rust/src/utils/mod.rs
2016-02-12 14:30:26 +01:00

611 lines
21 KiB
Rust
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

use reexport::*;
use rustc::front::map::Node;
use rustc::lint::{LintContext, LateContext, Level, Lint};
use rustc::middle::def_id::DefId;
use rustc::middle::{cstore, def, infer, ty, traits};
use rustc::session::Session;
use rustc_front::hir::*;
use std::borrow::Cow;
use std::mem;
use std::ops::{Deref, DerefMut};
use std::str::FromStr;
use syntax::ast::Lit_;
use syntax::ast;
use syntax::codemap::{ExpnInfo, Span, ExpnFormat};
use syntax::errors::DiagnosticBuilder;
use syntax::ptr::P;
mod hir;
pub use self::hir::{SpanlessEq, SpanlessHash};
pub type MethodArgs = HirVec<P<Expr>>;
// module DefPaths for certain structs/enums we check for
pub const BEGIN_UNWIND: [&'static str; 3] = ["std", "rt", "begin_unwind"];
pub const BOX_NEW_PATH: [&'static str; 4] = ["std", "boxed", "Box", "new"];
pub const BTREEMAP_ENTRY_PATH: [&'static str; 4] = ["collections", "btree", "map", "Entry"];
pub const BTREEMAP_PATH: [&'static str; 4] = ["collections", "btree", "map", "BTreeMap"];
pub const CLONE_PATH: [&'static str; 3] = ["clone", "Clone", "clone"];
pub const CLONE_TRAIT_PATH: [&'static str; 2] = ["clone", "Clone"];
pub const COW_PATH: [&'static str; 3] = ["collections", "borrow", "Cow"];
pub const DEBUG_FMT_METHOD_PATH: [&'static str; 4] = ["std", "fmt", "Debug", "fmt"];
pub const DEFAULT_TRAIT_PATH: [&'static str; 3] = ["core", "default", "Default"];
pub const DROP_PATH: [&'static str; 3] = ["core", "mem", "drop"];
pub const FMT_ARGUMENTV1_NEW_PATH: [&'static str; 4] = ["std", "fmt", "ArgumentV1", "new"];
pub const HASHMAP_ENTRY_PATH: [&'static str; 5] = ["std", "collections", "hash", "map", "Entry"];
pub const HASHMAP_PATH: [&'static str; 5] = ["std", "collections", "hash", "map", "HashMap"];
pub const HASH_PATH: [&'static str; 2] = ["hash", "Hash"];
pub const IO_PRINT_PATH: [&'static str; 3] = ["std", "io", "_print"];
pub const LL_PATH: [&'static str; 3] = ["collections", "linked_list", "LinkedList"];
pub const MUTEX_PATH: [&'static str; 4] = ["std", "sync", "mutex", "Mutex"];
pub const OPEN_OPTIONS_PATH: [&'static str; 3] = ["std", "fs", "OpenOptions"];
pub const OPTION_PATH: [&'static str; 3] = ["core", "option", "Option"];
pub const REGEX_NEW_PATH: [&'static str; 3] = ["regex", "Regex", "new"];
pub const RESULT_PATH: [&'static str; 3] = ["core", "result", "Result"];
pub const STRING_PATH: [&'static str; 3] = ["collections", "string", "String"];
pub const VEC_FROM_ELEM_PATH: [&'static str; 3] = ["std", "vec", "from_elem"];
pub const VEC_PATH: [&'static str; 3] = ["collections", "vec", "Vec"];
/// Produce a nested chain of if-lets and ifs from the patterns:
///
/// if_let_chain! {
/// [
/// let Some(y) = x,
/// y.len() == 2,
/// let Some(z) = y,
/// ],
/// {
/// block
/// }
/// }
///
/// becomes
///
/// if let Some(y) = x {
/// if y.len() == 2 {
/// if let Some(z) = y {
/// block
/// }
/// }
/// }
#[macro_export]
macro_rules! if_let_chain {
([let $pat:pat = $expr:expr, $($tt:tt)+], $block:block) => {
if let $pat = $expr {
if_let_chain!{ [$($tt)+], $block }
}
};
([let $pat:pat = $expr:expr], $block:block) => {
if let $pat = $expr {
$block
}
};
([$expr:expr, $($tt:tt)+], $block:block) => {
if $expr {
if_let_chain!{ [$($tt)+], $block }
}
};
([$expr:expr], $block:block) => {
if $expr {
$block
}
};
}
/// Returns true if the two spans come from differing expansions (i.e. one is from a macro and one
/// isn't).
pub fn differing_macro_contexts(sp1: Span, sp2: Span) -> bool {
sp1.expn_id != sp2.expn_id
}
/// Returns true if this `expn_info` was expanded by any macro.
pub fn in_macro<T: LintContext>(cx: &T, span: Span) -> bool {
cx.sess().codemap().with_expn_info(span.expn_id, |info| info.is_some())
}
/// Returns true if the macro that expanded the crate was outside of the current crate or was a
/// compiler plugin.
pub fn in_external_macro<T: LintContext>(cx: &T, span: Span) -> bool {
/// Invokes in_macro with the expansion info of the given span slightly heavy, try to use this
/// after other checks have already happened.
fn in_macro_ext<T: LintContext>(cx: &T, opt_info: Option<&ExpnInfo>) -> bool {
// no ExpnInfo = no macro
opt_info.map_or(false, |info| {
if let ExpnFormat::MacroAttribute(..) = info.callee.format {
// these are all plugins
return true;
}
// no span for the callee = external macro
info.callee.span.map_or(true, |span| {
// no snippet = external macro or compiler-builtin expansion
cx.sess().codemap().span_to_snippet(span).ok().map_or(true, |code| !code.starts_with("macro_rules"))
})
})
}
cx.sess().codemap().with_expn_info(span.expn_id, |info| in_macro_ext(cx, info))
}
/// Check if a `DefId`'s path matches the given absolute type path usage.
///
/// # Examples
/// ```
/// match_def_path(cx, id, &["core", "option", "Option"])
/// ```
pub fn match_def_path(cx: &LateContext, def_id: DefId, path: &[&str]) -> bool {
cx.tcx.with_path(def_id, |iter| {
iter.zip(path)
.all(|(nm, p)| nm.name().as_str() == *p)
})
}
/// Check if type is struct or enum type with given def path.
pub fn match_type(cx: &LateContext, ty: ty::Ty, path: &[&str]) -> bool {
match ty.sty {
ty::TyEnum(ref adt, _) | ty::TyStruct(ref adt, _) => match_def_path(cx, adt.did, path),
_ => false,
}
}
/// Check if the method call given in `expr` belongs to given type.
pub fn match_impl_method(cx: &LateContext, expr: &Expr, path: &[&str]) -> bool {
let method_call = ty::MethodCall::expr(expr.id);
let trt_id = cx.tcx
.tables
.borrow()
.method_map
.get(&method_call)
.and_then(|callee| cx.tcx.impl_of_method(callee.def_id));
if let Some(trt_id) = trt_id {
match_def_path(cx, trt_id, path)
} else {
false
}
}
/// Check if the method call given in `expr` belongs to given trait.
pub fn match_trait_method(cx: &LateContext, expr: &Expr, path: &[&str]) -> bool {
let method_call = ty::MethodCall::expr(expr.id);
let trt_id = cx.tcx
.tables
.borrow()
.method_map
.get(&method_call)
.and_then(|callee| cx.tcx.trait_of_item(callee.def_id));
if let Some(trt_id) = trt_id {
match_def_path(cx, trt_id, path)
} else {
false
}
}
/// Match a `Path` against a slice of segment string literals.
///
/// # Examples
/// ```
/// match_path(path, &["std", "rt", "begin_unwind"])
/// ```
pub fn match_path(path: &Path, segments: &[&str]) -> bool {
path.segments.iter().rev().zip(segments.iter().rev()).all(|(a, b)| a.identifier.name.as_str() == *b)
}
/// Match a `Path` against a slice of segment string literals, e.g.
///
/// # Examples
/// ```
/// match_path(path, &["std", "rt", "begin_unwind"])
/// ```
pub fn match_path_ast(path: &ast::Path, segments: &[&str]) -> bool {
path.segments.iter().rev().zip(segments.iter().rev()).all(|(a, b)| a.identifier.name.as_str() == *b)
}
/// Get the definition associated to a path.
/// TODO: investigate if there is something more efficient for that.
pub fn path_to_def(cx: &LateContext, path: &[&str]) -> Option<cstore::DefLike> {
let cstore = &cx.tcx.sess.cstore;
let crates = cstore.crates();
let krate = crates.iter().find(|&&krate| cstore.crate_name(krate) == path[0]);
if let Some(krate) = krate {
let mut items = cstore.crate_top_level_items(*krate);
let mut path_it = path.iter().skip(1).peekable();
loop {
let segment = match path_it.next() {
Some(segment) => segment,
None => return None,
};
for item in &mem::replace(&mut items, vec![]) {
if item.name.as_str() == *segment {
if path_it.peek().is_none() {
return Some(item.def);
}
let def_id = match item.def {
cstore::DefLike::DlDef(def) => def.def_id(),
cstore::DefLike::DlImpl(def_id) => def_id,
_ => panic!("Unexpected {:?}", item.def),
};
items = cstore.item_children(def_id);
break;
}
}
}
} else {
None
}
}
/// Convenience function to get the `DefId` of a trait by path.
pub fn get_trait_def_id(cx: &LateContext, path: &[&str]) -> Option<DefId> {
let def = match path_to_def(cx, path) {
Some(def) => def,
None => return None,
};
match def {
cstore::DlDef(def::Def::Trait(trait_id)) => Some(trait_id),
_ => None,
}
}
/// Check whether a type implements a trait.
/// See also `get_trait_def_id`.
pub fn implements_trait<'a, 'tcx>(cx: &LateContext<'a, 'tcx>, ty: ty::Ty<'tcx>, trait_id: DefId,
ty_params: Option<Vec<ty::Ty<'tcx>>>)
-> bool {
cx.tcx.populate_implementations_for_trait_if_necessary(trait_id);
let infcx = infer::new_infer_ctxt(cx.tcx, &cx.tcx.tables, None);
let obligation = traits::predicate_for_trait_def(cx.tcx,
traits::ObligationCause::dummy(),
trait_id,
0,
ty,
ty_params.unwrap_or_default());
traits::SelectionContext::new(&infcx).evaluate_obligation_conservatively(&obligation)
}
/// Match an `Expr` against a chain of methods, and return the matched `Expr`s.
///
/// For example, if `expr` represents the `.baz()` in `foo.bar().baz()`,
/// `matched_method_chain(expr, &["bar", "baz"])` will return a `Vec` containing the `Expr`s for
/// `.bar()` and `.baz()`
pub fn method_chain_args<'a>(expr: &'a Expr, methods: &[&str]) -> Option<Vec<&'a MethodArgs>> {
let mut current = expr;
let mut matched = Vec::with_capacity(methods.len());
for method_name in methods.iter().rev() {
// method chains are stored last -> first
if let ExprMethodCall(ref name, _, ref args) = current.node {
if name.node.as_str() == *method_name {
matched.push(args); // build up `matched` backwards
current = &args[0] // go to parent expression
} else {
return None;
}
} else {
return None;
}
}
matched.reverse(); // reverse `matched`, so that it is in the same order as `methods`
Some(matched)
}
/// Get the name of the item the expression is in, if available.
pub fn get_item_name(cx: &LateContext, expr: &Expr) -> Option<Name> {
let parent_id = cx.tcx.map.get_parent(expr.id);
match cx.tcx.map.find(parent_id) {
Some(Node::NodeItem(&Item{ ref name, .. })) |
Some(Node::NodeTraitItem(&TraitItem{ ref name, .. })) |
Some(Node::NodeImplItem(&ImplItem{ ref name, .. })) => Some(*name),
_ => None,
}
}
/// Checks if a `let` decl is from a `for` loop desugaring.
pub fn is_from_for_desugar(decl: &Decl) -> bool {
if_let_chain! {
[
let DeclLocal(ref loc) = decl.node,
let Some(ref expr) = loc.init,
let ExprMatch(_, _, MatchSource::ForLoopDesugar) = expr.node
],
{ return true; }
};
false
}
/// Convert a span to a code snippet if available, otherwise use default.
///
/// # Example
/// ```
/// snippet(cx, expr.span, "..")
/// ```
pub fn snippet<'a, T: LintContext>(cx: &T, span: Span, default: &'a str) -> Cow<'a, str> {
cx.sess().codemap().span_to_snippet(span).map(From::from).unwrap_or_else(|_| Cow::Borrowed(default))
}
/// Convert a span to a code snippet. Returns `None` if not available.
pub fn snippet_opt<T: LintContext>(cx: &T, span: Span) -> Option<String> {
cx.sess().codemap().span_to_snippet(span).ok()
}
/// Convert a span (from a block) to a code snippet if available, otherwise use default.
/// This trims the code of indentation, except for the first line. Use it for blocks or block-like
/// things which need to be printed as such.
///
/// # Example
/// ```
/// snippet(cx, expr.span, "..")
/// ```
pub fn snippet_block<'a, T: LintContext>(cx: &T, span: Span, default: &'a str) -> Cow<'a, str> {
let snip = snippet(cx, span, default);
trim_multiline(snip, true)
}
/// Like `snippet_block`, but add braces if the expr is not an `ExprBlock`.
/// Also takes an `Option<String>` which can be put inside the braces.
pub fn expr_block<'a, T: LintContext>(cx: &T, expr: &Expr, option: Option<String>, default: &'a str) -> Cow<'a, str> {
let code = snippet_block(cx, expr.span, default);
let string = option.unwrap_or_default();
if let ExprBlock(_) = expr.node {
Cow::Owned(format!("{}{}", code, string))
} else if string.is_empty() {
Cow::Owned(format!("{{ {} }}", code))
} else {
Cow::Owned(format!("{{\n{};\n{}\n}}", code, string))
}
}
/// Trim indentation from a multiline string with possibility of ignoring the first line.
pub fn trim_multiline(s: Cow<str>, ignore_first: bool) -> Cow<str> {
let s_space = trim_multiline_inner(s, ignore_first, ' ');
let s_tab = trim_multiline_inner(s_space, ignore_first, '\t');
trim_multiline_inner(s_tab, ignore_first, ' ')
}
fn trim_multiline_inner(s: Cow<str>, ignore_first: bool, ch: char) -> Cow<str> {
let x = s.lines()
.skip(ignore_first as usize)
.filter_map(|l| {
if l.len() > 0 {
// ignore empty lines
Some(l.char_indices()
.find(|&(_, x)| x != ch)
.unwrap_or((l.len(), ch))
.0)
} else {
None
}
})
.min()
.unwrap_or(0);
if x > 0 {
Cow::Owned(s.lines()
.enumerate()
.map(|(i, l)| {
if (ignore_first && i == 0) || l.len() == 0 {
l
} else {
l.split_at(x).1
}
})
.collect::<Vec<_>>()
.join("\n"))
} else {
s
}
}
/// Get a parent expressions if any this is useful to constrain a lint.
pub fn get_parent_expr<'c>(cx: &'c LateContext, e: &Expr) -> Option<&'c Expr> {
let map = &cx.tcx.map;
let node_id: NodeId = e.id;
let parent_id: NodeId = map.get_parent_node(node_id);
if node_id == parent_id {
return None;
}
map.find(parent_id).and_then(|node| {
if let Node::NodeExpr(parent) = node {
Some(parent)
} else {
None
}
})
}
pub fn get_enclosing_block<'c>(cx: &'c LateContext, node: NodeId) -> Option<&'c Block> {
let map = &cx.tcx.map;
let enclosing_node = map.get_enclosing_scope(node)
.and_then(|enclosing_id| map.find(enclosing_id));
if let Some(node) = enclosing_node {
match node {
Node::NodeBlock(ref block) => Some(block),
Node::NodeItem(&Item{ node: ItemFn(_, _, _, _, _, ref block), .. }) => Some(block),
_ => None,
}
} else {
None
}
}
pub struct DiagnosticWrapper<'a>(pub DiagnosticBuilder<'a>);
impl<'a> Drop for DiagnosticWrapper<'a> {
fn drop(&mut self) {
self.0.emit();
}
}
impl<'a> DerefMut for DiagnosticWrapper<'a> {
fn deref_mut(&mut self) -> &mut DiagnosticBuilder<'a> {
&mut self.0
}
}
impl<'a> Deref for DiagnosticWrapper<'a> {
type Target = DiagnosticBuilder<'a>;
fn deref(&self) -> &DiagnosticBuilder<'a> {
&self.0
}
}
pub fn span_lint<'a, T: LintContext>(cx: &'a T, lint: &'static Lint, sp: Span, msg: &str) -> DiagnosticWrapper<'a> {
let mut db = cx.struct_span_lint(lint, sp, msg);
if cx.current_level(lint) != Level::Allow {
db.fileline_help(sp,
&format!("for further information visit https://github.com/Manishearth/rust-clippy/wiki#{}",
lint.name_lower()));
}
DiagnosticWrapper(db)
}
pub fn span_help_and_lint<'a, T: LintContext>(cx: &'a T, lint: &'static Lint, span: Span, msg: &str, help: &str)
-> DiagnosticWrapper<'a> {
let mut db = cx.struct_span_lint(lint, span, msg);
if cx.current_level(lint) != Level::Allow {
db.fileline_help(span,
&format!("{}\nfor further information visit \
https://github.com/Manishearth/rust-clippy/wiki#{}",
help,
lint.name_lower()));
}
DiagnosticWrapper(db)
}
pub fn span_note_and_lint<'a, T: LintContext>(cx: &'a T, lint: &'static Lint, span: Span, msg: &str, note_span: Span,
note: &str)
-> DiagnosticWrapper<'a> {
let mut db = cx.struct_span_lint(lint, span, msg);
if cx.current_level(lint) != Level::Allow {
if note_span == span {
db.fileline_note(note_span, note);
} else {
db.span_note(note_span, note);
}
db.fileline_help(span,
&format!("for further information visit https://github.com/Manishearth/rust-clippy/wiki#{}",
lint.name_lower()));
}
DiagnosticWrapper(db)
}
pub fn span_lint_and_then<'a, T: LintContext, F>(cx: &'a T, lint: &'static Lint, sp: Span, msg: &str, f: F)
-> DiagnosticWrapper<'a>
where F: FnOnce(&mut DiagnosticWrapper)
{
let mut db = DiagnosticWrapper(cx.struct_span_lint(lint, sp, msg));
if cx.current_level(lint) != Level::Allow {
f(&mut db);
db.fileline_help(sp,
&format!("for further information visit https://github.com/Manishearth/rust-clippy/wiki#{}",
lint.name_lower()));
}
db
}
/// Return the base type for references and raw pointers.
pub fn walk_ptrs_ty(ty: ty::Ty) -> ty::Ty {
match ty.sty {
ty::TyRef(_, ref tm) | ty::TyRawPtr(ref tm) => walk_ptrs_ty(tm.ty),
_ => ty,
}
}
/// Return the base type for references and raw pointers, and count reference depth.
pub fn walk_ptrs_ty_depth(ty: ty::Ty) -> (ty::Ty, usize) {
fn inner(ty: ty::Ty, depth: usize) -> (ty::Ty, usize) {
match ty.sty {
ty::TyRef(_, ref tm) | ty::TyRawPtr(ref tm) => inner(tm.ty, depth + 1),
_ => (ty, depth),
}
}
inner(ty, 0)
}
/// Check whether the given expression is a constant literal of the given value.
pub fn is_integer_literal(expr: &Expr, value: u64) -> bool {
// FIXME: use constant folding
if let ExprLit(ref spanned) = expr.node {
if let Lit_::LitInt(v, _) = spanned.node {
return v == value;
}
}
false
}
pub fn is_adjusted(cx: &LateContext, e: &Expr) -> bool {
cx.tcx.tables.borrow().adjustments.get(&e.id).is_some()
}
pub struct LimitStack {
stack: Vec<u64>,
}
impl Drop for LimitStack {
fn drop(&mut self) {
assert_eq!(self.stack.len(), 1);
}
}
impl LimitStack {
pub fn new(limit: u64) -> LimitStack {
LimitStack { stack: vec![limit] }
}
pub fn limit(&self) -> u64 {
*self.stack.last().expect("there should always be a value in the stack")
}
pub fn push_attrs(&mut self, sess: &Session, attrs: &[ast::Attribute], name: &'static str) {
let stack = &mut self.stack;
parse_attrs(sess, attrs, name, |val| stack.push(val));
}
pub fn pop_attrs(&mut self, sess: &Session, attrs: &[ast::Attribute], name: &'static str) {
let stack = &mut self.stack;
parse_attrs(sess, attrs, name, |val| assert_eq!(stack.pop(), Some(val)));
}
}
fn parse_attrs<F: FnMut(u64)>(sess: &Session, attrs: &[ast::Attribute], name: &'static str, mut f: F) {
for attr in attrs {
let attr = &attr.node;
if attr.is_sugared_doc {
continue;
}
if let ast::MetaNameValue(ref key, ref value) = attr.value.node {
if *key == name {
if let Lit_::LitStr(ref s, _) = value.node {
if let Ok(value) = FromStr::from_str(s) {
f(value)
} else {
sess.span_err(value.span, "not a number");
}
} else {
unreachable!()
}
}
}
}
}
/// Return the pre-expansion span if is this comes from an expansion of the macro `name`.
pub fn is_expn_of(cx: &LateContext, mut span: Span, name: &str) -> Option<Span> {
loop {
let span_name_span = cx.tcx.sess.codemap().with_expn_info(span.expn_id, |expn| {
expn.map(|ei| {
(ei.callee.name(), ei.call_site)
})
});
match span_name_span {
Some((mac_name, new_span)) if mac_name.as_str() == name => return Some(new_span),
None => return None,
Some((_, new_span)) => span = new_span,
}
}
}