcx, expr, ex.as_ref().map(|e| &**e))
|
|
} else {
|
|
// If it's not reachable, just translate the inner expression
|
|
// directly. This avoids having to manage a return slot when
|
|
// it won't actually be used anyway.
|
|
if let &Some(ref x) = ex {
|
|
bcx = trans_into(bcx, &**x, Ignore);
|
|
}
|
|
// Mark the end of the block as unreachable. Once we get to
|
|
// a return expression, there's no more we should be doing
|
|
// after this.
|
|
Unreachable(bcx);
|
|
bcx
|
|
}
|
|
}
|
|
ast::ExprWhile(ref cond, ref body, _) => {
|
|
controlflow::trans_while(bcx, expr, &**cond, &**body)
|
|
}
|
|
ast::ExprLoop(ref body, _) => {
|
|
controlflow::trans_loop(bcx, expr, &**body)
|
|
}
|
|
ast::ExprAssign(ref dst, ref src) => {
|
|
let src_datum = unpack_datum!(bcx, trans(bcx, &**src));
|
|
let dst_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, &**dst, "assign"));
|
|
|
|
if bcx.fcx.type_needs_drop(dst_datum.ty) {
|
|
// If there are destructors involved, make sure we
|
|
// are copying from an rvalue, since that cannot possible
|
|
// alias an lvalue. We are concerned about code like:
|
|
//
|
|
// a = a
|
|
//
|
|
// but also
|
|
//
|
|
// a = a.b
|
|
//
|
|
// where e.g. a : Option<Foo> and a.b :
|
|
// Option<Foo>. In that case, freeing `a` before the
|
|
// assignment may also free `a.b`!
|
|
//
|
|
// We could avoid this intermediary with some analysis
|
|
// to determine whether `dst` may possibly own `src`.
|
|
debuginfo::set_source_location(bcx.fcx, expr.id, expr.span);
|
|
let src_datum = unpack_datum!(
|
|
bcx, src_datum.to_rvalue_datum(bcx, "ExprAssign"));
|
|
bcx = glue::drop_ty(bcx,
|
|
dst_datum.val,
|
|
dst_datum.ty,
|
|
expr.debug_loc());
|
|
src_datum.store_to(bcx, dst_datum.val)
|
|
} else {
|
|
src_datum.store_to(bcx, dst_datum.val)
|
|
}
|
|
}
|
|
ast::ExprAssignOp(op, ref dst, ref src) => {
|
|
trans_assign_op(bcx, expr, op, &**dst, &**src)
|
|
}
|
|
ast::ExprInlineAsm(ref a) => {
|
|
asm::trans_inline_asm(bcx, a)
|
|
}
|
|
_ => {
|
|
bcx.tcx().sess.span_bug(
|
|
expr.span,
|
|
&format!("trans_rvalue_stmt_unadjusted reached \
|
|
fall-through case: {:?}",
|
|
expr.node));
|
|
}
|
|
}
|
|
}
|
|
|
|
fn trans_rvalue_dps_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &ast::Expr,
|
|
dest: Dest)
|
|
-> Block<'blk, 'tcx> {
|
|
let _icx = push_ctxt("trans_rvalue_dps_unadjusted");
|
|
let mut bcx = bcx;
|
|
let tcx = bcx.tcx();
|
|
|
|
debuginfo::set_source_location(bcx.fcx, expr.id, expr.span);
|
|
|
|
match expr.node {
|
|
ast::ExprParen(ref e) => {
|
|
trans_into(bcx, &**e, dest)
|
|
}
|
|
ast::ExprPath(..) => {
|
|
trans_def_dps_unadjusted(bcx, expr, bcx.def(expr.id), dest)
|
|
}
|
|
ast::ExprIf(ref cond, ref thn, ref els) => {
|
|
controlflow::trans_if(bcx, expr.id, &**cond, &**thn, els.as_ref().map(|e| &**e), dest)
|
|
}
|
|
ast::ExprMatch(ref discr, ref arms, _) => {
|
|
_match::trans_match(bcx, expr, &**discr, &arms[..], dest)
|
|
}
|
|
ast::ExprBlock(ref blk) => {
|
|
controlflow::trans_block(bcx, &**blk, dest)
|
|
}
|
|
ast::ExprStruct(_, ref fields, ref base) => {
|
|
trans_struct(bcx,
|
|
&fields[..],
|
|
base.as_ref().map(|e| &**e),
|
|
expr.span,
|
|
expr.id,
|
|
node_id_type(bcx, expr.id),
|
|
dest)
|
|
}
|
|
ast::ExprRange(ref start, ref end) => {
|
|
// FIXME it is just not right that we are synthesising ast nodes in
|
|
// trans. Shudder.
|
|
fn make_field(field_name: &str, expr: P<ast::Expr>) -> ast::Field {
|
|
ast::Field {
|
|
ident: codemap::dummy_spanned(token::str_to_ident(field_name)),
|
|
expr: expr,
|
|
span: codemap::DUMMY_SP,
|
|
}
|
|
}
|
|
|
|
// A range just desugars into a struct.
|
|
// Note that the type of the start and end may not be the same, but
|
|
// they should only differ in their lifetime, which should not matter
|
|
// in trans.
|
|
let (did, fields, ty_params) = match (start, end) {
|
|
(&Some(ref start), &Some(ref end)) => {
|
|
// Desugar to Range
|
|
let fields = vec![make_field("start", start.clone()),
|
|
make_field("end", end.clone())];
|
|
(tcx.lang_items.range_struct(), fields, vec![node_id_type(bcx, start.id)])
|
|
}
|
|
(&Some(ref start), &None) => {
|
|
// Desugar to RangeFrom
|
|
let fields = vec![make_field("start", start.clone())];
|
|
(tcx.lang_items.range_from_struct(), fields, vec![node_id_type(bcx, start.id)])
|
|
}
|
|
(&None, &Some(ref end)) => {
|
|
// Desugar to RangeTo
|
|
let fields = vec![make_field("end", end.clone())];
|
|
(tcx.lang_items.range_to_struct(), fields, vec![node_id_type(bcx, end.id)])
|
|
}
|
|
_ => {
|
|
// Desugar to RangeFull
|
|
(tcx.lang_items.range_full_struct(), vec![], vec![])
|
|
}
|
|
};
|
|
|
|
if let Some(did) = did {
|
|
let substs = Substs::new_type(ty_params, vec![]);
|
|
trans_struct(bcx,
|
|
&fields,
|
|
None,
|
|
expr.span,
|
|
expr.id,
|
|
ty::mk_struct(tcx, did, tcx.mk_substs(substs)),
|
|
dest)
|
|
} else {
|
|
tcx.sess.span_bug(expr.span,
|
|
"No lang item for ranges (how did we get this far?)")
|
|
}
|
|
}
|
|
ast::ExprTup(ref args) => {
|
|
let numbered_fields: Vec<(uint, &ast::Expr)> =
|
|
args.iter().enumerate().map(|(i, arg)| (i, &**arg)).collect();
|
|
trans_adt(bcx,
|
|
expr_ty(bcx, expr),
|
|
0,
|
|
&numbered_fields[..],
|
|
None,
|
|
dest,
|
|
expr.debug_loc())
|
|
}
|
|
ast::ExprLit(ref lit) => {
|
|
match lit.node {
|
|
ast::LitStr(ref s, _) => {
|
|
tvec::trans_lit_str(bcx, expr, (*s).clone(), dest)
|
|
}
|
|
_ => {
|
|
bcx.tcx()
|
|
.sess
|
|
.span_bug(expr.span,
|
|
"trans_rvalue_dps_unadjusted shouldn't be \
|
|
translating this type of literal")
|
|
}
|
|
}
|
|
}
|
|
ast::ExprVec(..) | ast::ExprRepeat(..) => {
|
|
tvec::trans_fixed_vstore(bcx, expr, dest)
|
|
}
|
|
ast::ExprClosure(_, ref decl, ref body) => {
|
|
let dest = match dest {
|
|
SaveIn(lldest) => closure::Dest::SaveIn(bcx, lldest),
|
|
Ignore => closure::Dest::Ignore(bcx.ccx())
|
|
};
|
|
closure::trans_closure_expr(dest, &**decl, &**body, expr.id, bcx.fcx.param_substs)
|
|
.unwrap_or(bcx)
|
|
}
|
|
ast::ExprCall(ref f, ref args) => {
|
|
if bcx.tcx().is_method_call(expr.id) {
|
|
trans_overloaded_call(bcx,
|
|
expr,
|
|
&**f,
|
|
&args[..],
|
|
Some(dest))
|
|
} else {
|
|
callee::trans_call(bcx,
|
|
expr,
|
|
&**f,
|
|
callee::ArgExprs(&args[..]),
|
|
dest)
|
|
}
|
|
}
|
|
ast::ExprMethodCall(_, _, ref args) => {
|
|
callee::trans_method_call(bcx,
|
|
expr,
|
|
&*args[0],
|
|
callee::ArgExprs(&args[..]),
|
|
dest)
|
|
}
|
|
ast::ExprBinary(op, ref lhs, ref rhs) => {
|
|
// if not overloaded, would be RvalueDatumExpr
|
|
let lhs = unpack_datum!(bcx, trans(bcx, &**lhs));
|
|
let rhs_datum = unpack_datum!(bcx, trans(bcx, &**rhs));
|
|
trans_overloaded_op(bcx, expr, MethodCall::expr(expr.id), lhs,
|
|
vec![(rhs_datum, rhs.id)], Some(dest),
|
|
!ast_util::is_by_value_binop(op.node)).bcx
|
|
}
|
|
ast::ExprUnary(op, ref subexpr) => {
|
|
// if not overloaded, would be RvalueDatumExpr
|
|
let arg = unpack_datum!(bcx, trans(bcx, &**subexpr));
|
|
trans_overloaded_op(bcx, expr, MethodCall::expr(expr.id),
|
|
arg, Vec::new(), Some(dest), !ast_util::is_by_value_unop(op)).bcx
|
|
}
|
|
ast::ExprIndex(ref base, ref idx) => {
|
|
// if not overloaded, would be RvalueDatumExpr
|
|
let base = unpack_datum!(bcx, trans(bcx, &**base));
|
|
let idx_datum = unpack_datum!(bcx, trans(bcx, &**idx));
|
|
trans_overloaded_op(bcx, expr, MethodCall::expr(expr.id), base,
|
|
vec![(idx_datum, idx.id)], Some(dest), true).bcx
|
|
}
|
|
ast::ExprCast(ref val, _) => {
|
|
// DPS output mode means this is a trait cast:
|
|
if ty::type_is_trait(node_id_type(bcx, expr.id)) {
|
|
let trait_ref =
|
|
bcx.tcx().object_cast_map.borrow()
|
|
.get(&expr.id)
|
|
.cloned()
|
|
.unwrap();
|
|
let trait_ref = bcx.monomorphize(&trait_ref);
|
|
let datum = unpack_datum!(bcx, trans(bcx, &**val));
|
|
meth::trans_trait_cast(bcx, datum, expr.id,
|
|
trait_ref, dest)
|
|
} else {
|
|
bcx.tcx().sess.span_bug(expr.span,
|
|
"expr_cast of non-trait");
|
|
}
|
|
}
|
|
ast::ExprAssignOp(op, ref dst, ref src) => {
|
|
trans_assign_op(bcx, expr, op, &**dst, &**src)
|
|
}
|
|
_ => {
|
|
bcx.tcx().sess.span_bug(
|
|
expr.span,
|
|
&format!("trans_rvalue_dps_unadjusted reached fall-through \
|
|
case: {:?}",
|
|
expr.node));
|
|
}
|
|
}
|
|
}
|
|
|
|
fn trans_def_dps_unadjusted<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
ref_expr: &ast::Expr,
|
|
def: def::Def,
|
|
dest: Dest)
|
|
-> Block<'blk, 'tcx> {
|
|
let _icx = push_ctxt("trans_def_dps_unadjusted");
|
|
|
|
let lldest = match dest {
|
|
SaveIn(lldest) => lldest,
|
|
Ignore => { return bcx; }
|
|
};
|
|
|
|
match def {
|
|
def::DefVariant(tid, vid, _) => {
|
|
let variant_info = ty::enum_variant_with_id(bcx.tcx(), tid, vid);
|
|
if variant_info.args.len() > 0 {
|
|
// N-ary variant.
|
|
let llfn = callee::trans_fn_ref(bcx.ccx(), vid,
|
|
ExprId(ref_expr.id),
|
|
bcx.fcx.param_substs).val;
|
|
Store(bcx, llfn, lldest);
|
|
return bcx;
|
|
} else {
|
|
// Nullary variant.
|
|
let ty = expr_ty(bcx, ref_expr);
|
|
let repr = adt::represent_type(bcx.ccx(), ty);
|
|
adt::trans_set_discr(bcx, &*repr, lldest,
|
|
variant_info.disr_val);
|
|
return bcx;
|
|
}
|
|
}
|
|
def::DefStruct(_) => {
|
|
let ty = expr_ty(bcx, ref_expr);
|
|
match ty.sty {
|
|
ty::ty_struct(did, _) if ty::has_dtor(bcx.tcx(), did) => {
|
|
let repr = adt::represent_type(bcx.ccx(), ty);
|
|
adt::trans_set_discr(bcx, &*repr, lldest, 0);
|
|
}
|
|
_ => {}
|
|
}
|
|
bcx
|
|
}
|
|
_ => {
|
|
bcx.tcx().sess.span_bug(ref_expr.span, &format!(
|
|
"Non-DPS def {:?} referened by {}",
|
|
def, bcx.node_id_to_string(ref_expr.id)));
|
|
}
|
|
}
|
|
}
|
|
|
|
pub fn trans_def_fn_unadjusted<'a, 'tcx>(ccx: &CrateContext<'a, 'tcx>,
|
|
ref_expr: &ast::Expr,
|
|
def: def::Def,
|
|
param_substs: &'tcx subst::Substs<'tcx>)
|
|
-> Datum<'tcx, Rvalue> {
|
|
let _icx = push_ctxt("trans_def_datum_unadjusted");
|
|
|
|
match def {
|
|
def::DefFn(did, _) |
|
|
def::DefStruct(did) | def::DefVariant(_, did, _) |
|
|
def::DefMethod(did, def::FromImpl(_)) => {
|
|
callee::trans_fn_ref(ccx, did, ExprId(ref_expr.id), param_substs)
|
|
}
|
|
def::DefMethod(impl_did, def::FromTrait(trait_did)) => {
|
|
meth::trans_static_method_callee(ccx, impl_did,
|
|
trait_did, ref_expr.id,
|
|
param_substs)
|
|
}
|
|
_ => {
|
|
ccx.tcx().sess.span_bug(ref_expr.span, &format!(
|
|
"trans_def_fn_unadjusted invoked on: {:?} for {}",
|
|
def,
|
|
ref_expr.repr(ccx.tcx())));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Translates a reference to a local variable or argument. This always results in an lvalue datum.
|
|
pub fn trans_local_var<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
def: def::Def)
|
|
-> Datum<'tcx, Lvalue> {
|
|
let _icx = push_ctxt("trans_local_var");
|
|
|
|
match def {
|
|
def::DefUpvar(nid, _) => {
|
|
// Can't move upvars, so this is never a ZeroMemLastUse.
|
|
let local_ty = node_id_type(bcx, nid);
|
|
match bcx.fcx.llupvars.borrow().get(&nid) {
|
|
Some(&val) => Datum::new(val, local_ty, Lvalue),
|
|
None => {
|
|
bcx.sess().bug(&format!(
|
|
"trans_local_var: no llval for upvar {} found",
|
|
nid));
|
|
}
|
|
}
|
|
}
|
|
def::DefLocal(nid) => {
|
|
let datum = match bcx.fcx.lllocals.borrow().get(&nid) {
|
|
Some(&v) => v,
|
|
None => {
|
|
bcx.sess().bug(&format!(
|
|
"trans_local_var: no datum for local/arg {} found",
|
|
nid));
|
|
}
|
|
};
|
|
debug!("take_local(nid={}, v={}, ty={})",
|
|
nid, bcx.val_to_string(datum.val), bcx.ty_to_string(datum.ty));
|
|
datum
|
|
}
|
|
_ => {
|
|
bcx.sess().unimpl(&format!(
|
|
"unsupported def type in trans_local_var: {:?}",
|
|
def));
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Helper for enumerating the field types of structs, enums, or records. The optional node ID here
|
|
/// is the node ID of the path identifying the enum variant in use. If none, this cannot possibly
|
|
/// an enum variant (so, if it is and `node_id_opt` is none, this function panics).
|
|
pub fn with_field_tys<'tcx, R, F>(tcx: &ty::ctxt<'tcx>,
|
|
ty: Ty<'tcx>,
|
|
node_id_opt: Option<ast::NodeId>,
|
|
op: F)
|
|
-> R where
|
|
F: FnOnce(ty::Disr, &[ty::field<'tcx>]) -> R,
|
|
{
|
|
match ty.sty {
|
|
ty::ty_struct(did, substs) => {
|
|
let fields = struct_fields(tcx, did, substs);
|
|
let fields = monomorphize::normalize_associated_type(tcx, &fields);
|
|
op(0, &fields[..])
|
|
}
|
|
|
|
ty::ty_tup(ref v) => {
|
|
op(0, &tup_fields(&v[..]))
|
|
}
|
|
|
|
ty::ty_enum(_, substs) => {
|
|
// We want the *variant* ID here, not the enum ID.
|
|
match node_id_opt {
|
|
None => {
|
|
tcx.sess.bug(&format!(
|
|
"cannot get field types from the enum type {} \
|
|
without a node ID",
|
|
ty.repr(tcx)));
|
|
}
|
|
Some(node_id) => {
|
|
let def = tcx.def_map.borrow()[node_id].full_def();
|
|
match def {
|
|
def::DefVariant(enum_id, variant_id, _) => {
|
|
let variant_info = ty::enum_variant_with_id(tcx, enum_id, variant_id);
|
|
let fields = struct_fields(tcx, variant_id, substs);
|
|
let fields = monomorphize::normalize_associated_type(tcx, &fields);
|
|
op(variant_info.disr_val, &fields[..])
|
|
}
|
|
_ => {
|
|
tcx.sess.bug("resolve didn't map this expr to a \
|
|
variant ID")
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
_ => {
|
|
tcx.sess.bug(&format!(
|
|
"cannot get field types from the type {}",
|
|
ty.repr(tcx)));
|
|
}
|
|
}
|
|
}
|
|
|
|
fn trans_struct<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
fields: &[ast::Field],
|
|
base: Option<&ast::Expr>,
|
|
expr_span: codemap::Span,
|
|
expr_id: ast::NodeId,
|
|
ty: Ty<'tcx>,
|
|
dest: Dest) -> Block<'blk, 'tcx> {
|
|
let _icx = push_ctxt("trans_rec");
|
|
|
|
let tcx = bcx.tcx();
|
|
with_field_tys(tcx, ty, Some(expr_id), |discr, field_tys| {
|
|
let mut need_base: Vec<bool> = repeat(true).take(field_tys.len()).collect();
|
|
|
|
let numbered_fields = fields.iter().map(|field| {
|
|
let opt_pos =
|
|
field_tys.iter().position(|field_ty|
|
|
field_ty.name == field.ident.node.name);
|
|
let result = match opt_pos {
|
|
Some(i) => {
|
|
need_base[i] = false;
|
|
(i, &*field.expr)
|
|
}
|
|
None => {
|
|
tcx.sess.span_bug(field.span,
|
|
"Couldn't find field in struct type")
|
|
}
|
|
};
|
|
result
|
|
}).collect::<Vec<_>>();
|
|
let optbase = match base {
|
|
Some(base_expr) => {
|
|
let mut leftovers = Vec::new();
|
|
for (i, b) in need_base.iter().enumerate() {
|
|
if *b {
|
|
leftovers.push((i, field_tys[i].mt.ty));
|
|
}
|
|
}
|
|
Some(StructBaseInfo {expr: base_expr,
|
|
fields: leftovers })
|
|
}
|
|
None => {
|
|
if need_base.iter().any(|b| *b) {
|
|
tcx.sess.span_bug(expr_span, "missing fields and no base expr")
|
|
}
|
|
None
|
|
}
|
|
};
|
|
|
|
trans_adt(bcx,
|
|
ty,
|
|
discr,
|
|
&numbered_fields,
|
|
optbase,
|
|
dest,
|
|
DebugLoc::At(expr_id, expr_span))
|
|
})
|
|
}
|
|
|
|
/// Information that `trans_adt` needs in order to fill in the fields
|
|
/// of a struct copied from a base struct (e.g., from an expression
|
|
/// like `Foo { a: b, ..base }`.
|
|
///
|
|
/// Note that `fields` may be empty; the base expression must always be
|
|
/// evaluated for side-effects.
|
|
pub struct StructBaseInfo<'a, 'tcx> {
|
|
/// The base expression; will be evaluated after all explicit fields.
|
|
expr: &'a ast::Expr,
|
|
/// The indices of fields to copy paired with their types.
|
|
fields: Vec<(uint, Ty<'tcx>)>
|
|
}
|
|
|
|
/// Constructs an ADT instance:
|
|
///
|
|
/// - `fields` should be a list of field indices paired with the
|
|
/// expression to store into that field. The initializers will be
|
|
/// evaluated in the order specified by `fields`.
|
|
///
|
|
/// - `optbase` contains information on the base struct (if any) from
|
|
/// which remaining fields are copied; see comments on `StructBaseInfo`.
|
|
pub fn trans_adt<'a, 'blk, 'tcx>(mut bcx: Block<'blk, 'tcx>,
|
|
ty: Ty<'tcx>,
|
|
discr: ty::Disr,
|
|
fields: &[(uint, &ast::Expr)],
|
|
optbase: Option<StructBaseInfo<'a, 'tcx>>,
|
|
dest: Dest,
|
|
debug_location: DebugLoc)
|
|
-> Block<'blk, 'tcx> {
|
|
let _icx = push_ctxt("trans_adt");
|
|
let fcx = bcx.fcx;
|
|
let repr = adt::represent_type(bcx.ccx(), ty);
|
|
|
|
debug_location.apply(bcx.fcx);
|
|
|
|
// If we don't care about the result, just make a
|
|
// temporary stack slot
|
|
let addr = match dest {
|
|
SaveIn(pos) => pos,
|
|
Ignore => alloc_ty(bcx, ty, "temp"),
|
|
};
|
|
|
|
// This scope holds intermediates that must be cleaned should
|
|
// panic occur before the ADT as a whole is ready.
|
|
let custom_cleanup_scope = fcx.push_custom_cleanup_scope();
|
|
|
|
if ty::type_is_simd(bcx.tcx(), ty) {
|
|
// Issue 23112: The original logic appeared vulnerable to same
|
|
// order-of-eval bug. But, SIMD values are tuple-structs;
|
|
// i.e. functional record update (FRU) syntax is unavailable.
|
|
//
|
|
// To be safe, double-check that we did not get here via FRU.
|
|
assert!(optbase.is_none());
|
|
|
|
// This is the constructor of a SIMD type, such types are
|
|
// always primitive machine types and so do not have a
|
|
// destructor or require any clean-up.
|
|
let llty = type_of::type_of(bcx.ccx(), ty);
|
|
|
|
// keep a vector as a register, and running through the field
|
|
// `insertelement`ing them directly into that register
|
|
// (i.e. avoid GEPi and `store`s to an alloca) .
|
|
let mut vec_val = C_undef(llty);
|
|
|
|
for &(i, ref e) in fields {
|
|
let block_datum = trans(bcx, &**e);
|
|
bcx = block_datum.bcx;
|
|
let position = C_uint(bcx.ccx(), i);
|
|
let value = block_datum.datum.to_llscalarish(bcx);
|
|
vec_val = InsertElement(bcx, vec_val, value, position);
|
|
}
|
|
Store(bcx, vec_val, addr);
|
|
} else if let Some(base) = optbase {
|
|
// Issue 23112: If there is a base, then order-of-eval
|
|
// requires field expressions eval'ed before base expression.
|
|
|
|
// First, trans field expressions to temporary scratch values.
|
|
let scratch_vals: Vec<_> = fields.iter().map(|&(i, ref e)| {
|
|
let datum = unpack_datum!(bcx, trans(bcx, &**e));
|
|
(i, datum)
|
|
}).collect();
|
|
|
|
debug_location.apply(bcx.fcx);
|
|
|
|
// Second, trans the base to the dest.
|
|
assert_eq!(discr, 0);
|
|
|
|
match ty::expr_kind(bcx.tcx(), &*base.expr) {
|
|
ty::RvalueDpsExpr | ty::RvalueDatumExpr if !bcx.fcx.type_needs_drop(ty) => {
|
|
bcx = trans_into(bcx, &*base.expr, SaveIn(addr));
|
|
},
|
|
ty::RvalueStmtExpr => bcx.tcx().sess.bug("unexpected expr kind for struct base expr"),
|
|
_ => {
|
|
let base_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, &*base.expr, "base"));
|
|
for &(i, t) in &base.fields {
|
|
let datum = base_datum.get_element(
|
|
bcx, t, |srcval| adt::trans_field_ptr(bcx, &*repr, srcval, discr, i));
|
|
assert!(type_is_sized(bcx.tcx(), datum.ty));
|
|
let dest = adt::trans_field_ptr(bcx, &*repr, addr, discr, i);
|
|
bcx = datum.store_to(bcx, dest);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Finally, move scratch field values into actual field locations
|
|
for (i, datum) in scratch_vals.into_iter() {
|
|
let dest = adt::trans_field_ptr(bcx, &*repr, addr, discr, i);
|
|
bcx = datum.store_to(bcx, dest);
|
|
}
|
|
} else {
|
|
// No base means we can write all fields directly in place.
|
|
for &(i, ref e) in fields {
|
|
let dest = adt::trans_field_ptr(bcx, &*repr, addr, discr, i);
|
|
let e_ty = expr_ty_adjusted(bcx, &**e);
|
|
bcx = trans_into(bcx, &**e, SaveIn(dest));
|
|
let scope = cleanup::CustomScope(custom_cleanup_scope);
|
|
fcx.schedule_lifetime_end(scope, dest);
|
|
fcx.schedule_drop_mem(scope, dest, e_ty);
|
|
}
|
|
}
|
|
|
|
adt::trans_set_discr(bcx, &*repr, addr, discr);
|
|
|
|
fcx.pop_custom_cleanup_scope(custom_cleanup_scope);
|
|
|
|
// If we don't care about the result drop the temporary we made
|
|
match dest {
|
|
SaveIn(_) => bcx,
|
|
Ignore => {
|
|
bcx = glue::drop_ty(bcx, addr, ty, debug_location);
|
|
base::call_lifetime_end(bcx, addr);
|
|
bcx
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
fn trans_immediate_lit<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &ast::Expr,
|
|
lit: &ast::Lit)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
// must not be a string constant, that is a RvalueDpsExpr
|
|
let _icx = push_ctxt("trans_immediate_lit");
|
|
let ty = expr_ty(bcx, expr);
|
|
let v = consts::const_lit(bcx.ccx(), expr, lit);
|
|
immediate_rvalue_bcx(bcx, v, ty).to_expr_datumblock()
|
|
}
|
|
|
|
fn trans_unary<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &ast::Expr,
|
|
op: ast::UnOp,
|
|
sub_expr: &ast::Expr)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let ccx = bcx.ccx();
|
|
let mut bcx = bcx;
|
|
let _icx = push_ctxt("trans_unary_datum");
|
|
|
|
let method_call = MethodCall::expr(expr.id);
|
|
|
|
// The only overloaded operator that is translated to a datum
|
|
// is an overloaded deref, since it is always yields a `&T`.
|
|
// Otherwise, we should be in the RvalueDpsExpr path.
|
|
assert!(
|
|
op == ast::UnDeref ||
|
|
!ccx.tcx().method_map.borrow().contains_key(&method_call));
|
|
|
|
let un_ty = expr_ty(bcx, expr);
|
|
|
|
let debug_loc = expr.debug_loc();
|
|
|
|
match op {
|
|
ast::UnNot => {
|
|
let datum = unpack_datum!(bcx, trans(bcx, sub_expr));
|
|
let llresult = Not(bcx, datum.to_llscalarish(bcx), debug_loc);
|
|
immediate_rvalue_bcx(bcx, llresult, un_ty).to_expr_datumblock()
|
|
}
|
|
ast::UnNeg => {
|
|
let datum = unpack_datum!(bcx, trans(bcx, sub_expr));
|
|
let val = datum.to_llscalarish(bcx);
|
|
let llneg = {
|
|
if ty::type_is_fp(un_ty) {
|
|
FNeg(bcx, val, debug_loc)
|
|
} else {
|
|
Neg(bcx, val, debug_loc)
|
|
}
|
|
};
|
|
immediate_rvalue_bcx(bcx, llneg, un_ty).to_expr_datumblock()
|
|
}
|
|
ast::UnUniq => {
|
|
trans_uniq_expr(bcx, expr, un_ty, sub_expr, expr_ty(bcx, sub_expr))
|
|
}
|
|
ast::UnDeref => {
|
|
let datum = unpack_datum!(bcx, trans(bcx, sub_expr));
|
|
deref_once(bcx, expr, datum, method_call)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn trans_uniq_expr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
box_expr: &ast::Expr,
|
|
box_ty: Ty<'tcx>,
|
|
contents: &ast::Expr,
|
|
contents_ty: Ty<'tcx>)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let _icx = push_ctxt("trans_uniq_expr");
|
|
let fcx = bcx.fcx;
|
|
assert!(type_is_sized(bcx.tcx(), contents_ty));
|
|
let llty = type_of::type_of(bcx.ccx(), contents_ty);
|
|
let size = llsize_of(bcx.ccx(), llty);
|
|
let align = C_uint(bcx.ccx(), type_of::align_of(bcx.ccx(), contents_ty));
|
|
let llty_ptr = llty.ptr_to();
|
|
let Result { bcx, val } = malloc_raw_dyn(bcx,
|
|
llty_ptr,
|
|
box_ty,
|
|
size,
|
|
align,
|
|
box_expr.debug_loc());
|
|
// Unique boxes do not allocate for zero-size types. The standard library
|
|
// may assume that `free` is never called on the pointer returned for
|
|
// `Box<ZeroSizeType>`.
|
|
let bcx = if llsize_of_alloc(bcx.ccx(), llty) == 0 {
|
|
trans_into(bcx, contents, SaveIn(val))
|
|
} else {
|
|
let custom_cleanup_scope = fcx.push_custom_cleanup_scope();
|
|
fcx.schedule_free_value(cleanup::CustomScope(custom_cleanup_scope),
|
|
val, cleanup::HeapExchange, contents_ty);
|
|
let bcx = trans_into(bcx, contents, SaveIn(val));
|
|
fcx.pop_custom_cleanup_scope(custom_cleanup_scope);
|
|
bcx
|
|
};
|
|
immediate_rvalue_bcx(bcx, val, box_ty).to_expr_datumblock()
|
|
}
|
|
|
|
fn ref_fat_ptr<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
lval: Datum<'tcx, Lvalue>)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let dest_ty = ty::mk_imm_rptr(bcx.tcx(), bcx.tcx().mk_region(ty::ReStatic), lval.ty);
|
|
let scratch = rvalue_scratch_datum(bcx, dest_ty, "__fat_ptr");
|
|
memcpy_ty(bcx, scratch.val, lval.val, scratch.ty);
|
|
|
|
DatumBlock::new(bcx, scratch.to_expr_datum())
|
|
}
|
|
|
|
fn trans_addr_of<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &ast::Expr,
|
|
subexpr: &ast::Expr)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let _icx = push_ctxt("trans_addr_of");
|
|
let mut bcx = bcx;
|
|
let sub_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, subexpr, "addr_of"));
|
|
if !type_is_sized(bcx.tcx(), sub_datum.ty) {
|
|
// DST lvalue, close to a fat pointer
|
|
ref_fat_ptr(bcx, sub_datum)
|
|
} else {
|
|
// Sized value, ref to a thin pointer
|
|
let ty = expr_ty(bcx, expr);
|
|
immediate_rvalue_bcx(bcx, sub_datum.val, ty).to_expr_datumblock()
|
|
}
|
|
}
|
|
|
|
// Important to get types for both lhs and rhs, because one might be _|_
|
|
// and the other not.
|
|
fn trans_eager_binop<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
binop_expr: &ast::Expr,
|
|
binop_ty: Ty<'tcx>,
|
|
op: ast::BinOp,
|
|
lhs_t: Ty<'tcx>,
|
|
lhs: ValueRef,
|
|
rhs_t: Ty<'tcx>,
|
|
rhs: ValueRef)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let _icx = push_ctxt("trans_eager_binop");
|
|
|
|
let tcx = bcx.tcx();
|
|
let is_simd = ty::type_is_simd(tcx, lhs_t);
|
|
let intype = if is_simd {
|
|
ty::simd_type(tcx, lhs_t)
|
|
} else {
|
|
lhs_t
|
|
};
|
|
let is_float = ty::type_is_fp(intype);
|
|
let is_signed = ty::type_is_signed(intype);
|
|
let info = expr_info(binop_expr);
|
|
|
|
let binop_debug_loc = binop_expr.debug_loc();
|
|
|
|
let mut bcx = bcx;
|
|
let val = match op.node {
|
|
ast::BiAdd => {
|
|
if is_float {
|
|
FAdd(bcx, lhs, rhs, binop_debug_loc)
|
|
} else {
|
|
let (newbcx, res) = with_overflow_check(
|
|
bcx, OverflowOp::Add, info, lhs_t, lhs, rhs, binop_debug_loc);
|
|
bcx = newbcx;
|
|
res
|
|
}
|
|
}
|
|
ast::BiSub => {
|
|
if is_float {
|
|
FSub(bcx, lhs, rhs, binop_debug_loc)
|
|
} else {
|
|
let (newbcx, res) = with_overflow_check(
|
|
bcx, OverflowOp::Sub, info, lhs_t, lhs, rhs, binop_debug_loc);
|
|
bcx = newbcx;
|
|
res
|
|
}
|
|
}
|
|
ast::BiMul => {
|
|
if is_float {
|
|
FMul(bcx, lhs, rhs, binop_debug_loc)
|
|
} else {
|
|
let (newbcx, res) = with_overflow_check(
|
|
bcx, OverflowOp::Mul, info, lhs_t, lhs, rhs, binop_debug_loc);
|
|
bcx = newbcx;
|
|
res
|
|
}
|
|
}
|
|
ast::BiDiv => {
|
|
if is_float {
|
|
FDiv(bcx, lhs, rhs, binop_debug_loc)
|
|
} else {
|
|
// Only zero-check integers; fp /0 is NaN
|
|
bcx = base::fail_if_zero_or_overflows(bcx,
|
|
expr_info(binop_expr),
|
|
op,
|
|
lhs,
|
|
rhs,
|
|
rhs_t);
|
|
if is_signed {
|
|
SDiv(bcx, lhs, rhs, binop_debug_loc)
|
|
} else {
|
|
UDiv(bcx, lhs, rhs, binop_debug_loc)
|
|
}
|
|
}
|
|
}
|
|
ast::BiRem => {
|
|
if is_float {
|
|
FRem(bcx, lhs, rhs, binop_debug_loc)
|
|
} else {
|
|
// Only zero-check integers; fp %0 is NaN
|
|
bcx = base::fail_if_zero_or_overflows(bcx,
|
|
expr_info(binop_expr),
|
|
op, lhs, rhs, rhs_t);
|
|
if is_signed {
|
|
SRem(bcx, lhs, rhs, binop_debug_loc)
|
|
} else {
|
|
URem(bcx, lhs, rhs, binop_debug_loc)
|
|
}
|
|
}
|
|
}
|
|
ast::BiBitOr => Or(bcx, lhs, rhs, binop_debug_loc),
|
|
ast::BiBitAnd => And(bcx, lhs, rhs, binop_debug_loc),
|
|
ast::BiBitXor => Xor(bcx, lhs, rhs, binop_debug_loc),
|
|
ast::BiShl => {
|
|
let (newbcx, res) = with_overflow_check(
|
|
bcx, OverflowOp::Shl, info, lhs_t, lhs, rhs, binop_debug_loc);
|
|
bcx = newbcx;
|
|
res
|
|
}
|
|
ast::BiShr => {
|
|
let (newbcx, res) = with_overflow_check(
|
|
bcx, OverflowOp::Shr, info, lhs_t, lhs, rhs, binop_debug_loc);
|
|
bcx = newbcx;
|
|
res
|
|
}
|
|
ast::BiEq | ast::BiNe | ast::BiLt | ast::BiGe | ast::BiLe | ast::BiGt => {
|
|
if is_simd {
|
|
base::compare_simd_types(bcx, lhs, rhs, intype, op.node, binop_debug_loc)
|
|
} else {
|
|
base::compare_scalar_types(bcx, lhs, rhs, intype, op.node, binop_debug_loc)
|
|
}
|
|
}
|
|
_ => {
|
|
bcx.tcx().sess.span_bug(binop_expr.span, "unexpected binop");
|
|
}
|
|
};
|
|
|
|
immediate_rvalue_bcx(bcx, val, binop_ty).to_expr_datumblock()
|
|
}
|
|
|
|
// refinement types would obviate the need for this
|
|
enum lazy_binop_ty {
|
|
lazy_and,
|
|
lazy_or,
|
|
}
|
|
|
|
fn trans_lazy_binop<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
binop_expr: &ast::Expr,
|
|
op: lazy_binop_ty,
|
|
a: &ast::Expr,
|
|
b: &ast::Expr)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let _icx = push_ctxt("trans_lazy_binop");
|
|
let binop_ty = expr_ty(bcx, binop_expr);
|
|
let fcx = bcx.fcx;
|
|
|
|
let DatumBlock {bcx: past_lhs, datum: lhs} = trans(bcx, a);
|
|
let lhs = lhs.to_llscalarish(past_lhs);
|
|
|
|
if past_lhs.unreachable.get() {
|
|
return immediate_rvalue_bcx(past_lhs, lhs, binop_ty).to_expr_datumblock();
|
|
}
|
|
|
|
let join = fcx.new_id_block("join", binop_expr.id);
|
|
let before_rhs = fcx.new_id_block("before_rhs", b.id);
|
|
|
|
match op {
|
|
lazy_and => CondBr(past_lhs, lhs, before_rhs.llbb, join.llbb, DebugLoc::None),
|
|
lazy_or => CondBr(past_lhs, lhs, join.llbb, before_rhs.llbb, DebugLoc::None)
|
|
}
|
|
|
|
let DatumBlock {bcx: past_rhs, datum: rhs} = trans(before_rhs, b);
|
|
let rhs = rhs.to_llscalarish(past_rhs);
|
|
|
|
if past_rhs.unreachable.get() {
|
|
return immediate_rvalue_bcx(join, lhs, binop_ty).to_expr_datumblock();
|
|
}
|
|
|
|
Br(past_rhs, join.llbb, DebugLoc::None);
|
|
let phi = Phi(join, Type::i1(bcx.ccx()), &[lhs, rhs],
|
|
&[past_lhs.llbb, past_rhs.llbb]);
|
|
|
|
return immediate_rvalue_bcx(join, phi, binop_ty).to_expr_datumblock();
|
|
}
|
|
|
|
fn trans_binary<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &ast::Expr,
|
|
op: ast::BinOp,
|
|
lhs: &ast::Expr,
|
|
rhs: &ast::Expr)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let _icx = push_ctxt("trans_binary");
|
|
let ccx = bcx.ccx();
|
|
|
|
// if overloaded, would be RvalueDpsExpr
|
|
assert!(!ccx.tcx().method_map.borrow().contains_key(&MethodCall::expr(expr.id)));
|
|
|
|
match op.node {
|
|
ast::BiAnd => {
|
|
trans_lazy_binop(bcx, expr, lazy_and, lhs, rhs)
|
|
}
|
|
ast::BiOr => {
|
|
trans_lazy_binop(bcx, expr, lazy_or, lhs, rhs)
|
|
}
|
|
_ => {
|
|
let mut bcx = bcx;
|
|
let lhs_datum = unpack_datum!(bcx, trans(bcx, lhs));
|
|
let rhs_datum = unpack_datum!(bcx, trans(bcx, rhs));
|
|
let binop_ty = expr_ty(bcx, expr);
|
|
|
|
debug!("trans_binary (expr {}): lhs_datum={}",
|
|
expr.id,
|
|
lhs_datum.to_string(ccx));
|
|
let lhs_ty = lhs_datum.ty;
|
|
let lhs = lhs_datum.to_llscalarish(bcx);
|
|
|
|
debug!("trans_binary (expr {}): rhs_datum={}",
|
|
expr.id,
|
|
rhs_datum.to_string(ccx));
|
|
let rhs_ty = rhs_datum.ty;
|
|
let rhs = rhs_datum.to_llscalarish(bcx);
|
|
trans_eager_binop(bcx, expr, binop_ty, op,
|
|
lhs_ty, lhs, rhs_ty, rhs)
|
|
}
|
|
}
|
|
}
|
|
|
|
fn trans_overloaded_op<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &ast::Expr,
|
|
method_call: MethodCall,
|
|
lhs: Datum<'tcx, Expr>,
|
|
rhs: Vec<(Datum<'tcx, Expr>, ast::NodeId)>,
|
|
dest: Option<Dest>,
|
|
autoref: bool)
|
|
-> Result<'blk, 'tcx> {
|
|
let method_ty = (*bcx.tcx().method_map.borrow())[method_call].ty;
|
|
callee::trans_call_inner(bcx,
|
|
expr.debug_loc(),
|
|
monomorphize_type(bcx, method_ty),
|
|
|bcx, arg_cleanup_scope| {
|
|
meth::trans_method_callee(bcx,
|
|
method_call,
|
|
None,
|
|
arg_cleanup_scope)
|
|
},
|
|
callee::ArgOverloadedOp(lhs, rhs, autoref),
|
|
dest)
|
|
}
|
|
|
|
fn trans_overloaded_call<'a, 'blk, 'tcx>(mut bcx: Block<'blk, 'tcx>,
|
|
expr: &ast::Expr,
|
|
callee: &'a ast::Expr,
|
|
args: &'a [P<ast::Expr>],
|
|
dest: Option<Dest>)
|
|
-> Block<'blk, 'tcx> {
|
|
let method_call = MethodCall::expr(expr.id);
|
|
let method_type = (*bcx.tcx()
|
|
.method_map
|
|
.borrow())[method_call]
|
|
.ty;
|
|
let mut all_args = vec!(callee);
|
|
all_args.extend(args.iter().map(|e| &**e));
|
|
unpack_result!(bcx,
|
|
callee::trans_call_inner(bcx,
|
|
expr.debug_loc(),
|
|
monomorphize_type(bcx,
|
|
method_type),
|
|
|bcx, arg_cleanup_scope| {
|
|
meth::trans_method_callee(
|
|
bcx,
|
|
method_call,
|
|
None,
|
|
arg_cleanup_scope)
|
|
},
|
|
callee::ArgOverloadedCall(all_args),
|
|
dest));
|
|
bcx
|
|
}
|
|
|
|
fn int_cast(bcx: Block,
|
|
lldsttype: Type,
|
|
llsrctype: Type,
|
|
llsrc: ValueRef,
|
|
signed: bool)
|
|
-> ValueRef {
|
|
let _icx = push_ctxt("int_cast");
|
|
let srcsz = llsrctype.int_width();
|
|
let dstsz = lldsttype.int_width();
|
|
return if dstsz == srcsz {
|
|
BitCast(bcx, llsrc, lldsttype)
|
|
} else if srcsz > dstsz {
|
|
TruncOrBitCast(bcx, llsrc, lldsttype)
|
|
} else if signed {
|
|
SExtOrBitCast(bcx, llsrc, lldsttype)
|
|
} else {
|
|
ZExtOrBitCast(bcx, llsrc, lldsttype)
|
|
}
|
|
}
|
|
|
|
fn float_cast(bcx: Block,
|
|
lldsttype: Type,
|
|
llsrctype: Type,
|
|
llsrc: ValueRef)
|
|
-> ValueRef {
|
|
let _icx = push_ctxt("float_cast");
|
|
let srcsz = llsrctype.float_width();
|
|
let dstsz = lldsttype.float_width();
|
|
return if dstsz > srcsz {
|
|
FPExt(bcx, llsrc, lldsttype)
|
|
} else if srcsz > dstsz {
|
|
FPTrunc(bcx, llsrc, lldsttype)
|
|
} else { llsrc };
|
|
}
|
|
|
|
#[derive(Copy, PartialEq, Debug)]
|
|
pub enum cast_kind {
|
|
cast_pointer,
|
|
cast_integral,
|
|
cast_float,
|
|
cast_enum,
|
|
cast_other,
|
|
}
|
|
|
|
pub fn cast_type_kind<'tcx>(tcx: &ty::ctxt<'tcx>, t: Ty<'tcx>) -> cast_kind {
|
|
match t.sty {
|
|
ty::ty_char => cast_integral,
|
|
ty::ty_float(..) => cast_float,
|
|
ty::ty_rptr(_, mt) | ty::ty_ptr(mt) => {
|
|
if type_is_sized(tcx, mt.ty) {
|
|
cast_pointer
|
|
} else {
|
|
cast_other
|
|
}
|
|
}
|
|
ty::ty_bare_fn(..) => cast_pointer,
|
|
ty::ty_int(..) => cast_integral,
|
|
ty::ty_uint(..) => cast_integral,
|
|
ty::ty_bool => cast_integral,
|
|
ty::ty_enum(..) => cast_enum,
|
|
_ => cast_other
|
|
}
|
|
}
|
|
|
|
pub fn cast_is_noop<'tcx>(t_in: Ty<'tcx>, t_out: Ty<'tcx>) -> bool {
|
|
match (ty::deref(t_in, true), ty::deref(t_out, true)) {
|
|
(Some(ty::mt{ ty: t_in, .. }), Some(ty::mt{ ty: t_out, .. })) => {
|
|
t_in == t_out
|
|
}
|
|
_ => false
|
|
}
|
|
}
|
|
|
|
fn trans_imm_cast<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &ast::Expr,
|
|
id: ast::NodeId)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let _icx = push_ctxt("trans_cast");
|
|
let mut bcx = bcx;
|
|
let ccx = bcx.ccx();
|
|
|
|
let t_in = expr_ty(bcx, expr);
|
|
let t_out = node_id_type(bcx, id);
|
|
let k_in = cast_type_kind(bcx.tcx(), t_in);
|
|
let k_out = cast_type_kind(bcx.tcx(), t_out);
|
|
let s_in = k_in == cast_integral && ty::type_is_signed(t_in);
|
|
let ll_t_in = type_of::arg_type_of(ccx, t_in);
|
|
let ll_t_out = type_of::arg_type_of(ccx, t_out);
|
|
|
|
// Convert the value to be cast into a ValueRef, either by-ref or
|
|
// by-value as appropriate given its type:
|
|
let mut datum = unpack_datum!(bcx, trans(bcx, expr));
|
|
|
|
if cast_is_noop(datum.ty, t_out) {
|
|
datum.ty = t_out;
|
|
return DatumBlock::new(bcx, datum);
|
|
}
|
|
|
|
let newval = match (k_in, k_out) {
|
|
(cast_integral, cast_integral) => {
|
|
let llexpr = datum.to_llscalarish(bcx);
|
|
int_cast(bcx, ll_t_out, ll_t_in, llexpr, s_in)
|
|
}
|
|
(cast_float, cast_float) => {
|
|
let llexpr = datum.to_llscalarish(bcx);
|
|
float_cast(bcx, ll_t_out, ll_t_in, llexpr)
|
|
}
|
|
(cast_integral, cast_float) => {
|
|
let llexpr = datum.to_llscalarish(bcx);
|
|
if s_in {
|
|
SIToFP(bcx, llexpr, ll_t_out)
|
|
} else { UIToFP(bcx, llexpr, ll_t_out) }
|
|
}
|
|
(cast_float, cast_integral) => {
|
|
let llexpr = datum.to_llscalarish(bcx);
|
|
if ty::type_is_signed(t_out) {
|
|
FPToSI(bcx, llexpr, ll_t_out)
|
|
} else { FPToUI(bcx, llexpr, ll_t_out) }
|
|
}
|
|
(cast_integral, cast_pointer) => {
|
|
let llexpr = datum.to_llscalarish(bcx);
|
|
IntToPtr(bcx, llexpr, ll_t_out)
|
|
}
|
|
(cast_pointer, cast_integral) => {
|
|
let llexpr = datum.to_llscalarish(bcx);
|
|
PtrToInt(bcx, llexpr, ll_t_out)
|
|
}
|
|
(cast_pointer, cast_pointer) => {
|
|
let llexpr = datum.to_llscalarish(bcx);
|
|
PointerCast(bcx, llexpr, ll_t_out)
|
|
}
|
|
(cast_enum, cast_integral) |
|
|
(cast_enum, cast_float) => {
|
|
let mut bcx = bcx;
|
|
let repr = adt::represent_type(ccx, t_in);
|
|
let datum = unpack_datum!(
|
|
bcx, datum.to_lvalue_datum(bcx, "trans_imm_cast", expr.id));
|
|
let llexpr_ptr = datum.to_llref();
|
|
let lldiscrim_a =
|
|
adt::trans_get_discr(bcx, &*repr, llexpr_ptr, Some(Type::i64(ccx)));
|
|
match k_out {
|
|
cast_integral => int_cast(bcx, ll_t_out,
|
|
val_ty(lldiscrim_a),
|
|
lldiscrim_a, true),
|
|
cast_float => SIToFP(bcx, lldiscrim_a, ll_t_out),
|
|
_ => {
|
|
ccx.sess().bug(&format!("translating unsupported cast: \
|
|
{} ({:?}) -> {} ({:?})",
|
|
t_in.repr(bcx.tcx()),
|
|
k_in,
|
|
t_out.repr(bcx.tcx()),
|
|
k_out))
|
|
}
|
|
}
|
|
}
|
|
_ => ccx.sess().bug(&format!("translating unsupported cast: \
|
|
{} ({:?}) -> {} ({:?})",
|
|
t_in.repr(bcx.tcx()),
|
|
k_in,
|
|
t_out.repr(bcx.tcx()),
|
|
k_out))
|
|
};
|
|
return immediate_rvalue_bcx(bcx, newval, t_out).to_expr_datumblock();
|
|
}
|
|
|
|
fn trans_assign_op<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &ast::Expr,
|
|
op: ast::BinOp,
|
|
dst: &ast::Expr,
|
|
src: &ast::Expr)
|
|
-> Block<'blk, 'tcx> {
|
|
let _icx = push_ctxt("trans_assign_op");
|
|
let mut bcx = bcx;
|
|
|
|
debug!("trans_assign_op(expr={})", bcx.expr_to_string(expr));
|
|
|
|
// User-defined operator methods cannot be used with `+=` etc right now
|
|
assert!(!bcx.tcx().method_map.borrow().contains_key(&MethodCall::expr(expr.id)));
|
|
|
|
// Evaluate LHS (destination), which should be an lvalue
|
|
let dst_datum = unpack_datum!(bcx, trans_to_lvalue(bcx, dst, "assign_op"));
|
|
assert!(!bcx.fcx.type_needs_drop(dst_datum.ty));
|
|
let dst_ty = dst_datum.ty;
|
|
let dst = load_ty(bcx, dst_datum.val, dst_datum.ty);
|
|
|
|
// Evaluate RHS
|
|
let rhs_datum = unpack_datum!(bcx, trans(bcx, &*src));
|
|
let rhs_ty = rhs_datum.ty;
|
|
let rhs = rhs_datum.to_llscalarish(bcx);
|
|
|
|
// Perform computation and store the result
|
|
let result_datum = unpack_datum!(
|
|
bcx, trans_eager_binop(bcx, expr, dst_datum.ty, op,
|
|
dst_ty, dst, rhs_ty, rhs));
|
|
return result_datum.store_to(bcx, dst_datum.val);
|
|
}
|
|
|
|
fn auto_ref<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
datum: Datum<'tcx, Expr>,
|
|
expr: &ast::Expr)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let mut bcx = bcx;
|
|
|
|
// Ensure cleanup of `datum` if not already scheduled and obtain
|
|
// a "by ref" pointer.
|
|
let lv_datum = unpack_datum!(bcx, datum.to_lvalue_datum(bcx, "autoref", expr.id));
|
|
|
|
// Compute final type. Note that we are loose with the region and
|
|
// mutability, since those things don't matter in trans.
|
|
let referent_ty = lv_datum.ty;
|
|
let ptr_ty = ty::mk_imm_rptr(bcx.tcx(), bcx.tcx().mk_region(ty::ReStatic), referent_ty);
|
|
|
|
// Get the pointer.
|
|
let llref = lv_datum.to_llref();
|
|
|
|
// Construct the resulting datum, using what was the "by ref"
|
|
// ValueRef of type `referent_ty` to be the "by value" ValueRef
|
|
// of type `&referent_ty`.
|
|
DatumBlock::new(bcx, Datum::new(llref, ptr_ty, RvalueExpr(Rvalue::new(ByValue))))
|
|
}
|
|
|
|
fn deref_multiple<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &ast::Expr,
|
|
datum: Datum<'tcx, Expr>,
|
|
times: uint)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let mut bcx = bcx;
|
|
let mut datum = datum;
|
|
for i in 0..times {
|
|
let method_call = MethodCall::autoderef(expr.id, i);
|
|
datum = unpack_datum!(bcx, deref_once(bcx, expr, datum, method_call));
|
|
}
|
|
DatumBlock { bcx: bcx, datum: datum }
|
|
}
|
|
|
|
fn deref_once<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &ast::Expr,
|
|
datum: Datum<'tcx, Expr>,
|
|
method_call: MethodCall)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
let ccx = bcx.ccx();
|
|
|
|
debug!("deref_once(expr={}, datum={}, method_call={:?})",
|
|
expr.repr(bcx.tcx()),
|
|
datum.to_string(ccx),
|
|
method_call);
|
|
|
|
let mut bcx = bcx;
|
|
|
|
// Check for overloaded deref.
|
|
let method_ty = ccx.tcx().method_map.borrow()
|
|
.get(&method_call).map(|method| method.ty);
|
|
let datum = match method_ty {
|
|
Some(method_ty) => {
|
|
let method_ty = monomorphize_type(bcx, method_ty);
|
|
|
|
// Overloaded. Evaluate `trans_overloaded_op`, which will
|
|
// invoke the user's deref() method, which basically
|
|
// converts from the `Smaht<T>` pointer that we have into
|
|
// a `&T` pointer. We can then proceed down the normal
|
|
// path (below) to dereference that `&T`.
|
|
let datum = match method_call.adjustment {
|
|
// Always perform an AutoPtr when applying an overloaded auto-deref
|
|
ty::AutoDeref(_) => unpack_datum!(bcx, auto_ref(bcx, datum, expr)),
|
|
_ => datum
|
|
};
|
|
|
|
let ref_ty = // invoked methods have their LB regions instantiated
|
|
ty::no_late_bound_regions(
|
|
ccx.tcx(), &ty::ty_fn_ret(method_ty)).unwrap().unwrap();
|
|
let scratch = rvalue_scratch_datum(bcx, ref_ty, "overloaded_deref");
|
|
|
|
unpack_result!(bcx, trans_overloaded_op(bcx, expr, method_call,
|
|
datum, Vec::new(), Some(SaveIn(scratch.val)),
|
|
false));
|
|
scratch.to_expr_datum()
|
|
}
|
|
None => {
|
|
// Not overloaded. We already have a pointer we know how to deref.
|
|
datum
|
|
}
|
|
};
|
|
|
|
let r = match datum.ty.sty {
|
|
ty::ty_uniq(content_ty) => {
|
|
if type_is_sized(bcx.tcx(), content_ty) {
|
|
deref_owned_pointer(bcx, expr, datum, content_ty)
|
|
} else {
|
|
// A fat pointer and a DST lvalue have the same representation
|
|
// just different types. Since there is no temporary for `*e`
|
|
// here (because it is unsized), we cannot emulate the sized
|
|
// object code path for running drop glue and free. Instead,
|
|
// we schedule cleanup for `e`, turning it into an lvalue.
|
|
let datum = unpack_datum!(
|
|
bcx, datum.to_lvalue_datum(bcx, "deref", expr.id));
|
|
|
|
let datum = Datum::new(datum.val, content_ty, LvalueExpr);
|
|
DatumBlock::new(bcx, datum)
|
|
}
|
|
}
|
|
|
|
ty::ty_ptr(ty::mt { ty: content_ty, .. }) |
|
|
ty::ty_rptr(_, ty::mt { ty: content_ty, .. }) => {
|
|
if type_is_sized(bcx.tcx(), content_ty) {
|
|
let ptr = datum.to_llscalarish(bcx);
|
|
|
|
// Always generate an lvalue datum, even if datum.mode is
|
|
// an rvalue. This is because datum.mode is only an
|
|
// rvalue for non-owning pointers like &T or *T, in which
|
|
// case cleanup *is* scheduled elsewhere, by the true
|
|
// owner (or, in the case of *T, by the user).
|
|
DatumBlock::new(bcx, Datum::new(ptr, content_ty, LvalueExpr))
|
|
} else {
|
|
// A fat pointer and a DST lvalue have the same representation
|
|
// just different types.
|
|
DatumBlock::new(bcx, Datum::new(datum.val, content_ty, LvalueExpr))
|
|
}
|
|
}
|
|
|
|
_ => {
|
|
bcx.tcx().sess.span_bug(
|
|
expr.span,
|
|
&format!("deref invoked on expr of illegal type {}",
|
|
datum.ty.repr(bcx.tcx())));
|
|
}
|
|
};
|
|
|
|
debug!("deref_once(expr={}, method_call={:?}, result={})",
|
|
expr.id, method_call, r.datum.to_string(ccx));
|
|
|
|
return r;
|
|
|
|
/// We microoptimize derefs of owned pointers a bit here. Basically, the idea is to make the
|
|
/// deref of an rvalue result in an rvalue. This helps to avoid intermediate stack slots in the
|
|
/// resulting LLVM. The idea here is that, if the `Box<T>` pointer is an rvalue, then we can
|
|
/// schedule a *shallow* free of the `Box<T>` pointer, and then return a ByRef rvalue into the
|
|
/// pointer. Because the free is shallow, it is legit to return an rvalue, because we know that
|
|
/// the contents are not yet scheduled to be freed. The language rules ensure that the contents
|
|
/// will be used (or moved) before the free occurs.
|
|
fn deref_owned_pointer<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
expr: &ast::Expr,
|
|
datum: Datum<'tcx, Expr>,
|
|
content_ty: Ty<'tcx>)
|
|
-> DatumBlock<'blk, 'tcx, Expr> {
|
|
match datum.kind {
|
|
RvalueExpr(Rvalue { mode: ByRef }) => {
|
|
let scope = cleanup::temporary_scope(bcx.tcx(), expr.id);
|
|
let ptr = Load(bcx, datum.val);
|
|
if !type_is_zero_size(bcx.ccx(), content_ty) {
|
|
bcx.fcx.schedule_free_value(scope, ptr, cleanup::HeapExchange, content_ty);
|
|
}
|
|
}
|
|
RvalueExpr(Rvalue { mode: ByValue }) => {
|
|
let scope = cleanup::temporary_scope(bcx.tcx(), expr.id);
|
|
if !type_is_zero_size(bcx.ccx(), content_ty) {
|
|
bcx.fcx.schedule_free_value(scope, datum.val, cleanup::HeapExchange,
|
|
content_ty);
|
|
}
|
|
}
|
|
LvalueExpr => { }
|
|
}
|
|
|
|
// If we had an rvalue in, we produce an rvalue out.
|
|
let (llptr, kind) = match datum.kind {
|
|
LvalueExpr => {
|
|
(Load(bcx, datum.val), LvalueExpr)
|
|
}
|
|
RvalueExpr(Rvalue { mode: ByRef }) => {
|
|
(Load(bcx, datum.val), RvalueExpr(Rvalue::new(ByRef)))
|
|
}
|
|
RvalueExpr(Rvalue { mode: ByValue }) => {
|
|
(datum.val, RvalueExpr(Rvalue::new(ByRef)))
|
|
}
|
|
};
|
|
|
|
let datum = Datum { ty: content_ty, val: llptr, kind: kind };
|
|
DatumBlock { bcx: bcx, datum: datum }
|
|
}
|
|
}
|
|
|
|
enum OverflowOp {
|
|
Add,
|
|
Sub,
|
|
Mul,
|
|
Shl,
|
|
Shr,
|
|
}
|
|
|
|
impl OverflowOp {
|
|
fn codegen_strategy(&self) -> OverflowCodegen {
|
|
use self::OverflowCodegen::{ViaIntrinsic, ViaInputCheck};
|
|
match *self {
|
|
OverflowOp::Add => ViaIntrinsic(OverflowOpViaIntrinsic::Add),
|
|
OverflowOp::Sub => ViaIntrinsic(OverflowOpViaIntrinsic::Sub),
|
|
OverflowOp::Mul => ViaIntrinsic(OverflowOpViaIntrinsic::Mul),
|
|
|
|
OverflowOp::Shl => ViaInputCheck(OverflowOpViaInputCheck::Shl),
|
|
OverflowOp::Shr => ViaInputCheck(OverflowOpViaInputCheck::Shr),
|
|
}
|
|
}
|
|
}
|
|
|
|
enum OverflowCodegen {
|
|
ViaIntrinsic(OverflowOpViaIntrinsic),
|
|
ViaInputCheck(OverflowOpViaInputCheck),
|
|
}
|
|
|
|
enum OverflowOpViaInputCheck { Shl, Shr, }
|
|
|
|
enum OverflowOpViaIntrinsic { Add, Sub, Mul, }
|
|
|
|
impl OverflowOpViaIntrinsic {
|
|
fn to_intrinsic<'blk, 'tcx>(&self, bcx: Block<'blk, 'tcx>, lhs_ty: Ty) -> ValueRef {
|
|
let name = self.to_intrinsic_name(bcx.tcx(), lhs_ty);
|
|
bcx.ccx().get_intrinsic(&name)
|
|
}
|
|
fn to_intrinsic_name(&self, tcx: &ty::ctxt, ty: Ty) -> &'static str {
|
|
use syntax::ast::IntTy::*;
|
|
use syntax::ast::UintTy::*;
|
|
use middle::ty::{ty_int, ty_uint};
|
|
|
|
let new_sty = match ty.sty {
|
|
ty_int(TyIs(_)) => match &tcx.sess.target.target.target_pointer_width[..] {
|
|
"32" => ty_int(TyI32),
|
|
"64" => ty_int(TyI64),
|
|
_ => panic!("unsupported target word size")
|
|
},
|
|
ty_uint(TyUs(_)) => match &tcx.sess.target.target.target_pointer_width[..] {
|
|
"32" => ty_uint(TyU32),
|
|
"64" => ty_uint(TyU64),
|
|
_ => panic!("unsupported target word size")
|
|
},
|
|
ref t @ ty_uint(_) | ref t @ ty_int(_) => t.clone(),
|
|
_ => panic!("tried to get overflow intrinsic for non-int type")
|
|
};
|
|
|
|
match *self {
|
|
OverflowOpViaIntrinsic::Add => match new_sty {
|
|
ty_int(TyI8) => "llvm.sadd.with.overflow.i8",
|
|
ty_int(TyI16) => "llvm.sadd.with.overflow.i16",
|
|
ty_int(TyI32) => "llvm.sadd.with.overflow.i32",
|
|
ty_int(TyI64) => "llvm.sadd.with.overflow.i64",
|
|
|
|
ty_uint(TyU8) => "llvm.uadd.with.overflow.i8",
|
|
ty_uint(TyU16) => "llvm.uadd.with.overflow.i16",
|
|
ty_uint(TyU32) => "llvm.uadd.with.overflow.i32",
|
|
ty_uint(TyU64) => "llvm.uadd.with.overflow.i64",
|
|
|
|
_ => unreachable!(),
|
|
},
|
|
OverflowOpViaIntrinsic::Sub => match new_sty {
|
|
ty_int(TyI8) => "llvm.ssub.with.overflow.i8",
|
|
ty_int(TyI16) => "llvm.ssub.with.overflow.i16",
|
|
ty_int(TyI32) => "llvm.ssub.with.overflow.i32",
|
|
ty_int(TyI64) => "llvm.ssub.with.overflow.i64",
|
|
|
|
ty_uint(TyU8) => "llvm.usub.with.overflow.i8",
|
|
ty_uint(TyU16) => "llvm.usub.with.overflow.i16",
|
|
ty_uint(TyU32) => "llvm.usub.with.overflow.i32",
|
|
ty_uint(TyU64) => "llvm.usub.with.overflow.i64",
|
|
|
|
_ => unreachable!(),
|
|
},
|
|
OverflowOpViaIntrinsic::Mul => match new_sty {
|
|
ty_int(TyI8) => "llvm.smul.with.overflow.i8",
|
|
ty_int(TyI16) => "llvm.smul.with.overflow.i16",
|
|
ty_int(TyI32) => "llvm.smul.with.overflow.i32",
|
|
ty_int(TyI64) => "llvm.smul.with.overflow.i64",
|
|
|
|
ty_uint(TyU8) => "llvm.umul.with.overflow.i8",
|
|
ty_uint(TyU16) => "llvm.umul.with.overflow.i16",
|
|
ty_uint(TyU32) => "llvm.umul.with.overflow.i32",
|
|
ty_uint(TyU64) => "llvm.umul.with.overflow.i64",
|
|
|
|
_ => unreachable!(),
|
|
},
|
|
}
|
|
}
|
|
|
|
fn build_intrinsic_call<'blk, 'tcx>(&self, bcx: Block<'blk, 'tcx>,
|
|
info: NodeIdAndSpan,
|
|
lhs_t: Ty<'tcx>, lhs: ValueRef,
|
|
rhs: ValueRef,
|
|
binop_debug_loc: DebugLoc)
|
|
-> (Block<'blk, 'tcx>, ValueRef) {
|
|
let llfn = self.to_intrinsic(bcx, lhs_t);
|
|
|
|
let val = Call(bcx, llfn, &[lhs, rhs], None, binop_debug_loc);
|
|
let result = ExtractValue(bcx, val, 0); // iN operation result
|
|
let overflow = ExtractValue(bcx, val, 1); // i1 "did it overflow?"
|
|
|
|
let cond = ICmp(bcx, llvm::IntEQ, overflow, C_integral(Type::i1(bcx.ccx()), 1, false),
|
|
binop_debug_loc);
|
|
|
|
let expect = bcx.ccx().get_intrinsic(&"llvm.expect.i1");
|
|
Call(bcx, expect, &[cond, C_integral(Type::i1(bcx.ccx()), 0, false)],
|
|
None, binop_debug_loc);
|
|
|
|
let bcx =
|
|
base::with_cond(bcx, cond, |bcx|
|
|
controlflow::trans_fail(bcx, info,
|
|
InternedString::new("arithmetic operation overflowed")));
|
|
|
|
(bcx, result)
|
|
}
|
|
}
|
|
|
|
impl OverflowOpViaInputCheck {
|
|
fn build_with_input_check<'blk, 'tcx>(&self,
|
|
bcx: Block<'blk, 'tcx>,
|
|
info: NodeIdAndSpan,
|
|
lhs_t: Ty<'tcx>,
|
|
lhs: ValueRef,
|
|
rhs: ValueRef,
|
|
binop_debug_loc: DebugLoc)
|
|
-> (Block<'blk, 'tcx>, ValueRef)
|
|
{
|
|
let lhs_llty = val_ty(lhs);
|
|
let rhs_llty = val_ty(rhs);
|
|
|
|
// Panic if any bits are set outside of bits that we always
|
|
// mask in.
|
|
//
|
|
// Note that the mask's value is derived from the LHS type
|
|
// (since that is where the 32/64 distinction is relevant) but
|
|
// the mask's type must match the RHS type (since they will
|
|
// both be fed into a and-binop)
|
|
let invert_mask = !shift_mask_val(lhs_llty);
|
|
let invert_mask = C_integral(rhs_llty, invert_mask, true);
|
|
|
|
let outer_bits = And(bcx, rhs, invert_mask, binop_debug_loc);
|
|
let cond = ICmp(bcx, llvm::IntNE, outer_bits,
|
|
C_integral(rhs_llty, 0, false), binop_debug_loc);
|
|
let result = match *self {
|
|
OverflowOpViaInputCheck::Shl =>
|
|
build_unchecked_lshift(bcx, lhs, rhs, binop_debug_loc),
|
|
OverflowOpViaInputCheck::Shr =>
|
|
build_unchecked_rshift(bcx, lhs_t, lhs, rhs, binop_debug_loc),
|
|
};
|
|
let bcx =
|
|
base::with_cond(bcx, cond, |bcx|
|
|
controlflow::trans_fail(bcx, info,
|
|
InternedString::new("shift operation overflowed")));
|
|
|
|
(bcx, result)
|
|
}
|
|
}
|
|
|
|
fn shift_mask_val(llty: Type) -> u64 {
|
|
// i8/u8 can shift by at most 7, i16/u16 by at most 15, etc.
|
|
llty.int_width() - 1
|
|
}
|
|
|
|
// To avoid UB from LLVM, these two functions mask RHS with an
|
|
// appropriate mask unconditionally (i.e. the fallback behavior for
|
|
// all shifts). For 32- and 64-bit types, this matches the semantics
|
|
// of Java. (See related discussion on #1877 and #10183.)
|
|
|
|
fn build_unchecked_lshift<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
lhs: ValueRef,
|
|
rhs: ValueRef,
|
|
binop_debug_loc: DebugLoc) -> ValueRef {
|
|
let rhs = base::cast_shift_expr_rhs(bcx, ast::BinOp_::BiShl, lhs, rhs);
|
|
// #1877, #10183: Ensure that input is always valid
|
|
let rhs = shift_mask_rhs(bcx, rhs, binop_debug_loc);
|
|
Shl(bcx, lhs, rhs, binop_debug_loc)
|
|
}
|
|
|
|
fn build_unchecked_rshift<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
lhs_t: Ty<'tcx>,
|
|
lhs: ValueRef,
|
|
rhs: ValueRef,
|
|
binop_debug_loc: DebugLoc) -> ValueRef {
|
|
let rhs = base::cast_shift_expr_rhs(bcx, ast::BinOp_::BiShr, lhs, rhs);
|
|
// #1877, #10183: Ensure that input is always valid
|
|
let rhs = shift_mask_rhs(bcx, rhs, binop_debug_loc);
|
|
let is_signed = ty::type_is_signed(lhs_t);
|
|
if is_signed {
|
|
AShr(bcx, lhs, rhs, binop_debug_loc)
|
|
} else {
|
|
LShr(bcx, lhs, rhs, binop_debug_loc)
|
|
}
|
|
}
|
|
|
|
fn shift_mask_rhs<'blk, 'tcx>(bcx: Block<'blk, 'tcx>,
|
|
rhs: ValueRef,
|
|
debug_loc: DebugLoc) -> ValueRef {
|
|
let rhs_llty = val_ty(rhs);
|
|
let mask = shift_mask_val(rhs_llty);
|
|
And(bcx, rhs, C_integral(rhs_llty, mask, false), debug_loc)
|
|
}
|
|
|
|
fn with_overflow_check<'blk, 'tcx>(bcx: Block<'blk, 'tcx>, oop: OverflowOp, info: NodeIdAndSpan,
|
|
lhs_t: Ty<'tcx>, lhs: ValueRef,
|
|
rhs: ValueRef,
|
|
binop_debug_loc: DebugLoc)
|
|
-> (Block<'blk, 'tcx>, ValueRef) {
|
|
if bcx.unreachable.get() { return (bcx, _Undef(lhs)); }
|
|
if bcx.ccx().check_overflow() {
|
|
|
|
match oop.codegen_strategy() {
|
|
OverflowCodegen::ViaIntrinsic(oop) =>
|
|
oop.build_intrinsic_call(bcx, info, lhs_t, lhs, rhs, binop_debug_loc),
|
|
OverflowCodegen::ViaInputCheck(oop) =>
|
|
oop.build_with_input_check(bcx, info, lhs_t, lhs, rhs, binop_debug_loc),
|
|
}
|
|
} else {
|
|
let res = match oop {
|
|
OverflowOp::Add => Add(bcx, lhs, rhs, binop_debug_loc),
|
|
OverflowOp::Sub => Sub(bcx, lhs, rhs, binop_debug_loc),
|
|
OverflowOp::Mul => Mul(bcx, lhs, rhs, binop_debug_loc),
|
|
|
|
OverflowOp::Shl =>
|
|
build_unchecked_lshift(bcx, lhs, rhs, binop_debug_loc),
|
|
OverflowOp::Shr =>
|
|
build_unchecked_rshift(bcx, lhs_t, lhs, rhs, binop_debug_loc),
|
|
};
|
|
(bcx, res)
|
|
}
|
|
}
|